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“The single biggest problem in communication is the illusion that it has taken place.”

George Bernard Shaw 1856-1950
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UNIVERSITY OF WISCONSIN - MADISON

Abstract

Materials Science Program

Doctor of Philosophy

by John M Considine

Paper and paperboard are the most widely-used green materials in the world because

they are renewable, recyclable, reusable, and compostable. Continued and expanded

use of these materials and their potential use in new products requires a comprehensive

understanding of the variability of their mechanical properties.

This work develops new methods to characterize the mechanical properties of hetero-

geneous materials through a combination of techniques in experimental mechanics, ma-

terials science and numerical analysis. Current methods to analyze heterogeneous ma-

terials focus on crystalline materials or polymer-crystalline composites, where material

boundaries are usually distinct. This work creates a methodology to analyze small,

continuously-varying stiffness gradients in 100% polymer systems and is especially rele-

vant to paper materials where factors influencing heterogeneity include local mass, fiber

orientation, individual pulp fiber properties, local density, and drying restraint.

A unique approach was used to understand the effect of heterogeneity on paper tensile

strength. Additional variation was intentionally introduced, in the form of different size

holes, and their effect on strength was measured. By modifying two strength criteria,

an estimate of strength in the absence of heterogeneity was determined.

In order to characterize stiffness heterogeneity, a novel load fixture was developed to

excite full-field normal and shear strains for anisotropic stiffness determination. Surface

strains were measured with digital image correlation and were analyzed with the VFM

(Virtual Fields Method). This approach led to VFM-identified stiffnesses that were

similar to values determined by conventional tests.

The load fixture and VFM analyses were used to measure local stiffness and local stiff-

ness variation on heterogeneous anisotropic materials. The approach was validated on
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simulated heterogeneous materials and was applied experimentally to three different pa-

perboards. The analyses were used to create upper and lower stiffness bounds; the scale

of the bounds were related to the coefficient of variations of stiffness and grammage

variations.

This work contributes to understanding of heterogeneous material behavior by charac-

terizing strength loss due to variability and determining stiffness bounds in materials in

which heterogeneity varies gradually and is complicated by several, interrelated physical

properties.
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Chapter 1 Introduction 1

Chapter 1

Introduction

Paper is ubiquitous. It would be an extremely unusual day if one’s eyes did not read

printed paper material or hands touch a paper-based product.

This is a good thing, because paper is one of the original green materials. It is made

from 100% renewable material, cellulose fiber the most common polymer in the world.

It is recyclable; recycling starts in the paper mill where web breaks are repulped and

fed back into the feedstock stream. Recycling continues locally where sorting by paper

type and color helps determine value to the papermaker. Eventually paper enters the

refuse stream, where it is sold to east Asian papermakers and is recycled as packaging for

products made there. Finally, when the recycled fiber becomes very short and hornified,

the fiber becomes fuel in a steam-generating facility. Paper is reusable; I can’t count the

number of times I heard ’back of the envelope’ calculation during engineering classes.

Good books are reread many times over many years. Lastly, paper is compostable;

trendy gardeners use paper as a weed barrier that they replace annually.

Because paper and paperboard, i.e. heavy-weight paper, are green materials they are

attractive materials for use in many structures. Primary examples include corrugated

containers, by far the most common packaging material in the world, wound cores, used

to transport other materials such as carpet, plastic, fabric and yarn, and sack paper.

Continued and expanded use in these applications and the potential use in new products

requires a comprehensive understanding of its mechanical properties and their variability.
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Manufacture of this amazing material requires comprehensive, multidisciplinary tech-

nologies. From biology, so that the proper trees can be grown and harvested, to chem-

istry, which is essential in the separation of cellulose fibers and the production of ben-

eficial additives, to engineering, for production and converting processes, papermaking

requires the synergy of many different processes.

Modern papermaking is often dated from the development of the Fourdrinier paper

machine in 1801. Two hundred years have been sufficient to create a mature industry

and paper has become a commodity product. A greenfield, kraft paperboard mill costs

more the $1B US; estimates for paper machine down time ranges from $10K-$100K per

hour depending on machine and grade of paper produced. We’ve reached the point that

changes in paper production need to be incremental and made by those motivated to

create product differentiation.

