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Abstract
Anisotropy and temperature dependence of structural, thermodynamic and
elastic properties of crystalline cellulose Iβ were computed with first-principles
density functional theory (DFT) and a semi-empirical correction for van der
Waals interactions. Specifically, we report the computed temperature variation
(up to 500 K) of the monoclinic cellulose Iβ lattice parameters, constant pressure
heat capacity, Cp, entropy, S, enthalpy, H , the linear thermal expansion
components, ξi , and components of the isentropic and isothermal (single crystal)
elastic stiffness matrices, CS

ij (T ) and CT
ij (T ), respectively. Thermodynamic

quantities from phonon calculations computed with DFT and the supercell
method provided necessary inputs to compute the temperature dependence
of cellulose Iβ properties via the quasi-harmonic approach. The notable
exceptions were the thermal conductivity components, λi (the prediction of
which has proven to be problematic for insulators using DFT) for which the
reverse, non-equilibrium molecular dynamics approach with a force field was
applied. The extent to which anisotropy of Young’s modulus and Poisson’s
ratio is temperature-dependent was explored in terms of the variations of each
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with respect to crystallographic directions and preferred planes containing
specific bonding characteristics (as revealed quantitatively from phonon force
constants for each atomic pair, and qualitatively from charge density difference
contours). Comparisons of the predicted quantities with available experimental
data revealed reasonable agreement up to 500 K. Computed properties were
interpreted in terms of the cellulose Iβ structure and bonding interactions.

Keywords: crystalline cellulose, first-principles density functional theory,
thermodynamic properties, mechanical properties

(Some figures may appear in colour only in the online journal)

S Online supplementary data available from stacks.iop.org/MSMSE/22/
085012/mmedia

1. Introduction

Cellulose is the most abundant and ubiquitous organic substance on earth. It is the basis of
numerous products of critical importance to society, including the paper on which the articles
we read are printed, cellophane and textiles that can be renewably produced [1–3], home
insulation [4], adhesives [5] and cellulose fiber-reinforced composites, such as thermoplastic
composites for automotive structural applications [6–8] and cement composites [9]. The advent
of cellulose nanomaterials (CNs), of which cellulose is the main building block, has stimulated
new research aimed at understanding the structure and properties of these materials and how to
exploit their unique properties in new technologies [10–12]. CNs have a unique combination
of characteristics (e.g. high aspect ratio, high mechanical properties, low coefficient of
thermal expansion, high thermal conductivity, etc) that differentiate them from other polymers.
The vast potential for CNs makes them attractive for a wide variety of applications which
include multifunctional films, flexible displays, composite materials, biomedical implants,
pharmaceuticals, drug delivery, fibers and textiles, batteries and supercapacitors, electroactive
polymers, and many others [10, 13]. Another specific example is the integration of inorganic
electronic devices onto polymer substrates (e.g. flexible transparent electronics), in which
additions of CNs help to minimize differences in mechanical and thermal properties between
the polymer substrate and the inorganic materials making up the device. For the development
of new polymer nanocomposite systems there is a greater reliance of composite design models
that required reliable material properties. The properties of CNs strongly depend on the
properties of crystalline cellulose, e.g. its volume fraction and its distribution within CNs.
Of particular importance are the mechanical and thermodynamic properties of crystalline
cellulose [10, 11] which have received only minimal attention in scientific and engineering
literature. The design of new CN-based materials, and ultimately their ability to meet a wide
variety of in-service conditions will be critically dependent upon how cellulose properties vary
with temperature [14].

Cellulose is a polysaccharide consisting of linear molecular chains with a repeat unit
comprised of two anhydroglucose rings ((C6H10O5)n; n = 10 000 to 15 000) connected
through glycosidic oxygen bridges (i.e. β 1–4 glucosidic bond) [11]. It is produced by
trees, plants, algae, bacteria, and it is found in the dermis of certain marine creatures (e.g.
tunicates [15]). During biosynthesis, multiple cellulose chains form bundles, called cellulose
fibrils, which have regions where the cellulose chains arrange with a high degree of order,
resulting in crystalline-like behavior, and regions that are disordered and hence amorphous-like.
Naturally occurring cellulose crystals co-exist in two polymorphs, Iα and Iβ , with the latter
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being the more thermodynamically stable phase [10, 16, 17] and the focus of this study.
Cellulose Iβ has a monoclinic P 21 (#4) structure [18] (see figure 1). Its crystal structure (e.g.
cellulose chain structure and cellulose chain arrangement) and the bonding associated with
the linear molecular chains result in extreme anisotropy of its mechanical and thermodynamic
properties. These properties, which include the elasticity tensor, thermal expansion coefficients
(TECs), isobaric heat capacity, and thermal conductivity, are either incompletely understood
or simply have not been measured reliably for the crystalline cellulose Iβ structure. Difficulties
in experimental testing, propagation of uncertainties in experimental tests [19], and intrinsic
material variability in crystalline cellulose test specimens (e.g. different crystal structures,
defects, percent crystallinity, etc) render such measurements very challenging [10].

Since the CN structure is anisotropic, it is necessary to understand how the properties
change as a function of orientation. However, quantitative characterization of CNs remains
elusive, and what is available is incomplete. To fill in these gaps, there has recently been a
greater emphasis on predictive modeling of CN properties and property anisotropy. Recent
theoretical efforts aimed at predicting cellulose properties have shown substantial differences
in certain properties, such as Young’s modulus, which are likely due to differences in model
parameters, simulation method, configuration of the modeled structure, and whether or not
hydrogen bonding [17] and van der Waals (vdW) interactions are incorporated [10, 20].
Alternatively, experimental values of Young’s modulus have been determined using different
experimental techniques. For instance, x-ray diffraction measurements [21–25] of the axial
elastic modulus, measured along the longitudinal axis of the cellulose Iβ unit cell (i.e. the a

axis denoted in figure 1), range from 90 to 138 GPa. Recently, Diddens et al [26] reported an
axial elastic modulus of 220 ± 50 GPa and transverse elastic modulus, measured in a direction
perpendicular to the longitudinal axis cellulose Iβ unit cell, of 15±1 GPa using inelastic x-ray
scattering (IXR). More recently, Lahiji et al [27] and Wagner et al [19] measured a transverse
elastic modulus of 8.1 GPa through nanoindentation using atomic force microscopy (AFM).
When measurement uncertainties in AFM are accounted for, nanoindentation results in a more
broad 2.7–20 GPa range [19].

Similarly, data from experimental measurements for linear TECs (ξi) of cellulose Iβ also
contain considerable scatter [28–31]. For example, the range of reported ξi values along the a,
b and c axes of the Iβ structure (see figure 1) are, respectively, ξ1 = (9.8 − 13.6) × 10−5 K−1

[29, 31], ξ2 = (0.5 − 2.1) × 10−5 K−1 [29, 30] and ξ3 = 0.6 × 10−5 K−1 [29]. An additional
challenge for experimental measurements stems from the Iβ structure transition to a high-
temperature phase at temperatures approaching 475–500 K: this high-temperature cellulose
phase has mechanical and thermal properties that considerably differ from the P 21 structure
[31]. To the best of our knowledge, numerical predictions of ξi values for crystalline cellulose
Iβ in the extant literature have only been obtained with molecular dynamics using various
force fields (GROMOS 45a4 [32], GLYCAM06 [9], GROMOS 53a6 [33] and ReaxFF [34])
reporting, respectively, values of ξ1 = 7.3 × 10−5–10.8 × 10−5 K−1, ξ2 = 0.91 × 10−5–
2.9 × 10−5 K−1 and ξ3 = −3.0 × 10−5–2.9 × 10−5 K−1 in the 280–400 K range. Existing
experimental and theoretical studies suggest a relatively high axial elastic modulus and low
axial thermal expansion of cellulose Iβ compared to other organic compounds, such as
polymers, which have elastic moduli in the 10−2–101 GPa range, and linear thermal expansion
values within (5–20) × 10−5 K−1. Additionally, the large difference between transverse and
axial elastic moduli, as well as differences between the ξi for cellulose Iβ indicate extreme
property anisotropies that result from its bonding interactions. Hatakeyama et al [35, 36]
measured Cp for amorphous cellulose using differential scanning calorimetry (DSC) and
extrapolated their values to crystalline cellulose obtaining Cp = 202.7 J mol-f.u.−1 K−1

