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ABSTRACT 

The ability of versatile peroxidase to modify/degrade lignin (in conjunction with veratryl alcohol as a mediator) 
in both wood (Eucalyptus globulus) and non-wood (Pennisetum purpureum) lignocellulosic feedstocks was 
demonstrated using the Pleurotus ostreatus enzyme heterologously expressed in Escherichia coli and "in vitro" 
folded. Two-dimensional nuclear magnetic resonance (NMR) of the treated materials, swollen in 
dimethylsulfoxide-d6, revealed a reduction in the number of lignin side-chain linkages after both treatments. 
However, a significant removal of lignin by the enzymatic treatment was only observed in the case of eucalypt 
wood, as shown by the decrease of lignin aromatic signals referred to carbohydrate anomeric signals.  

I. INTRODUCTION 

Lignin removal is a key step for recycling the carbon fixed by land photosynthesis and a limiting issue for the 
use of lignocellulosic biomass by the pulp and paper industry and in the sustainable production of fuels and other 
chemicals. Only a group of basidiomycetes, the so-called white-rot fungi, are efficient lignin degraders in nature 
[1]. According to the genomic data, ligninolytic peroxidases - the so-called lignin peroxidase (LiP, EC1.11.1.14), 
manganese peroxidase (MnP, EC1.11.1.13) and versatile peroxidase (VP, EC 1.11.1.16) - are exclusive of 
lignin-degrading white-rot basidiomycetes and play a central role in lignin degradation [2]. The presence of LiP 
has been associated with the ability to degrade lignin in white-rot fungi and in vitro depolymerization of lignin 
by LiP was demonstrated [3]. On the other hand, a recent study show the presence in the model agaric Pleurotus 
ostreatus of a peroxidase repertoire in which VPs play the role that LiPs do in white-rot polypores, being able to 
depolymerize lignin in the presence of VA [4]. 

In the present study, eucalypt (Eucalyptus globulus) and Elephant grass (Pennisetum purpureum), two fast 
growing plant species, were treated with VP from P. ostreatus in the presence of VA to investigate its ability to 
modify natural lignin in lignocellulosic feedstocks, as it has been previously demonstrated for the laccase-
mediator system [5,6]. The eventual modification of the cell-wall polymers during the enzyme treatment of the 
whole plant material was analyzed by hetereonuclear single quantum correlation (HSQC) solution NMR of gels 
prepared by lignocelluloses swelling in dimethylsulfoxide-d6  [7,8]. 

II. EXPERIMENTAL

Recombinant VP 

VP (isoenzyme VP1) from the basidiomycete P. ostreatus was produced heterologously in Escherichia coli. The 
mature protein-coding sequence of gene model 137757 from the PC9 monokaryon genome, after manual 
curation, was synthesized by ATG:biosynthetics (Merzhausen, Germany) after verifying that all the codons had 
been previously used for expressing other genes in the same E. coli strain (and substituting them when required). 
Mature protein-codifying sequence was cloned in the expression vector pET23a (+) (Novagen). The resulting 
plasmid pET23a-137757, was directly used for expression. The peroxidase was produced in E. coli 
BL21(DE3)pLysS. Cells were grown for 3 h in Terrific Broth, induced with 1 mM isopropyl-β-D-
thiogalactopyranoside, and grown further for 4 h. The apoenzyme accumulated in inclusion bodies, as observed 
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was solubilized using 8 M urea. Subsequent in 
vitro folding was performed using 0.16 M urea, 5 mM Ca2+, 20 µM hemin, 0.5 mM oxidized glutathione, 0.1 
mM dithiothreitol, and 0.1 mg/ml protein, at pH 9.5. Active enzyme was purified by Resource-Q 
chromatography using a 0-300 mM NaCl gradient (2 ml·min-1, 20 min) in 10 mM sodium tartrate, pH 5.5. 

Wood and grass treatments with VP 

Milled Elephant grass and eucalypt wood samples (100 mg) were treated with 5 mg of VP from P. ostreatus in 
10 mM Na acetate (pH 4.5) containing 10 mM VA and 60 mM H2O2 at 25 ºC for 24 h. Treatments without 
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enzyme were also performed. For NMR analysis, the whole samples recovered after washing (70-85 mg) were 
swollen in dimethylsulfoxide-d6 and HSQC spectra were acquired at the gel state [7,8]. A Bruker Biospin 
(Billerica, MA) AVANCE 500 MHz spectrometer fitted with a cryogenically cooled 5-mm TCI gradient probe 
with inverse geometry (proton coils closet to the sample) was used. The 13C-1H correlation experiment was an 
adiabatic HSQC experiment (Bruker standar pulse sequence ´hsqcetgpsisp.2´; phase-sensitive gradient-edited-2D 
HSQC using adiabatic pulses for inversion and refocusin). Spectra were acquired from 10 to 0 ppm in F2 (1H) 
with 1000 data points for an acquisition time (AQ) of 100 ms, an interscan delay (D1) of 500 ms, 200 to 0 ppm 
in F1 (13C) with 400 increments (F1 acquisition time 8 ms) of 40 scans. The 1JCH used was 145 Hz. Processing 
used typical matched Gaussian apodization in 1H and a squared cosine bell in 13C. Prior to Fourier 
transformation, the data matrices were zero filled up to 1,024 points in the 13C dimension. The central solvent 
peak was used as an internal reference (δC/δH 39.5/2.49). The aromatic 13C-1H correlation signals of the different 
lignin units were used for estimation of its composition in guaicyl (G) and syringyl (S) lignin units. The p-
coumaric and ferulic acid contents and the percentages of main lignin substructures (including β-O-4' and β-β' 
side-chain linkages) were referred to total lignin. Signal assignement was based on previous studies on E. 
globulus and P. purpureum lignins [9,10]. 