An example comes from a Scandinavian paper company which produces medium, the

paperboard which forms the wavy section in a corrugated structure. They found that

by reducing property variability they could reduce grammage1 by 10% and improve

corrugated strength. As fiber costs are the largest costs in papermaking, this created

tremendous savings. Naturally, those producing corrugated board were suspicious, but

the company tested their material against others and demonstrated superior perfor-

mance. The company was eventually able to charge a premium for their medium. It’s

an infrequent occurrence that a producer of a commodity is able to reduce material costs

and increase sales and profit margin.

Another example comes from a project I personally administered. A US company needed

help to determine cause(s) of failure of corrugated containers used to protect and provide

point-of-purchase displays for a product made in east Asia. While I never learned the

costs associated with product damage, the cost of repackaging undamaged products that

arrived in the US in damaged containers unsuitable for display were $1M annually. The

packaging failures were attributed to lack of a stiffness specification and lack of variability

specification. The company only specified component, i.e. linerboard and medium,

grammage and relied on a ’correlation’ between grammage and stiffness. Eventually

the company made no changes because the stiffness and variability specifications would

increase costs. They did tell me that if losses increased to $1.5M annually they would

revisit the specifications.

1weight/area
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So understanding of paper variability is important. Material scientists and engineers

may differentiate between variability and heterogeneity, but the terms will be used in-

terchangeably here. Lord Kelvin famously said ”If you cannot measure it, you can not

improve it.” To date, evaluation of paper heterogeneity has been largely confined to

measurements of local mass variation. While this is an important component of hetero-

geneity, local fiber orientation and residual stresses created during restraint drying also

contribute to heterogeneity of mechanical properties.

The objectives of this work are to characterize paper heterogeneity in terms of tensile

strength and anisotropic stiffness. While different aspects of strength variation have

been investigated this new approach develops a relationship between potential strength

improvement and reduction of variability. Characterization of stiffness variation is ac-

complished by development of a novel load fixture, use of digital image correlation to

measure local deformation and strain in the load fixture, and use of the VFM (Virtual

Fields Method) for stiffness identification.

State of the art of the VFM has been recently given in a book by Pierron and Grédiac [1].

Important for this work was their work demonstrating that VFM is a generalized in-

verse method and that other inverse methods, e.g. finite element model - updating and

constitutive gap, are particular formulations of VFM. With the introduction of special,

optimized virtual fields, explained here in Chapter 3, VFM has been applied to many

materials with different constitutive behaviors under numerous loading geometries. Its

use in this work was an obvious choice, some may say the only choice, as the tool for

analyzing full-field displacement and strain data. One illustration from this work: in

Chapter 4 100 simulations each were performed on three different materials. Each of

the 100 simulations took about 10 hours in my desktop computer using VFM; the same

work using finite element model - updating would have taken over 500 hours.

Chapter 2 describes a characterization of strength heterogeneity which provides two

important parameters. First, an inherent defect size is estimated; second, amount of

strength increase with defect size reduction and/or elimination is determined. The

characterization differs from other work incorporating defect analysis because the inher-

ent defect is created by the confluence of all factors causing heterogeneity. This chapter

stands apart as no additional aspects of strength heterogeneity were examined.

Chapter 3 creates a critical foundation for Chapters 4 and 5. The objective of the work

in Chapter 3 was to develop a load fixture and analysis tools to measure anisotropy of

thin, web materials like paper and paperboard. The load fixture is unique in that it is
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capable of producing a complex strain field, while keeping the material unwrinkled and

in its linear elastic regime, all of which are necessary for anisotropic stiffness identifica-

tion. The VFM was used for identification. Stiffnesses determined with this fixture and

identification procedure agreed with those determined by ultrasonic and tensile tests.

Because heterogeneity could be caused by changes in local anisotropy, it was critical

that a full anisotropic stiffness identification could be performed.