(at 360 K) and Cp = 218.9 J mol-f.u.−1 K−1 (at 420 K).
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First-principles density functional theory (DFT) within the quasi-harmonic approach has
previously been used to predict elasticity tensor components, anisotropy of Young’s moduli
and Poisson’s ratio, the ξi and the isobaric heat capacity, Cp, for numerous materials with
reasonable accuracy relative to existing experimental results [37–39]. However, a careful
search of the literature revealed a dearth of theoretical predictions of these important properties
for crystalline cellulose. This situation is no different for thermal conductivity (λ) values
for cellulose Iβ . Most of the existing literature on thermal conductivity measurement of
cellulose focuses on cellulose nanofibrils (CNFs) which are finer cellulose fibrils produced from
wood and plant fibers, each containing ∼100% cellulose in both amorphous and crystalline
forms. For example, Shimazaki et al [40] produced 70 µm thick CNFs (58 wt%)-epoxy matrix
reinforced composite films that had a measured thermal conductivity of 1.1 W m−1 K−1 along
the film in-plane direction and 0.23 W m−1 K−1 along the thickness direction. These values
were measured at room temperature using alternating current (ac) calorimetry [41] and thermal
wave analysis [42]. Results showed that there is a 7–8 times increase in the thermal conductivity
along the in-plane direction of the film and a 1–2 times increase along the thickness direction
compared to the neat epoxy matrix. The increased thermal conductivity of the composites
suggests that they have the ability to dissipate more heat for a given input heat flux, which
lowers the composite temperature and thus improves the thermal stability, preventing chemical
and mechanical degradation [10]. Recent predictions of thermal conductivity of simple oxides
using DFT have produced results that differ by 15–40% from experimental values [43–45].
As shown by Chen and Podlucky [46], calculation of the electronic thermal conductivity from
DFT is challenging since existing techniques that have been discussed in the literature are
unreliable for insulating materials.

Our previous study of the cellulose Iβ structure focused on predicting the anisotropy of
Young’s moduli and Poisson’s ratio using first-principles DFT with vdW interactions [47].
All computed results were relevant for 0 K (without zero-point energy (ZPE) corrections
from vibrational calculations) as no attempt was made to explore temperature variations of
any property. In the present study, however, we employ DFT with vdW corrections [48] to
compute vibrational properties from phonon calculations, finite temperature thermodynamic
properties (entropy S, enthalpy H and Cp via the quasi-harmonic approach) [37, 49–51], linear
TECs, ξi , and stiffness matrix components, Cij , of the cellulose Iβ structure. The temperature
dependences of ξi and Cij are predicted using the quasi-harmonic approach whose main inputs
are the predicted strain/elasticity–volume–temperature relationships [39, 52]. Temperature
variations of the Young’s modulus and Poisson’s ratio with respect to crystallographic
orientation are computed based on the stiffness matrix, Cij . Reverse, non-equilibrium
molecular dynamics (RNEMD) simulations are used to compute the thermal conductivity
tensor of monoclinic cellulose Iβ . Inherent computational challenges with DFT, mainly
due to the CPU time limitations, and its inability to properly describe the details of weak
interactions between molecules that determine the thermal properties for slow processes, such
as thermal conduction, make the RNEMD method using an empirical force field attractive
for the present calculations [53]. Calculated cellulose Iβ properties are compared with
available experimental data in the literature and interpreted in terms of cellulose Iβ bonding
mechanisms.

2. Background

The present study focuses on the P 21 (#4) cellulose Iβ structure as experimentally determined
by Nishiyama et al [18] using x-ray and neutron fiber diffraction: a = 7.784 Å, b = 8.201 Å,
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c = 10.380 Å, α = 90◦, β = 90◦ and γ = 96.55◦ [18]. The cellulose Iβ primitive cell
consists of two C6H10O5 units, while the crystallographic (conventional) cell contains four
C6H10O5 units. Cellulose Iβ also contains intra- and inter-chain hydrogen bond network
patterns. Nishiyama et al [18] described the two networks with different relative occupancies
according to the cellulose Iβ polymorph: network A and network B. Network A occupies
∼70–80% of all the chain positions in Iβ , and only ∼55% in Iα [54, 55]. The present study
focuses on cellulose Iβ with network A since it is the most commonly occurring cellulose
polymorph in higher plant cell walls and in tunicates [56]. Two views of this crystalline
structure of cellulose Iβ are shown in figure 1. Figure 1(a) shows the projection along the
b axis direction and figure 1(b) shows the projection along the a axis direction. Figure 1(b)
depicts the cellulose chains along the hydrogen bonded planes (in the b–c plane). These planes
are stacked one above the other as shown in figure 1(a). The interaction between planes is
mainly governed by weak vdW interactions and, to a lesser degree, by some intermolecular
hydrogen bonds [58]. Within the b–c plane, the bonding along the c-axis direction is stronger
than that along the b-axis direction mainly due to covalent bonding. The crystallographic
directions and the a, b and c axes are also included in the figure. To facilitate our predictions
of the anisotropy of Young’s modulus and Poisson’s ratio of monoclinic cellulose Iβ , we
define a Cartesian system of coordinates with axes 1, 2 and 3. Direction 1 is chosen to
be parallel to a [57], and direction 3 is parallel to c ([0 0 1]). For the monoclinic P 21

structure, b is not orthogonal to a. Therefore, direction 2 is chosen such that it is orthogonal to
directions 1 and 3.

3. Computational methodologies

3.1. DFT and phonon calculations

All DFT calculations in the present study were performed with the VASP 5.2.12 code [59, 60].
The Kohn–Sham equations were solved with a plane-wave basis set using the projector
augmented wave (PAW) method [61] and the exchange-correlation energy was described by
the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE) [62]. For
C, four electrons (2s22p2) are treated as valence, one for H (1s1) and six for O (2s22p4).
Standard density functionals based upon the LDA (local density approximation) and GGA
do not account for the vdW interactions. To solve this problem, Grimme [48] proposed a
semi-empirical correction for vdW interactions, renamed as PBE-D2 [63]. This scheme was
employed by Dri et al [47] to compute the Cij and Sij of crystalline cellulose at 0 K and is
adopted for the current study as well.

Three successive full-cell optimizations, involving simultaneous minimization of all
Hellman–Feynman force and stress tensor components via a conjugate gradient method, were
conducted (adapting basis vectors and computational grids to the cell parameters) to ensure
convergence of cell energies and structural parameters. The total energy was converged to
10−7 eV and the force components were relaxed to at least 10−4 eV Å−1. For all calculations
(i.e. structural and elastic properties), a 7 × 7 × 7 k-point mesh, corresponding to a k-point
spacing of 0.110 × 0.086 × 0.110 Å−1, was used.

Phonon calculations were based upon the supercell method. The longitudinal and
transverse optical (LO–TO) zone center splittings for the infrared active modes in cellulose Iβ
were ignored since these have a negligible effect on the computed thermodynamic properties
[49, 50]. Force constants, i.e. the Hessian matrix, were calculated in real space using a cellulose
Iβ 2×1×2 supercell containing 336 atoms. The large number of symmetry-unique atomic sites
required 252 VASP single point energy calculations. Atomic displacements of ±0.02 Å were
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Figure 1. Projected structure of cellulose Iβ (space group P 21) along the b axis direction
(a) and along a axis direction (b), showing an obvious layered structure of Iβ along the
a axis direction, and weaker bonding along the b axis direction with respect to that of
c axis direction. Red spheres denote oxygen ions, brown spheres represent carbon ions
and white spheres represent hydrogen ions. The solid lines connecting spheres represent
covalent bonds. For simplicity, non-bonding interactions are not denoted in either figure.
The rectangles in (a) and (b) show the conventional Iβ cell. The structure and lattice
parameters are those determined experimentally by Nishiyama et al [18] using x-ray
and neutron fiber diffraction.

employed for the independent atoms and a 2×1×2 k-point mesh (0.279×0.201×0.259 Å−1)
was used for each single point energy calculation.