III. RESULTS AND DISCUSSION

The detailed assignments of aliphatic-oxygenated (top) and aromatic-unsaturated (bottom) signals in the control 
and VP-VA treated eucalypt wood and Elephant grass samples are shown in the spectra expansions included in 
Fig. 1. The main lignin and cinnamic structures identified are shown in Fig. 2.  

The aliphatic oxygenated region of the spectrum of control (Fig. 1a and c) showed signals of both lignin and 
carbohydrates, the latter mainly corresponding to xylan units (X). In addition to methoxyl signals, signals of 
lignin side-chains were observed, the latter corresponding to Cα–Hα correlations (Aα) in β-O-4´ alkyl–aryl ether 
substructures, and Cβ–Hβ correlations in β-O-4 alkyl–aryl ether substructures including a second S-unit (Aβ(S)). 
The main signals in the aromatic-unsaturated region of the HSQC spectrum of control eucalypt wood (Fig. 1a) 
corresponded to the lignin benzene rings, including the G and S whereas in the case of the Elephant grass (Fig. 
1c)  p-coumaric acid signals are also present together with lignin signals. 

The oxidation of VA, used as mediator, results in the production of veratraldehyde which remains attached to the 
sample, despite the exhaustive washing, overlapping some signals. This can be due to the coupling of VA radical 
on the lignin units.  

Enzymatic modification of eucalypt lignin as shown by 2D NMR 

As shown by the NMR spectra of the whole treated sample at the gel state, a single step VP-VA treatment 
(without a subsequent alkaline extraction) led to a significant reduction in the molar frequency of both β-β' (Bα 
signal) and β-O-4' (Aβ signal) inter-unit linkages (per 100 lignin units) in the treated sample (40% and 1%, 
respectively, in Fig. 1b) with respect to the control (44% and 4%, respectively, in Fig. 1a). Moreover, a 
reduction of the lignin content was produced, as shown by the lignin-to-carbohydrate molar ratios (L/CH) 
estimated from the intensity of the lignin aromatic signals referred to the carbohydrate anomeric signals (X1 and 
X'1), passing from a L/CH ratio of 2.3 in the control to a L/CH ratio of 1.6 in the treated sample (Fig 1). Finally, 
a slightly preferential removal of G units was observed, resulting in higher S/G molar ratio in the treated sample 
(1.5) compared with the control (1.4), in agreement with related studies [5,6]. 

Enzymatic modification of Elephant grass lignin as shown by 2D NMR 

The single step VP-VA treatment (without subsequent alkaline extraction) resulted in a reduction (>10%) of β-
O-4' linkages per 100 lignin units in the treated sample (Fig. 1d) with respect to the control (Fig. 1c) (β-β 
linkages were not detected in the Elephant grass samples). However, in contrast with that observed for eucalypt 
wood, no significant reduction of lignin content was produced, as shown by the unchanged lignin-to-
carbohydrate molar ratios (1.0 in both samples), and the p-coumaric acid (PCA signals) signals remained 
basically unchanged. 

IV. CONCLUSIONS

In the present study, the ability of a high-redox ligninolytic peroxidase from P. ostreatus (VP) to remove lignin 
from two lignocellulosic samples is demonstrated by NMR analysis, in agreement with its central role in lignin 
degradation in Agaricales and with our previous results in which VP was able to degrade both a non phenolic 
lignin-model dimer and synthetic polymeric lignin (DHP). The results obtained showed that VP was more 
effective against eucalypt wood lignin than against Elephant grass lignin, leading to both a significant reduction 
in the frequency of main inter-unit linkages and a moderate reduction of the lignin content, while the 
carbohydrate signals remain basically unchanged. 
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Figure 1. Aromatic region of the HSQC spectra of eucalypt wood (top) and Elephant grass (bottom) treated with 
P. ostreatus VP and VA (as mediator). A and C controls without enzyme; B and D treatments with enzyme. See 
Fig. 2 for identification of the lignin, cinnamic acid and mediator-derived structures assigned (MeO correspond 

to methoxyl groups). X and X' signals correspond to normal and acetylated carbohydrates, respectively.
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Fig. 2. Main lignin, cinnamic acid and mediator-derived structures identified in the Elephant grass and eucalypt 
samples analyzed by HSQC NMR (Fig. 1): A, β-O-4´ lignin structure (aliphatic region of the spectra); PCA, p-
coumaric acid; FA, ferulic acid; G, guaiacyl units; S, syringyl units; Va, veratryl alcohol (mediator); and Vad,

veratraldehyde (Va oxidation product).
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	,𝐗-𝐧.=𝟐,𝐗−,𝐗-𝐦.-,𝐗-𝐦𝐚𝐱.−,𝐗-𝐦𝐢𝐧..     (2)
	where Xn is the normalized value of A, H or T; X is the actual experimental value of the variable concerned; Xm is the mean of Xmax and Xmin; and Xmax and Xmin are the maximum and minimum value, respectively, of such a variable.
	The operational values for the independent variables in the 15 experiments conducted are given in Table 1.
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