Chapter 4 examines local stiffness identification of three simulated materials. VFM was

expanded from Chapter 3 to include heterogeneous stiffness identification. Displacement

fields were created for simulated materials created using finite element modeling (FEM)

and were used to evaluate the VFM analyses. Benefits and use of each VFM analysis

are described.

Chapter 5 combines the efforts of Chapters 3 and 4 to characterize the heterogeneous

stiffnesses of three paperboards. The characterization provides upper and lower bounds

of local stiffness and variation of stiffness. The characterization agreed with observed

visual differences between materials; the bounds contained stiffnesses determined with

assumption of homogeneity.

Just like papermaking requires a multidisciplinary approach, this work required use

of basic tensile tests, the development of a new multiaxial test fixture, use of optical

measurements (digital image correlation) and NIR (near infra-red) imaging and use of old

concepts (Principle of Virtual Work) modernized for today’s needs. If heterogeneity is

important for your work, regardless of whether you work with paper or another material,

I hope this work will give you new ideas for the difficult task of characterizing the

heterogeneity of your material.
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Chapter 2

Evaluation of strength-controlling

defects in paper by stress

concentration analyses1

2.1 Introduction

Paper materials are three-dimensional (3D) networks of cellulose fibers. Primary vari-

ables that contribute to a well-made paper sheet are pulp fiber properties, grammage

(mass/unit area), density, drying restraint, and fiber orientation. However, each of these

variables has microscopic spatial gradients that contribute to local and global behav-

iors. The ability to relate these variables and their gradients to the mechanical behavior

of paper may offer opportunities to improve its mechanical performance and therefore

increase the use of paper as a structural material.

Deterministic and probabilistic models become unduly complicated when trying to eval-

uate parameters contributing to the mechanical behavior of cellulosic webs. Examples

of these types of models are given in references [3–5].

Figures 2.1 and 2.2 show an example of fiber configuration and alignment within a

linerboard sample. It is not feasible to determine from such figures a single critical

defect (i.e., a defect that controls web strength). Fibers in these figures have a range of

lengths and widths but tend to lie within planes. The 3D nature of paper materials seen

1This chapter was previously published as [2] with minor format changes.
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in the cross-sectional view of Figure 2.2 illustrates how defects may be present within

the material but not visible in planar views.

Figure 2.1: SEM image of linerboard surface

Figure 2.2: SEM image of linerboard cross-section

It is proposed that cellulose webs behave as a conglomeration of defects, interconnected

with fibers, which themselves contain defects. Physical identification of size and location

of a single strength controlling defect is not possible; however, these materials behave as
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though their failure is associated with an effective defect of a particular size. This can

occur even if no defects of that physical size exist within the structure. Such an entity

will be called an ‘inherent defect.’ Moreover, the tensile strength of a material with a

size ‘0’ inherent defect will be defined as the ‘maximum potential tensile strength’ and

denoted by σu.

Researchers have previously tried to relate measured tensile strength, a macroscopic

property, to local mass variation, or formation, but no clear picture has emerged. Ta-

ble 2.1, containing references [6–12] summarizes many of these more significant contri-

butions. Regardless of pulping method, fiber type, or forming method, researchers have

found a variety of relationships.

Table 2.1: Summary of previous work relating tensile strength to formation

Reference Pulp-Fiber Sheet forming Finding

Norman [6] Chemical - Handsheet Direct relationship between
hardwood (isotropic) tensile strength loss and
and softwood large variation

of local mass
Moffatt et al. [7] Mechanical - Machine Failure zone passes

hardwood (orthotropic) through regions
of low grammage

Nazhad et al. [8, 9] Mechanical - Handsheet Direct relationship
softwood and between tensile-strength
Chemical - loss and formation
hardwood

Mohlin [10] Hardwood and Machine No relationship
softwood

Nordström [11] Chemical - Machine Depends on grammage
softwood and fiber bonding

Wathén and Mechanical Machine Weak correlation
Niskanen [12] and chemical -

hardwood

Using laboratory handsheets, I’Anson and Sampson [13] found a relationship between

fiber dimensions, sheet grammage, and specific tensile strength, such that a maximum

specific tensile strength occurred near a grammage of 50 g/m2, which is less than that

of most printing and writing papers. In terms of the present models, fiber dimensions,

bonding, and material thickness might coalesce at this grammage level to produce a

smaller inherent defect size than at either larger or smaller grammages, thereby in-

creasing strength. The models are comparable to the use of the critical flaw size in

statistical fracture mechanics to describe the transition between a disorder-dominated
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size-dependent material and one that can be described by linear elastic fracture mechan-

ics [14].