Additional details on our computational methodologies are in appendix A.

3.2. Finite temperature calculations

3.2.1. Thermodynamics. The quasi-harmonic approach was used to calculate first-principles
thermodynamics quantities at finite temperatures. This required evaluation of the Helmholtz
energy, F(V, T ), at volume V and temperature T , given by [37, 49–51]

F(V, T ) = E(V ) + Fel(V , T ) + Fvib(V , T ). (1)

Here, Fel (V , T ) represents the thermal electronic contribution evaluated from the electronic
density of states (DOS). This term, which is important for metals with non-zero electronic DOS
at the Fermi level, is ignored since cellulose Iβ is an insulator. The vibrational contribution
to F(V, T ), which was obtained from the total phonon DOS at six volumes in the present
study, is Fvib (V , T ). Note that Fvib at 0 K contains a zero-point vibrational energy (ZPE)
contribution due to quantum fluctuations at the ground state, which can be estimated from the
phonon DOS [72]. The static energy at 0 K without the ZPE in equation (1) is E(V ): this
term was determined by fitting the first-principles energy versus volume (E–V ) data points
according to a four-parameter Birch–Murnaghan equation of state (EOS) [37]

E(V ) = k1 + k2 × V −2/3 + k3 × V −4/3 + k4 × V −2, (2)

where k1, k2, k3 and k4 are fitting parameters (the pressure–volume version of equation (2) is
listed in the footnotes to table 1). The equilibrium properties estimated from this EOS include
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Table 1. Structural parameters (lattice parameters a, b, c, cell angle γ , and equilibrium
volume, V0), and elastic moduli (the bulk modulus B0 and its pressure directive B ′

0)

computed with DFT/phonon compared with available experimental data. Additional
results at higher temperatures are shown in figure 5 and in table S3 of the online
supplementary material (stacks.iop.org/MSMSE/22/085012/mmedia).

Method a (Å) b (Å) c (Å) γ (◦) V0 (Å3) B0 (GPa) B ′
0

PBE-D2, this work, 0 Ka 7.618 8.139 10.399 96.59 640.57 16.1 6.69
PBE-D2, this work, 0 Kb 17.4 7.46
PBE-D2, this work, 0 Kc 7.752 8.153 10.409 96.40 653.80 13.9
PBE-D2, this work, 295 Kc 7.896 8.167 10.418 96.12 667.92 10.0
PBE-D2, other work, 0 K 7.57d 8.14d 10.39d 96.5d 636d 16e

PBE-D2, other work, 0 Kf 7.85 8.18 10.47 96.5 668
PBE-D2, other work, 0 Kg 7.56 8.13 10.39 96.7 635
Expt., 15 Kh 7.64 8.18 10.37 96.54 643.9
Expt., room temperature 7.76h 8.20h 10.37h 96.62h 655.5h 19.8 ± 2.9i 27.6 ± 6.2i

Expt., room temperaturej 7.82 8.26 10.40 96.3

a Calculated results without ZPE based on the energy–volume EOS, i.e. equation (2).
b Calculated results without ZPE based on the pressure–volume EOS P(V ) = −∂E/∂V =
2k2/3V 5/3 + 4k3/3V 7/3 + 2k4/V 3.
c Calculated with ZPE based on the quasi-harmonic approach, see equation (1).
d Calculated without ZPE [16].
e Fit using DFT-computed data points and Murnaghan’s EOS [63].
f Calculated by ESPRESSO using norm-conserving pseudopotentials [77].
g Calculated using simultaneous optimization of the lattice parameters and ionic degrees of
freedom [47].
h Measured by neutron diffraction at 295 K [55].
i Fit of the Birch–Murnaghan EOS to the measured pressure–volume data points at 15 K (there is
noticeable scatter in these data points [2]).
j Measured by x-ray [2].

the volume, V0, the electronic energy, E0, the bulk modulus, B0, and the bulk modulus pressure
derivative, B ′

0. In the present study, the quasi-harmonic method in equation (1) was used to
compute entropy, S, enthalpy, H , the isobaric heat capacity, Cp, the equilibrium volume as a
function of temperature, V0(T ), and the (average) linear TEC (ξ), (see detailed methodologies
in [24, 35]). The Cp was computed from

Cp(T ) = CV (T ) + α2
V (V, T )T B(T )V0T , (3)

where CV (T ) is the constant volume (or isochoric) heat capacity (from the phonon
calculations), T temperature, B(T ) the isothermal bulk modulus and αV the volume thermal
expansion.

3.2.2. Elastic moduli and thermal expansion. Cellulose Iβ , like many other single crystals,
exhibits anisotropic properties under loading with respect to an intrinsic direction in the
material. As such, its elastic mechanical behavior under an infinitesimal applied strain is
described as σij = Cijklεkl (Einstein notation) whereas σij and εkl represent, respectively, the
second-order stress and strain tensors. The fourth-order stiffness tensor is Cijkl . The inverse
relation can also be written as εij = Sijklσkl , where Sijkl are the components of the elastic
compliance tensor. Considering the monoclinic structure of cellulose Iβ , with its symmetry
plane defined by the c axis (see figure 1), the stiffness and compliance tensors can be expressed
as matrices by Cij and Sij , respectively, each with 13 independent quantities [73]. Figure 2
shows a schematic representation of the cellulose Iβ unit cell, the Cartesian coordinate system
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Figure 2. (a) A schematic representation of the cellulose Iβ monoclinic unit cell (red
solid lines), together with a Cartesian coordinate system (black solid lines) and a cubic
cell (black dashed lines). This highlights the non-orthogonal relation between a and
b. (b) The relationship between the stiffness matrix, Cij , connecting stresses, σi , and
strains, εi , in the monoclinic unit cell is also shown [74].

used as the frame of reference in this study and the monoclinic stiffness matrix associated
with it. Using the computed Cij at different temperatures, and knowing the crystallographic
orientation of the cellulose unit cell with respect to a global coordinate system (see figure 2),
it is possible to compute the temperature variation of Young’s modulus. This is defined as
the slope between the normal stress and the longitudinal strain under simple tension along
a specific crystallographic direction. Similarly, Poisson’s ratio is defined as the ratio of the
lateral strain to the longitudinal strain in simple tension. Once Poisson’s ratio is computed
for a sufficient number of directions, a 3D representation can be constructed to display its
variation with crystallographic direction. All orientations are unequivocally defined by the
Miller indices in conjunction with the reference Cartesian coordinate system shown in figure 2.
The methodology we used to compute the elastic moduli (i.e. Young’s modulus and Poisson’s
ratio) was previously applied to compute the elastic moduli of crystalline cellulose at 0 K by
Dri et al [47].