Natural defects in poorly formed sheets increase strain disorder [15] and cause separate

regions that exhibit elastic and plastic response to occur simultaneously under uniform

global stress. A continuum model developed by Korteoja et al. [16] indicates that

large strain variations within a sheet reduce tensile strength. Researchers have mapped

full-field displacements of tensile-loaded paper and paperboard using digital image cor-

relation (DIC) to characterize variations in strain [17–20]. These mappings showed large

strain variations even in papers with apparently good formation, suggesting the existence

of stress concentrators. DIC demonstrated large strains near low-grammage regions or

holes. In particular, Wong et al. [19] found that local grammage and local tensile strain

are inversely proportional to each other. Considine et al. [20] observed compressive

strain near low-grammage regions of tensile specimens and attributed those strains to

low-modulus inclusions.

Scale of measurement is an important aspect of evaluating behavior of materials com-

posed of cellulose fibers. Hristopulos and Uesaka [21] examined the strength distribution

in newsprint and suggested that the critical cluster was on the order of a millimeter,

where the critical cluster is defined as the strength-controlling size in weak-link modeling.

Other researchers [22] have suggested a larger value based on floc size. Flocs are small

regions of higher grammage than the sheet average and are balanced by corresponding

low-grammage regions. Floc size, grammage variation, and local fiber orientation each

contribute to strength behavior [23].

The present research is similar to that of Rhee et al.[24], who introduced multiple holes

in a tensile specimen in order to examine changes in strength caused by defects and

stress interaction. Stress distributions associated with individual neighboring holes in a

tensile specimen tended to interact with each other and modify the stress concentration

factor for any single hole. The present investigation assumes that an introduced defect

will interact with physical defects created during manufacturing. Two paper sheets

with poor formation in the form of low-modulus inclusions in a high-modulus matrix

can have widely differing strengths, suggesting that formation alone is not a strength-

determining factor. Recognizing this, the present investigation extends the work of

Um and Perkins [18] and Perkins and Um [25], who measured strains in the vicinity

of a single hole in a tensile paper strip, calculated associated stresses, and compared

their measurements with finite element analysis to show hole boundary stresses greater
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than the materials tensile strength. Using a quasi-isotropic point stress criterion (PSC),

researchers have predicted tensile strengths of paper specimens with a single hole [25, 26].

The present approach is designed to evaluate macroscopic differences in papers due to

widespread, mesoscopic defects. The presence of flaws, defined as onetime or occasional

defects, is not addressed. Additionally, this approach is based on stress concentration

analysis as opposed to stress intensity analysis used in fracture mechanics models. Fail-

ure is assumed to be caused by inherent defects that are larger than a critical defect.

2.2 Materials and methods

Defect analyses are investigated here on seven commercially available cellulosic materials

whose physical and mechanical properties are listed in Table 2.2. Sheet thickness was

measured with a Mitutoyo R© (Kawasaki, Japan) 543-396B Digital Indicator equipped

with a ball tip of diameter 4 mm. Elastic moduli and Poisson’s ratios were obtained ul-

trasonically with a Nomura Shoji Corporation (Tokyo, Japan) Sonic Sheet Tester (SST).

The SST is equipped with one sensor pair, which operates at 25 kHz; measurements were

taken at 5◦ intervals by rotating the sample on a turntable.

Material C is a commercial copy paper containing about 8% ash. Material E is a

commercial bond envelope paper and likely contains cotton fibers. Material F is a

commercial filter paper manufactured by Whatman R© International (Maidstone, Kent,

UK), identified as Chromotography Paper, Model 3MM CHR, and was chosen because

it is 100% cellulose from cotton linters. Material L1 is a commercial linerboard whose

fiber content likely contains both virgin and recycled fibers. Material L2, made on

a different machine than L1, is an unbleached, kraft single-ply linerboard, and like

L1, a material commonly used in structural paperboard products such as corrugated

containers. Materials S1 and S2 are cylinder boards made on the same cylinder machine

but with a proprietary processing change between materials.

The material properties in Table 2.2 represent a broad spectrum of paper and paper-

boards. The density range indicated is fairly typical. Recognizing that the density of

native cellulose is approximately 1500 kg/m3 indicates these papers have a large amount

of void space. The orthotropy ratio, E11/E22, may be as high as 5:1 for specially manu-

factured paperboards, but low ratios, about 2:1, are typical for structural paperboards.

All mechanical properties were measured with an OPUS 3-D ultrasonic system (Sonisys,

Atlanta, GA, USA).
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Table 2.2: Physical and mechanical properties of materials examined

Property C E F L1 L2 S1 S2

Grammage (g/m2) 76 92 187 268 209 261 258
Thickness (mm) 0.11 0.13 0.31 0.38 0.30 0.40 0.40
Density (kg/m3) 721 734 603 717 688 648 643
E11 (GPa) 7.82 7.38 4.52 7.80 7.75 9.40 8.20
E22 (GPa) 2.56 3.40 2.12 3.71 3.73 2.22 2.02
G12 (GPa) 1.63 1.85 1.27 2.10 2.15 0.71 0.70
ν12 0.17 0.23 0.18 0.20 0.23 0.18 0.19
E11/E22 3.05 2.20 2.13 2.10 2.08 4.27 4.06

Note: all properties determined at 50% RH
Material references: C, copy; E, envelope; F, filter;
L1, linerboard1; L2, linerboard2;
S1, cylinder board1; and S2, cylinder board2.

2.2.1 Tensile testing

Tensile tests were performed on an Instron R© (Norwood, Massachusetts) Model 5865 test

machine equipped with line-clamp pneumatic grips. Gage length, which was determined

by available material sizes, was 200 mm for materials S1 and S2 and 125 mm for all

other materials. Width was 25 mm. The test sequence started with a pre-load to 1N at

12 N/min, followed by displacement at a constant speed of 1.5 mm/min that continued

to specimen failure. Load and grip displacement data were collected at 10 Hz. All tests

were performed in a controlled environment at 50% relative humidity (RH) and 23◦C.

Some samples were susceptible to tensile buckling; curvature would occur across the

specimen width. This was avoided and test similarity insured by transversely restraining

all specimens with glass plates. This was accomplished by positioning the specimens

between two 100 mm long restraining glass plates separated by a gap of twice the sample

thickness and placed at the vertical center of the tensile specimen. These plates were

held independent of the test machine and were stationary during tensile testing.

2.2.2 Specimen preparation

Figure 2.3 shows the basic specimen geometry. Each specimen contained a single hole

prepared with specially designed tool steel machined punches that have an inner cutting

taper to prevent densification of the material near the hole boundary. Holes were located

with alignment fixtures that consisted of a different specific fixture for each specimen
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Figure 2.3: Schematic of specimen, L = 125 or 200 mm, W = 25 mm, and R = 0.25,
1.25, 1.88, 2.5 or 5.0 mm.

geometry. The alignment fixtures insured hole location along the longitudinal centerline

and held the specimen firmly to a backing plate during the cutting process. Individual

specimens each had a single hole of radius 0.25, 1.25, 1.88, 2.5, or 5.0 mm, and five

tensile test replications for each sample were performed.

2.3 Evaluation of inherent defect size and potential

strength

All cellulosic webs contain inherent defects, whether due to poor formation, fiber damage,

or non-uniform fiber bonding. The goal of this research was to determine an inherent

defect size and a maximum potential tensile strength, σu, for paper materials. Maximum

potential tensile strength is the tensile strength of defect-free material, but made with the

same fibers, processing, bonding, and orthotropic properties as the web under inspection.