Similarly, the six independent linear TECs, ξi , can be derived as a function of temperature
at constant pressure, P , via

ξi =
(

∂εi(T )

∂T

)
P

. (4)

The same Cartesian coordinate system relative to the original cellulose Iβ crystalline structure
as depicted in figure 2 can be used. As such, the strains as a function of volume, εi(V ) can be
calculated with DFT at 0 K using the relaxed lattice vectors at different volumes. The volume–
temperature relation, V (T ), or inversely T (V ), can be predicted with the quasi-harmonic
approach given in equation (1). Once these relationships are obtained, the temperature-
dependent ξi can be expressed as functional of V , namely, ξi(T ) = ξi (T (V )). This is obtained
by employing a quasi-static approach (specifically for temperature-dependent properties)
without considering the kinetic energy and the fluctuation of microscopic stress tensors at
high temperatures. For this purpose, the quasi-static approach combines εi(V ) and T (V )

following the procedure detailed in [39, 52].
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The Cij (T ) can be calculated using the values of Cij for different volumes and the T (V )

relation as mentioned above, namely, Cij (T ) = Cij (T (V )) [39, 52]. Note that the measured
Cij at high temperatures (e.g. using the resonance method) is usually isentropic since the
system is adiabatic due to the faster speed of elastic waves relative to heat diffusion [39]. The
thermodynamic relations between the isothermal and isentropic elasticity matrices were given
by Davies [75] and others [39].

3.3. Thermal conductivity

The thermal conductivity, λ, is the proportionality constant that relates the heat flux, j , to the
driving force of a temperature difference, dT/dz:

jz = −λ
dT

dz
, (5)

where the z direction is arbitrarily taken for convenience. The simplest way to implement this
in a molecular dynamics code is to compute the temperature profile across a slab of the material
by coupling one side to a cold temperature bath and the other to a hot one, and computing j .
This, however, creates issues with the conservation of energy in the system since it is coupled
to two heat baths which are adding and removing energy. As such, the calculations become
very sensitive to the way the coupling to the heat baths is modeled.

Müller-Plathe [76] realized that there was an elegant solution to this issue: rather than
drive the temperature of the system as one would do in a physical system, in the computational
experiment one can produce a heat flux by exchanging the momenta of particles in the cold
region with those in the hot region, and then measure the resulting temperature profile. This
is the RNEMD approach to transport, which neatly circumvents the issues of conservation
of energy. In practice, the simulation is performed on a sample of material elongated in the
z direction (for example), which is conceptually divided into a number of layers—typically
about 30—in that direction. Every so often, the momentum of the hottest particle in the cold
layer is swapped with that of the coldest particle in the hot layer. This has the effect of producing
a heat flux, which is measured from the cold layer to the hot layer. In response, the system
develops a temperature gradient between the hot and cold layers, which can be measured
through the average temperature in each of the layers between the hot and cold layers. The
rate of momentum transfer is adjusted to provide a reasonable ramp in the temperature. If
the system is driven too hard, then the temperature profile will not be linear. However, if the
system is driven too gently, then the natural fluctuations of the temperature in a small sample
will reduce the accuracy of the measured temperature ramp.

4. Results and discussion

4.1. Cellulose Iβ bonding

Figure 3 shows the original crystalline structure (as shown in figure 1) with the isosurfaces of
charge gains (yellow contours in 	ρ/Å3) calculated with PBE-D2. These results are indicative
of the charge density redistribution upon formation of the cellulose Iβ structure. They were
computed from the difference between the charge density after electronic relaxations and the
reference or non-interacting charge densities from C, O and H calculated from one electronic
step (see equation (14) in [56]).

Phonon calculations allow quantitative analysis of the interactions between atomic pairs
using force constants [66]. Force constants quantify the extent of interaction between atoms.
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Figure 3. Projected structures and charge gains of cellulose Iβ with space group P 21

along the b axis direction (a) and along the a axis direction (b), showing the layered
structure of Iβ along a axis direction, and weaker bonding along the b axis direction with
respect to that of the c axis direction in terms of the density of charge gains. Red spheres
denote oxygen ions, brown spheres represent carbon ions and white spheres represent
hydrogen ions. The charge gains calculated with PBE-D2 are also shown, illustrated
in the change density difference (	ρ/Å3, the yellow colors) isosurfaces, where the
reference density is the reference charge density calculated in one electronic step.

Figure 4 shows the key stretching force constants (>0.1 eV Å−2) of cellulose Iβ at its theoretical
equilibrium volume at 0 K (see table 1).

As expected, the O–H atomic pairs are predicted to have the strongest interaction
(∼36 eV Å−2) with the smallest bond lengths (∼1 Å), followed by C–H atomic pairs
(∼27 eV Å−2 with bond lengths ∼1.1 Å), C–O pairs (∼20 eV Å−2 with bond lengths
∼1.4 Å), and the C–C pairs (∼15 eV Å−2 with bond lengths ∼1.5 Å), and H–H pairs
(∼1.7 eV Å−2 with bond lengths ∼1.8 Å) see also the online supplemental table S2
(stacks.iop.org/MSMSE/22/085012/mmedia). The strong O–H and C–H interactions are
indicative of their critical role in stabilizing the cellulose Iβ structure. The strong interactions
between the O–H, C–H, C–O and C–C atomic pairs are also indicated by the isosurfaces
of the charge density difference contours of figure 3. The charge gains in figure 3 are also
suggestive of bond directionality between the O–H, C–H, C–O and C–C pairs, hence providing
an indication of their covalent character. The data presented in figures 3 and 4 supports the fact
that interaction in the cellulose Iβ structure is strongest along the c axis, and it is weakest along
the a axis. Predicted values of Cij and ξi (discussed below) further confirm these observations.

4.2. Structural properties

Table 1 summarizes the predicted structural properties for cellulose Iβ based on the PBE-D2
method, including the lattice parameters and cell angle γ for the conventional cell, and the
equilibrium properties V0, B0 and B ′

0 estimated using the EOS in equation (2). Our computed
structural properties are in reasonable accord with experimental data at 15 and 295 K [2, 55]
and other PBE-D2 predictions [16, 63, 77]. For example, our computational approach based
upon electronic energies alone predicts the value of a to be 1.72% lower than the true 0 K
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Figure 4. Key stretching force constant variation (from phonon calculations) with
bond length for each ionic pair in the cellulose Iβ structure (see also table S2 in the
online supplementary material (stacks.iop.org/MSMSE/22/085012/mmedia) for specific
numerical values). The ordinate is on a log scale. A large positive force constant suggests
strong interaction, while the small values (<0.1 eV Å−2) are ignored in this plot.

value with the ZPE correction, and only 0.28% lower than the measured value at 15 K [55].
For b, our values are 0.17% lower than the 0 K with the ZPE correction, and 0.50% lower
than the measured ones at 15 K. Finally, for c our values are 0.009% lower than the 0 K with
the ZPE correction, and 0.28% lower than the measured ones at 15 K. The prediction for γ is
even better, yielding only 0.05% with respect to the experimental value at 15 K (see table 1 for
additional comparisons).

We note V0, B0 and B ′
0 provide a useful means for (i) validating DFT calculations against

available experimental data; (ii) calculating the EOS (equation (2)) used in the quasi-harmonic
approach (equation (1)); and (iii) providing a qualitative estimate of the thermal expansion
(B ′

0 is related directly to the Grüneisen constant, from which the thermal expansion can be
estimated via the Debye model, for example [37, 66]). In addition, the larger the value of
B ′

0, the larger the value of ξi . As for B0, the present 0 K prediction of 16.1 GPa (using the
E–V EOS of equation (2)) or 17.4 GPa (using the P –V EOS derived from equation (2)), is
in good agreement with a previous PBE-D2 prediction (16 GPa) at 0 K [63] and the measured
data at 298 K (19.8 ± 2.9 GPa) [2]. Concerning B ′

0, the present study gives a reasonable value
of 6.69 (based on the E–V EOS of equation (2)) or 7.46 (based on the P –V EOS derived
from equation (2)); however, we believe that the measured B ′

0 value is too large (27.6 ± 6.2),
possibly due to excessive scatter in the reported P –V data points [2], compared with values
around 3–6 measured for most materials (i.e. insulators and metals) [78].