Inherent defect size, Reff, is determined by comparing the behavior of the sample material

to that of models that estimate the effect of defect size.
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2.3.1 Model development

Awerbuch and Madhukar [27] reviewed many semi-empirical strength models and con-

cluded that each model could adequately represent the data so long as the empirical

parameters were accurately determined. The PSC and average stress criterion (ASC),

both created by Whitney and Nuismer [28], are modified here and applied to measured

strength data of seven paper materials in Table 2.2. Modification of these models in-

cludes correction for finite-width specimens, assumption that defect-free tensile strength

is unknown, and use of unnotched tensile strength to determine inherent defect size.

The development of the modified PSC and ASC models follows.

For an infinite uniaxially loaded, linear elastic, orthotropic sheet containing a central

circular hole of radius R (Figure 2.3), the tensile stress along the y-axis, beginning at

the edge of the hole, σ∞y (x, 0), x ≥ R, is given by Lekhnitskii [29] as

σ∞y (x, 0) = σy+σyRe

{
1

µ1 − µ2

[
−µ2 (1− iµ1)√

γ2 − 1− µ2
1

(
γ +

√
γ2 − 1− µ2

1

) + · · ·

· · ·+ µ1 (1− iµ2)√
γ2 − 1− µ2

2

(
γ +

√
γ2 − 1− µ2

2

)
]} (2.1)

where Re denotes the real part of the expression in the brackets, σy the far-field applied

stress (y → ±∞), γ = x/R, and µ1 and µ2 the two solutions of the following equation

(µ3 and µ4 are complex conjugates of µ1 and µ2):

a22µ
4 − 2a26µ

3 + (2a12 + a66)µ2 − 2a16µ+ a11 = 0 (2.2)

In Equation 2.2, aij , i, j = 1, 2, 6, are compliances of the orthotropic material. In the

present case, a16 = a26 = 0, and


a11 a12 a16

· a22 a26

· · a66

 =


1
E11

− ν12
E11

0

· 1
E22

0

· · 1
G12

 (2.3)



13

Complex material properties µi depend on E11, E22, ν12, and G12, where the 1 (MD,

machine direction) and 2 (CD, cross-machine direction) directions are the orientations of

material symmetry. Procedures for determining µi of Equation 2.2 are readily available

[30] and must be determined for each material under consideration.

Using a similar approach to that of Khashaba [31], Tan’s [32] finite-width specimen

correction factor, FWC, is incorporated to adjust the stress distribution given as

FWC =
KT

K∞T
and

KT

K∞T
σ∞y (x, 0) = σy(x, 0) (2.4)

where KT and K∞T are the tensile stress concentration factors at (x, y) = (R, 0) for a

finite-width and infinite specimens, respectively, of the same material.

Enforcing y-direction equilibrium, for both the infinite width and finite-width specimens,

is accomplished by integrating Equation 2.4, i.e.

RKT

K∞T

∫ W/2R

1
σ∞y (x, 0) dγ = σy ·W/2 (2.5)

This force equilibrium causes the FWC to uniformly increase the stress magnitude;

Equation 2.4 assumes the same general stress profile along the x-axis from the hole for

both an infinite- and finite-width geometries. Combining Equations 2.1 and 2.4 at x = R

gives

1

FWC
=
K∞T
KT

= 1− 2R

W
+Re{

1

µ1 − µ2

[
µ2

1 + iµ1

(
1− 2R

W
− iµ1

(
2R

W

)
− · · ·

· · · −

√
1−

(
1 + µ2

1

)(
2R

W

)2
)
− · · ·

· · · − µ1

1 + iµ2

(
1− 2R

W
− iµ2

(
2R

W

)
− · · ·

· · · −

√
1−

(
1 + µ2

2

)(
2R

W

)2
)]}

(2.6)

where W is the specimen width.
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The PSC states that a tensile sheet containing a central circular hole of radius R fails

when the longitudinal stress σy at a characteristic distance d0 from the edge of the

hole achieves the unnotched tensile strength of the material in the y-direction σU , i.e.

failure occurs when σy(R + d0, 0) = σU . Alternatively stated, failure occurs when the

longitudinal stress throughout the distance adjacent to the edge of the hole d0 exceeds

the unnotched tensile strength σU .