4.3. Thermodynamic properties

Figure 5 illustrates the predicted thermodynamic properties (solid curves) of cellulose Iβ up
to 500 K under external pressure P = 0 GPa using the quasi-harmonic approach of equation
(1), including H , S and Cp at constant pressure (see equation (3)). Here, the enthalpy is
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Figure 5. (a) Temperature variations for enthalpy, H − H0, entropy S, and isobaric
heat capacity, Cp for cellulose Iβ from the present calculations (solid curves) and
available experimental data (open symbols). Note that (i) Hat 0 K, H0, is the
reference state of H [81] and (ii) the experimental data are measured using cotton
microcrystalline cellulose with a 90% degree of crystallinity [80] (see also the online
supplemental table S1 (stacks.iop.org/MSMSE/22/085012/mmedia) for more details
and comparisons between theoretical predictions from the present study and available
experimental data). (b) Predicted lattice parameters a, b, c, angle γ of cellulose Iβ
compared with experimental data (open and filled symbols) measured by Hidaka et
al using wood cellulose [28]; Hori using wood cellulose [29]; Wada using tunicate
(halocynthia) [30]; and Wada et al using green algae [31]. Calculated values at selected
temperatures are also shown in the table S3 of the online supplementary material
(stacks.iop.org/MSMSE/22/085012/mmedia).

set to zero at 0 K with the reference enthalpy H0 = 445 kJ/mol-f.u., which is the value of
the ZPE at the equilibrium volume at 0 K (653.80 Å3 per unit cell, see table 1); and each
figure is terminated at 500 K which is close to the phase transition temperature of Iβ to a high-
temperature phase (for which no space group could be located) [30, 31]. Additionally, cellulose
exhibits a high thermal decomposition temperature at 593 K [31]. As an example of the main
input for equation (1), the phonon DOS at the theoretical equilibrium volume, V0, is shown in
figure S1 of the online supplementary material (stacks.iop.org/MSMSE/22/085012/mmedia)
with a maximum frequency around 100 THz and a large gap in states within 45–88 THz.
For comparison, the maximum vibrational frequency of the cellulose Iβ phase is 3352 cm−1

(100.5 THz) measured with Fourier transform infrared (FTIR) spectroscopy [79]. This is
in close accord with the maximum vibrational frequency in figure S1 from our phonon
calculations. Figure 5 shows that the present predictions of the temperature variation of H , S

12

http://stacks.iop.org/MSMSE/22/085012/mmedia
http://stacks.iop.org/MSMSE/22/085012/mmedia
http://stacks.iop.org/MSMSE/22/085012/mmedia


Modelling Simul. Mater. Sci. Eng. 22 (2014) 085012 F L Dri et al

Figure 6. Predicted linear thermal expansion coefficients or TECs (10−5 K−1) and
the mean TEC (i.e. average of all components) of cellulose Iβ . All solid lines are
predictions from the present work. Experimental TECs along the a axis (ξ1) are
shown denoted by symbols with dashed lines. Each corresponds to measurements
from the same author(s) (Hidaka et al using wood cellulose [28], by Hori using wood
cellulose [29], by Wada using tunicate [30], and by Wada et al using green alga [31]),
at different temperatures. The TEC along the a axis (ξ1) predicted with molecular
dynamics simulation [32] is denoted by the filled square. More details concerning
the predicted and calculated TECs are shown in table S4 of the online supplementary
material (stacks.iop.org/MSMSE/22/085012/mmedia). Note that ξ4 and ξ5 are all zero
due to the monoclinic symmetry of the cellulose Iβ .

and Cp agree well with available experimental data (open and filled symbols in figure 5(a))
measured using cotton microcrystalline cellulose with a 90% degree of crystallinity, as well as
the extrapolated data at high temperatures (>300 K) [80]. Figure 5(a) also indicates that the
present predictions are slightly lower than the cotton microcrystalline cellulose measurements,
especially at high temperatures (>300 K). Note that the comparisons between the present
calculations and the measurements [80] are also given in table S1 of the online supplementary
material (stacks.iop.org/MSMSE/22/085012/mmedia) at selected temperatures between
50 and 500 K.

Based on equation (1) and the quasi-static approach described above, the predicted lattice
parameters a, b, c, angle γ of cellulose Iβ as a function of temperature are shown in figure 5(b).
The present predictions agree reasonably well with the scattered data measured by Hidaka
and co-workers using wood cellulose [28]; Hori using wood cellulose [29]; Wada using
tunicate (halocynthia) [30]; and Wada et al using green algae [31]. Calculated values at
selected temperatures between 0 and 500 K are also shown in the online supplement table S3
(stacks.iop.org/MSMSE/22/085012/mmedia), including a, b, c, γ and V0. Clearly, lattice
parameter a increases quickly with increasing temperature compared to lattice parameters b

and c. This behavior is attributed to the weak interaction along the a axis direction (see figure 1
and the discussion above), which is predominantly governed by vdW forces. As for the cell
angle γ , the present work predicts a decreasing trend with increasing T , while the measured
values show a (nearly) constant or a slightly increasing trend with increasing T .

Alternatively, the variation of the lattice parameters and angle with respect to T can be
used to obtain the linear TECs, ξi . Figure 6 shows that the temperature variation of ξ1 (along
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Figure 7. Predicted isothermal and isentropic elastic stiffness matrix components, Cij ,
of cellulose Iβ based on the quasi-static approach.

the a axis direction) agrees reasonably well with the rough estimates from measurements
[28–31] and molecular dynamics simulations [32] (open and filled symbols). In addition,
ξ1 is larger than ξ2 (roughly along the b axis direction) and ξ3 (along the c axis direction),
agreeing with the measurement data [28–31] shown in table S4 of the online supplementary
material (stacks.iop.org/MSMSE/22/085012/mmedia). The fact that ξ1 exceeds ξ2 and ξ3

makes sense when one considers the cellulose Iβ structure shown in figure 1 and the weak
interlayer interaction forces along the 1 direction. Note also that ξ6 (within the a–b plane, see
figure 2) is close to the mean value of all of the TECs, while ξ4 and ξ5 are all zero due to the
monoclinic symmetry of the cellulose Iβ . It is worth mentioning that our predicted TECs (e.g.
ξ1) vary smoothly with temperature, while there is a notable temperature insensitivity suggested
by several of the experimental studies (figure 6). However, the other thermodynamic properties
predicted in the present study are smaller than corresponding measured values (see figure 5).
This suggests the following explanations for the noted discrepancies: (i) uncertainties in the
measurements and (ii) possible issues with the chosen exchange-correlation functional in the
present study.

4.4. Elastic properties

Figure 7 shows the predicted isothermal and isentropic stiffness matrix components, Cij (up to
500 K) using the quasi-static approach—no experimental data could be located in the literature.
Additional details associated with the calculation of the predicted isothermal and isentropic
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Table 2. Elastic properties (Cij , B, E and v) of cellulose Iβ at T = 0 K (without the
ZPE correction from phonon calculations) obtained in this study versus experimental
values of E and ν. All moduli (except for ν) are in GPa. Note that Young’s modulus as a
function of direction is shown in figure 8, and the Cij at high temperatures predicted by
the quasi-static approach are shown in figure 7 and table S5 in the online supplementary
material (stacks.iop.org/MSMSE/22/085012/mmedia).

Cij (GPa) (this study) B (GPa) E (GPa) ν


22.1 11.5 9.2 0 0 0.7
98.9 10.3 0 0 9.7

213.3 0 0 −1.1
17.1 2.4 0

3.1 0
5.9




19.8 ± 2.9a 145, 150b 0.377h

120–135 0.639h

134d, 143e 0.442h

15, 220f

2.7–20g

a Fitted using the Birch–Murnaghan EOS based on the measured pressure–volume data
points, but these data points are scattered [2].
b Axial elastic modulus measured by AFM using tunicate microfibrils [82].
c Axial elastic modulus measured by x-ray measured in the c direction at 300 K using
microfibers [23].
d Axial elastic modulus measured by x-ray measured in the c direction at 300 K using
microfibers [21].
e Axial elastic modulus measured by Raman spectroscopy using tunicate whiskers [83].
f Elastic modulus measured by IXR with 15 GPa (transverse) and 220 GPa (axial) [26].
g Transverse elastic modulus using AFM nanoindentation [19, 27].
h Measured by x-ray on ramie for tension along [0 0 4] and negative strain along [2 0 0],
i.e. 0.377 for [2 0 0]/[0 0 4], 0.639 for [1 1 0]/[0 0 4] and 0.442 for

[
1 1̄ 0

]
/[0 0 4] [84].

stiffness matrix components are found in Appendix B. The temperature-dependent elastic
stiffness matrix components along with the bulk modulus (B), shear modulus (G), Young’s
modulus (E) and Poisson’s ratio (ν) are listed in table S5 of the online supplementary material
(stacks.iop.org/MSMSE/22/085012/mmedia) at selected temperatures between 0 and 500 K.
The fact that the isentropic Cij values are greater than (or equal to) the isothermal values can
be attributed to the positive (or zero) TECs (see figure 7) [39, 75]. Most of the Cij values are
predicted to decrease with increasing T , as expected. In addition, C11 decreases rapidly with
increasing temperature change. As such, C11 is the most sensitive to temperature increases,
followed by C12, C13 and C23. We surmise that this is mainly caused by the extremely large
variation of ξ1 along the a axis direction (see figures 1(a) and 6). This trend is not observed for
C16 and C36, which denote more complex elastic deformations: each is close to zero for the
temperature range considered in figure 7. The minimum value of C16 occurs around 350 K.
These results suggest only a minimal connection between the stress along the a axis direction
and the transverse shear stress.

Table 2 summarizes the predicted elastic properties, namely, Cij , B, E, and v of cellulose
Iβ under the theoretical equilibrium volume, T = 0 K, without the ZPE correction from phonon
calculations. Our calculations suggest that C33 = 213 GPa is the largest of the elastic stiffness
matrix components (similar to the results obtained by Dri et al [47]). This is comparable to the
Cij of the 3d transition metals Fe, Ni, Cu, etc [85, 86]. However, the other Cij are quite small,
e.g. the second largest value is C22 = 99 GPa and the third largest value is C11 = 22 GPa.
The trend C33 � C22 > C11 is consistent with the ξ1 � ξ2 > ξ3 trend in the linear thermal
expansion components (see figure 6) as well as the (relative) charge density distribution shown
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Figure 8. (a) Young’s modulus (E) surface for cellulose Iβ computed at 300 K. Each
point on the given surface represents the magnitude of Young’s modulus in the direction
of a vector from the origin to the point; the color map clearly reveals the Young’s modulus
variation and emphasizes the extreme anisotropy of the system. The symbol // in this
figure means ‘parallel to’. (b)–(d) These show additional views of the surface in (a).

in figure 3. Moreover, these trends are consistent with the strong bonding along the c axis
direction in cellulose Iβ , and weaker interaction along the a axis direction, as discussed above
(see also figure 1(a)). The large difference between different Cij values is also suggestive of the
extreme elastic anisotropy of cellulose Iβ . Table 2 also lists some representative values of axial
and transverse elastic modulus. While the experimental axial elastic modulus can be compared
with E33 = 1/S33, none of the experimental techniques are sensitive enough to separate out
the specific transverse orientations which prevent us for making direct comparisons between
experiments and our predicted values (e.g. E11, E22).

To more thoroughly characterize the extreme anisotropies suggested by the Cij , we plotted
the variation of the Young’s modulus along different directions. Figure 8(a) depicts a 3D
representation of Young’s modulus for crystalline cellulose computed at 300 K along three
crystallographic directions. The shape of this surface is indicative of the anisotropy of cellulose
Iβ (an isotropic material would have a perfectly spherical Young’s modulus surface). The
distance between each point on the surface and the origin represents the magnitude of the
Young’s modulus in the direction of the vector from the origin to the surface point. The
Young’s modulus variation is also mapped by color onto the surface to emphasize the extreme
anisotropy of cellulose Iβ . Additional views are shown in figures 8(b)–(d).

Two-dimensional polar plots of the variation of Young’s modulus with respect to selected
crystallographic planes and at different temperatures can also be generated. Figure 9 shows
such a plot which depicts the variation of Young’s moduli E11 and E33 in the 1–3 plane with
the orientation angle (θ), considering the 2 axis as the rotation axis. The Young’s modulus is
shown for T = 0, 300 and 500 K. Clearly the Young’s modulus in all directions considered
does not significantly change with T . The direction defined by the 3 axis (c axis, see figure 2)
exhibits the highest value of Young’s modulus, varying from 202 GPa at 0 K to 196 GPa at
300 K and down to 190 GPa at 500 K. This variation in Young’s modulus between 0 and
500 K represents a 6.1% variation with respect to the 300 K value. It is important to note
that a deviation of only 10◦ with respect to the longitudinal alignment (c axis) will reduce the
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Figure 9. Polar plot showing the Young’s moduli (E11 and E33) as a function of the
rotation angle (θ) for T = 0 K (dotted–dashed curve), T = 300 K (solid curve), and
T = 500 K (dashed curve). The 2 axis (pointing into the page) is considered to be the
rotation axis. The value of either modulus for a given direction can be read directly from
the figure by defining a straight line from the origin to the desired curve.

Figure 10. Polar plot showing the Young’s moduli (E11 and E22) as a function of the
rotation angle (θ) for T = 0 K (dotted–dashed curve), T = 300 K (solid curve) and
T = 500 K (dashed curve), along the plane depicted at the upper left-hand corner. The
3 axis (pointing into the page) is considered to be the rotation axis. The value of either
modulus for a given direction can be read directly from the figure by defining a straight
line from the origin to the desired curve.

theoretical Young modulus from approximately 200 to 70 GPa. This important reduction in
the stiffness is attributed to the contribution of the weak interaction between layers along the
a axis, which are mainly dominated by vdW forces, as the load deviates from the a direction.
These deformation mechanisms have been previously discussed in [47].
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Figure 11. (a) Average Poisson’s ratio surface for cellulose Iβ computed at 300 K. Each
point on the given surface represents the magnitude of Poisson’s ratio in the direction of
a vector from the origin to the point; the color map helps identifying the Poisson’s ratio
variation and emphasizes the extreme anisotropy of the system. (b)–(d) These show
additional views of the surface in (a).

A similar analysis was performed where the angular variations of Young’s moduli E11

and E22 were analyzed over the 1–2 plane. The resulting polar plot is shown in figure 10,
The highest values of the Young’s modulus E22 occurs along the [0 1 0] directions (b axis) in
the plane with values of 91 GPa at 0 K, 87 GPa at 300 K and 83 GPa at 500 K. Although the
variation in Young’s modulus between 0 and 500 K is 8 GPa (as opposed to 12 GPa along the
c axis), it represents a 9.2% variation with respect to its value at 300 K. This is the reason
why figure 10 seems to show a larger difference between temperatures than that considered in
figure 9. Also, a more noticeable decrease in the Young’s moduli with increasing temperature
is evident in figure 9.

The relatively high value of the Young modulus in the [0 1 0] direction with respect to
any other direction on the 1–2 plane can be attributed to the hydrogen bond network present
in between cellulose chains. Stretching in the [0 1 0] direction implies increasing the in-plane
separation of the chains, which has direct impact over the inter-chain hydrogen bonds. A second
relative maximum is found in the direction marked as ⊥[0 1 0] in figure 10. We surmise that
this can be explained by the relatively weak vdW forces that govern the response of the system
in this direction. The lowest values of Young’s modulus are found to be 12 GPa at 0 K, 9 GPa
at 300 K and 7 GPa at 500 K. Our computed results are consistent with reported experimental
values [19,21–27, 88] and other numerical simulations [20, 23, 47, 89].