In the foregoing discussion, the unnotched tensile strength σU is the strength of the

material as determined by a conventional tensile test. σu (note lowercase subscript) is

considered an unknown parameter. It is associated with processing defects and is to be

determined via nonlinear least squares regression of the equation that results when σu is

set equal to the product of Equation 2.1 and the reciprocal of Equation 2.6. Moreover,

γ0 = (R+ d0) /R, and µ1 and µ2 are the principal roots of Equation 2.2. To denote this

change, the subscripts are changed such that σU → σu. The resulting PSC as modified

for a hole in a finite-width orthotropic plate is

σu = FWC · σH ·

{
1 + · · ·

· · ·+Re

{
1

µ1 − µ2

[
−µ2(1− iµ1)√

γ2
0 − 1− µ2

1(γ0 +
√
γ2

0 − 1− µ2
1)

+ · · ·

· · ·+ −µ1(1− iµ2)√
γ2

0 − 1− µ2
2(γ0 +

√
γ2

0 − 1− µ2
2)

]}} (2.7)

where σH is the experimentally measured tensile strength of the notched specimens and

σu and γ0 (i.e., d0) are unknowns.

A related criterion to the PSC, using the same geometry, is the ASC, which assumes

failure will occur when the average longitudinal stress over a distance, a0, reaches the

unnotched tensile strength of the material in the y-direction, σU (i.e., failure occurs when

σU = (1/a0)
∫ R+a0

R σy(x, 0)dx [28]. The ASC, as modified for the present finite-width

specimens, can be formally written as
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σu =
FWC · σH

a0

∫ R+a0

R

{
1 + · · ·

· · ·+Re

{
1

µ1 − µ2

[
−µ2(1− iµ1)√

γ2
0 − 1− µ2

1(γ0 +
√
γ2

0 − 1− µ2
1)

+ · · ·

· · ·+ −µ1(1− iµ2)√
γ2

0 − 1− µ2
2(γ0 +

√
γ2

0 − 1− µ2
2)

]}}
dx

(2.8)

The strictly linear elastic PSC solution has been applied to nonlinear materials by many

researchers including Kortschot and Trakas [26] and Perkins and Um [25], who both

applied a quasi-isotropic PSC to paper; by Khashaba [31], who applied a modified PSC

to a glass fiber reinforced polyester material; and by McNulty et al. [33], who applied

PSC to Nicalon-reinforced ceramic composites. Significantly more applications have

been made of the PSC than of the computationally more difficult ASC.

2.3.2 Numerical analysis

Unknown parameters σu and d0 for Equation 2.7 and σu and a0 for Equation 2.8 were

determined by nonlinear least squares regression analysis within Matlab R© via the built-

in nlinfit function. Equation 2.7 was sensitive to initial estimates for the unknowns due

to multiple local minima for these data. For the modified PSC of Equation 2.7, param-

eter convergence was realized when a ±10% change in the initial estimates converged

to the same values. Equation 2.8 was insensitive to initial estimates and converged

rapidly. Integration of Equation 2.8 was performed by trapezoidal rule. During non-

linear regression, σu ≥ σM was a condition, where σM is the mean unnotched tensile

strength.

2.4 Results and discussion

The modified PSC (Equation 2.7) and modified ASC (Equation 2.8) were used to model

the tensile behavior of specimens containing a single hole and for specimens that failed

at the hole. Some combinations of material, orthotropic direction, and hole size did not

fail at the prepared hole. These specimens were not included in the analysis and will be
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discussed separately. Inherent defect size was determined by reverse correlation as the

intersection of σM with the modified PSC or ASC curves.

Figures 2.4-2.10 show the results of fitting the modified PSC and ASC curves to single

hole tensile data. For the models, the modified PSC is represented by the dark line and

the modified ASC by the gray line. Solid squares and circles each represent the measured

tensile strength of a specimen when failure occurred away from the introduced hole.

Open squares and circles each represent the measured tensile strength of a specimen

when failure occurred at the introduced hole. The upper (squares) and lower (circles)

sets of data for each graph are for testing in the one- and two-directions, respectively.