Variations of Poisson’s ratio were computed and displayed as a surface by applying the
same procedure as that used to compute the Young’s modulus surface. Since Poisson’s ratio
is the negative ratio of transverse to axial strain, its interpretation is not as straightforward
as Young’s modulus. Figure 11(a) shows the average Poisson’s ratio [47] as a function of
any arbitrary orientation computed at 300 K. The extreme anisotropies observed in crystalline
cellulose are once again revealed, this time by extreme variations of the average Poisson’s
ratio. Figure 11(a) shows that the lowest value of the average Poisson’s ratio (∼0.1) occurs
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Figure 12. Polar plot showing the average Poisson’s ratio as a function of the rotation
angle (θ) for T = 0 K (dotted–dashed curve), T = 300 K (solid curve), and T = 500 K
(dashed curve), along the plane depicted at the upper left-hand corner. The 3 axis
(pointing in and out of the page) is considered to be the rotation axis; the value of
Poisson’s ratio for a given direction can be read directly from the figure by defining a
straight line from the origin to the desire angle.

Table 3. Calculated thermal conductivity of cellulose Iβ obtained using RNEMD with
the pcff+ force field in LAMMPS at room temperature (298 K). Note that λ1, λ2 and λ3

correspond to the directions along the cellulose Iβ structure indicated in figures 1 and 2.

Method λ1 (W m−1 K−1) λ2 (W m−1 K−1) λ3 (W m−1 K−1)

pcff+, this study 0.24 ± 0.05 0.52 ± 0.05 0.90 ± 0.06

along the main crystallographic directions denoted in the figure, whereas the extreme value
of 0.4 occurs along other directions. Note that figures 11(b)–(d) show alternate views of the
surface in figure 11(a).

Figure 12 is a polar plot that shows the variation of the average Poisson’s ratio, ν, over
the 1–2 plane for T = 0, 300 and 500 K. The first relative minimum can be found in the [0 1 0]
direction (b axis, right-hand corner of the figure). As the temperature increases, Poisson’s ratio
decreases along [0 1 0] suggesting a reduction in the effects of separate cellulose chains over the
final shape of the crystal. A similar behavior is found in the direction marked as ⊥[0 1 0], where
vdW interactions govern the elastic response of the material. For [1 1 0], temperature appears
to have no effect over Poisson’s ratio. Comparison with previous publications [23, 47, 84, 89]
shows results that are in good agreement with the values reported in this study.

4.5. Thermal conductivity

Table 3 summarizes the predicted thermal conductivity values λ1, λ2 and λ3 of cellulose
Iβ . These results were obtained in terms of the RNEMD simulations using the pcff+ [90]
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force field, and the molecular dynamics simulation code LAMMPS [91] within the MedeA
framework [92].

Due to a limitation in the LAMMPS code (the molecular dynamics code employed in the
present study), it was convenient to perform these calculations based on an orthorhombic
cell with axes 1, 2 and 3 (as indicated in figures 1 and 2). This was achieved using a
unit cell with eight times the volume of the conventional cell mentioned in section 3.1.
Inspection of the lattice shows that the following transformation yields an almost exactly
orthorhombic cell:

a′ = a

b′ = −a + 8 · b

c′ = c,

(6)

where a, b and c are the original lattice vectors of the cellulose Iβ (P 21) structure (see figure 1)
and a′, b′ and c′ are the lattice vectors of the orthorhombic cell. Adjusting the resulting cell
to be perfectly orthorhombic effectively fixes the cell angle γ at 96.67◦, which is within a
fraction of a degree of that found in this study and from experiment, as shown in table 1. The
lattice parameters used for these calculations, which came from initial DFT calculations, were
a = 7.563 Å, b = 8.133 Å, c = 10.395 Å, α = β = 90◦ and γ = 96.67◦. This resulted
in an orthorhombic cell with a′ = 7.563 Å, b′ = 64.621 Å and c′ = 10.395 Å. In order to
validate the force field, we evaluated pcff+ relative to DFT results. We found that most of the
0 K lattice parameters from LAMMPS/RNEMD with the pcff+ force field are within 0.5% of
the values predicted with the DFT method. A comparison of the 0 K values may be found in
table S6 of the online supplementary material (stacks.iop.org/MSMSE/22/085012/mmedia).
Calculated 0 K results from LAMMPS/RNEMD with the pcff+ force field (based on the energy–
volume EOS without the ZPE correction) are listed in table S6 of the online supplementary
material. Note that γ is slightly overpredicted by LAMMPS/RNEMD with the pcff+ force
field by only 1.83%. The temperature-dependent lattice constants from LAMMPS/RNEMD
with the pcff+ force field are also listed in table S7 of the online supplementary material
(stacks.iop.org/MSMSE/22/085012/mmedia) at selected temperatures between 0 and 500 K.
These values are compared with DFT-D2 values at 0 K.

As mentioned previously, the simulation cell for LAMMPS/RNEMD calculations must be
reasonably large in the direction of the measurement because it must be subdivided into layers
for the measurement of the temperature profile. For each of the three Cartesian directions, a
supercell based on the orthorhombic cell with a dimension in the direction of interest between
60 and 70 Å was constructed and used for the LAMMPS/RNEMD calculations. For direction
1, a 9 × 1 × 1 supercell with an extent in 1 of 68.068 Å, containing 6048 atoms was used.
In direction 2, a 1 × 1 × 6 supercell with an extent of 62.371 Å and 4032 atoms was used.
In direction 3, the original orthorhombic cell with an extent of 64.621 Å and 672 atoms was
used. For each simulation, the system was thermally equilibrated using NVT (N : number of
particles, V : volume and T : temperature) dynamics for 50 ps, and then constant energy (NVE)
dynamics was applied, during which the RNEMD was carried out by swapping momenta
of one pair of particles every 600 steps for the direction 1, 200 steps for the direction 2
and 250 steps for the direction 3. For the directions 1 and 2, a total time of 2 ns was
simulated during this phase, using a 1 fs time step. The simulation in the direction 3 was
more sensitive, perhaps because of the small system size, so it was simulated for 1 ns using
a 1 fs time step. The cell was divided into 30 layers in the direction of the heat flow for
the measurement of the temperature. The temperatures of the hot and cold layers and the
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Figure 13. Calculated thermal conductivity (λi) as a function of T for the 73–573 K
range.

two adjacent layers were not used to fit the temperature profile since non-linear effects are
often observed close to where the system is being driven. This left 24 layers for which the
temperature was measured, from which the slope was obtained using a linear least-squares fit.
The error bars were obtained from a statistical analysis of the points, and reflect a 95% level of
certainty.

Figure 13 shows the RNEMD-predicted variation of the thermal conductivity values in
directions 1, 2 and 3 with T from 73 to 473 K. Note that no experimental thermal conductivity
data for the cellulose Iβ structure could be located in the literature. The temperature dependence
of the thermal conductivity was calculated in a similar way to the initial calculations outlined
above. Because of the sensitivity in the 2 direction previously noted, a 2 × 1 × 2 supercell of
the initial orthorhombic supercell was used, with a = 15.126 Å and c = 20.780 Å to start and
2688 atoms. With this cell, a time step of 1 fs was found to be reasonable. The number of steps
between swapping momenta was adjusted based on the initial results to produce a reasonable
temperature difference and improve the statistical accuracy of the results. The final rates were
one swap in 400 steps for direction 1, one swap in 250 for direction 2 and one swap in 200
for direction 3. At each temperature, the cell was equilibrated using 400 ps of NPT dynamics
(P : pressure) with the lengths of the cell allowed to fluctuate but with the angles fixed at
90◦. The cell was then adjusted to an average value and the thermal conductivity measured
using RNEMD with a constant energy ensemble, sampling over 2 ns after equilibrating the
temperature for 200 ps using NVT dynamics. The density for the cells used in directions
1 and 2 equilibrated to essentially the same value within the statistical errors. However,
the cell used for extracting the thermal conductivity in direction 3 constantly underwent a
phase transformation to a different structure of cellulose, perhaps due to the shape of the cell
emphasizing certain directions or perhaps due to limitations in the accuracy of the force field.
To avoid this transformation, the cell was fixed (i.e. isotropically expanded or contracted) to the
density obtained at each temperature from the calculations for the 1 and 2 directions. Note the
larger standard deviations for this direction, presumably because the chains are moving much
more due to the incipient phase transformation even though the cell is fixed in the calculation.
As can be seen in figure 13, the thermal conductivity in each direction is independent of the
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temperature to within the statistical accuracy. The values are slightly different from those in
table 3 due to the volume relaxation. The density of the sample used in the initial calculations
at 298 K was 1.696 g ml−1. That predicted by the pcff+ force field at the same temperature is
about 1.61 g ml−1.

The results in table 3 and figure 13 are consistent with the results for ξi and also the bonding
patterns in the cellulose Iβ structure. The thermal conductivity is largest along direction
3, which is along the molecular chains (see figures 1 and 2). This is the direction of the
strongest bonding and the lowest thermal expansion. In direction 2, which is roughly the
direction of the hydrogen bonded network, the thermal conductivity is intermediate, as is the
thermal expansion. In direction 1, which corresponds to the weak vdW interactions between
the sheets of cellulose, the thermal conductivity is quite low and the thermal expansion is
large.

5. Summary

In terms of the van der Waals density functional, i.e. the PBE-D2 method, the extreme
anisotropies of the thermal expansion and elastic properties have been predicted for native
cellulose Iβ . With this new modeling capability, this study was able to develop new knowledge
on the temperature dependence and anisotropy of the elastic and thermal properties of cellulose
Iβ . It is found that the PBE-D2 method satisfactorily describes the three-dimensional structural
properties as well as the phonon, thermodynamic, and elastic properties of cellulose Iβ . For
instance, our predictions at 0 K are well below 0.5% from the experimental values obtained
at 15 K [55]. Similarly, the predicted lattice parameters a, b, c and (cell angle) γ of cellulose
Iβ as a function of temperature yielded very reasonable results compared with the scattered
experimental data. The temperature variations of H , S and Cp were in close accord with
experimental data. The room temperature values of H , S and Cp fall between 7.5% with
respect to the experimental data (table S1).

Calculations of the elasticity tensor, Cij , showed that C33 is the largest of the elastic
stiffness matrix components, followed by a moderate C22, and then a small C11. Other Cij

of the monoclinic cellulose Iβ are all quite small (<C11). The large difference between the
Cij is indicative of the extreme elastic anisotropy in the cellulose Iβ structure; this is clearly
evident in the computed direction-dependent Young’s modulus and Poisson’s ratio plots. At
finite temperatures, thermodynamic properties predicted via the first-principles quasi-harmonic
approach are in reasonable accord with available measurement data, such as entropy, enthalpy,
and constant pressure heat capacity. Regarding the thermal expansion coefficients, ξi , we
find that ξ1 is the largest, whereas ξ2 and especially ξ3 are quite small. These values are
consistent with the scarce experimental data and suggest a strong correlation between the
high elastic modulus and low axial thermal expansion of cellulose Iβ compared with other
polymers.

The predicted results, such as the large ξ1 and C33, and the quick decrease of C11

with respect to temperature, are traceable to the weak van der Waals force between layers
perpendicular to the a axis direction and the strong hydrogen bond along the b axis direction.
These features of cellulose Iβ can be viewed quantitatively by the stretching force constants
between atomic pairs and qualitatively by the relative charge density, i.e. the charge gain or
loss. The calculated thermal conductivity values are consistent with the thermal expansion
coefficients and the bonding patterns in the structure. We note that the thermal conductivity
has its maximum along the c axis direction (0.90 ± 0.06 W m−1 K−1), where the strongest
bonds are present, and its lowest values in the a and b axis directions. In general, the thermal
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conductivity of native cellulose Iβ shows minimal sensitivity to temperature over the 73–573 K
range considered in this study.
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Appendix A. Additional details on methods and codes used in this study

All DFT calculations with the VASP 5.2.12 code [59, 60] used the vdW corrections and
PBE-D2 [63]. The structure of cellulose Iβ (space groupP 21) shown in figure 1 was constructed
using the Crystalline Cellulose-Atomistic Toolkit [57] in NanoHUB.org, which is publicly
available. For the Phonon calculations, total energies were calculated for the relaxed cellulose
Iβ structure by integrating over a Monkhorst–Pack mesh of k−points in the Brillouin zone with
the linear tetrahedron method with Blöchl corrections. The plane-wave cutoff energy for all
calculations was 500 eV. Phonon calculations were based upon the supercell method using the
Parlinski PHONON code, as implemented in the MedeA environment [70, 71], with VASP as
the computational engine. More details about phonon calculations using the PHONON code
as implemented in MedeA can be found in [38, 50, 66].

The unique components of the stiffness matrix, Cij , were computed within the MedeA
environment using the strain–stress method as developed by Le Page and Saxe [64, 65]. The
Cij were directly computed from the first derivatives of the VASP-computed cell stresses for
selected applied strains. This method avoids the numerical difficulties often encountered with
evaluations of the second derivatives of the total (electronic) energy with respect to strain, and
reduces the number of required VASP calculations. The Cij are sensitive to the k-point mesh,
and this required a series of ancillary calculations to test k-point convergence of each of the 13
unique Cij for the monoclinic cellulose Iβ structure: the 7×7×7 k-point mesh was found to be
sufficient. In addition, it was determined that the application of four successive strains, namely,
0.5%, 1.0%, 1.5% and 2.0% was adequate to obtain �1.0% statistical error in each Cij . The
quality of the least-squares fit, as gauged by the computed least-squares residual, was �1.0%
for all calculations. The small residuals are consistent with negligible anharmonic effects in
the computed Cij due to the applied strains. Once the stiffness matrix was computed, it was
subsequently inverted to obtain the compliance matrix, Sij . It should be kept in mind that the
Cij and the Sij depend on the definition of the coordinate system chosen for the simulations.
More details about the elastic calculations using the Le Page and Saxe method as implemented
in MedeA can be found in [38, 50, 66–69]. Details on how the stiffness and compliance matrix
are obtained for crystalline cellulose at 0 K can be found in [47]. Seven E–V data points were
used to fit the EOS (equation (2)).

The variation of the Young’s modulus along different directions shown in figures 8–12
was computed using the post-processing software Anisotropy Calculator—3D Visualization
Toolkit, which was specifically developed for this study and it is publicly available in
nanoHUB.org [87].
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Appendix B. Isentropic and isothermal stiffness components

To calculate the isothermal elasticity tensor components, CT
ij (T ), we first compute the 0 K

Cij at selected volumes above and below the equilibrium volume V0 at 0 K. Using V0(T ), the
CT

ij (T ) are computed via interpolation from the Cij (V ) wherein the volume dependence is
eliminated. Here, the kinetic energy and the fluctuations of microscopic stress tensors [93]
are ignored. The measured elasticity tensor components at high temperatures (e.g. using the
resonance method) are usually isentropic since the system is adiabatic due to the faster speed
of elastic waves relative to heat diffusion [39, 52]. The isentropic elasticity tensor is defined
as CS

ij (T ). From Davies [75], the CS
ij (T ) can be written in terms of the CT

ij (T ) as

CS
ij (T ) = CT

ij (T ) +
T V κiκj

CV

, (B1)

where

κi = −
6∑

j=1

(
∂σi

∂εj

)
T

(
∂εj

∂T

)
σ

= −
6∑

j=1

ξjC
T
ij (T ) (B2)

and the reduced forms of stress, strain and linear thermal expansion are denoted by σi , εj and
ξj , respectively.
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