Papermakers define the 1-direction as the machine direction (denoted by MD) and the

2-direction as the cross-machine direction (denoted by CD). For specimens loaded in

each of the 1- and 2-directions, horizontal dashed lines are drawn at the mean measured

unnotched tensile strength σM and intersect the model at an abscissa Reff, the inherent

defect size. Specimens with holes larger than the inherent defect size are expected to

fail at the hole. Specimens with holes smaller than the inherent defect size are expected

to fail elsewhere. Exceptions do occur, and these are likely explained by the concept of

defect interaction [24]: The presence of the hole may increase local stresses elsewhere

in the sheet causing failure away from the hole, even though the hole is larger than

Reff. Alternatively, stress variations away from the hole can increase stresses at the

hole, producing failure at holes smaller than Reff. The models provide an approach for

averaging the test data to produce the best indication of Reff regardless of exceptions.

In 9 of 14 cases in Figures 2.4-2.10 (seven materials and two directions), the calculated

Reff is characterized by tensile failures that avoid holes smaller than Reff and select

holes larger than Reff. This is consistent with expectations. For example, Material E,

2-direction in Figure 2.5, no specimens having the 0.25 mm radius hole failed at the

hole, whereas all five specimens with the 1.25 mm radius hole failed at the hole. The

calculated Reff (modified ASC) was the intermediate value 0.99 mm. Examining all nine

similar cases indicates that the rule followed by Material E, 2-direction, was followed in

78 of the 90 tests of Figures 2.4-2.10. The 12 exceptions were likely caused by defect

interactions.

In 2 of the 14 cases, Material E for 1-direction (Figure 2.5) and Material L1 for 2-

direction (Figure 2.7), the calculated Reff is bracketed by hole radii in specimens that

failed at the hole. In Material E, 2 of 5 tests failed at 0.25 mm hole, perhaps because of

stress enhancement by nearby natural defects. In Material L1, 5 of 5 failures occurred

at 1.25 mm holes, when the Reff value (modified ASC) was 1.49 mm. Because the failure
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Figure 2.4: Modified PSC (dark line) and modified ASC (gray line) applied to Mate-
rial C (copy paper) tensile data.

percentage of specimens with the smaller hole is 100%, it seems reasonable that strength

is likely influenced by cumulative stress interactions among defects along the x-axis such

that the introduced hole created a larger than expected defect.

For the remaining 3 of 14 cases shown in Figures 2.4-2.10, Reff is less than 0.25 mm; that

is, Reff is less than the radius of the smallest hole used in this study. These cases are

Material C in both 1- and 2-directions (Figure 2.4) and Material L1 in the 1-direction

(Figure 2.7). For these cases, failure should have occurred at 0.25 mm hole. This

happened for only 4 of 15 tests. In 11 tests, failure did not occur at the hole, perhaps

because of stress shielding by nearby natural defects. This interpretation may be more

likely in view of the small size of both the defect and the prepared hole.

Considering all 14 cases in this study, there is the question of defect interaction in 30

of 125 bracketing tests, or 24%. These 30 tests are all limited to specimens where

the hole radius was close to Reff. The average absolute discrepancy between Reff and

the hole radius is 0.22 mm for Reff evaluated by the PSC model and 0.15 mm for Reff

evaluated by the ASC model. These values are influenced by statistical uncertainties in
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Figure 2.5: Modified PSC (dark line) and modified ASC (gray line) applied to Mate-
rial E (envelope) tensile data.

the measurement of σM for the various specimens. Because the same values of σM are

applied to both the PSC and ASC determination of Reff, the two values are indicative of

the relative accuracies of the two models. If, for purposes of discussion, these values are

interpreted as absolute accuracies of the two models, the need to go outside the models

to explain outliers is greatly reduced. For the ASC model, 17 of the 30 bracketing tests

mentioned above are included within the ±0.15 mm error bars of Reff. Only 13 of 125

bracketing tests remain to defend in terms of defect interactions or otherwise, and 5

of these 13 were limited to material L1 discussed above. For the PSC model, 11 of

30 outlying tests are included within the ±0.22 mm error bars of Reff, leaving 19 of

125 bracketing tests to defend. Even with smaller error bars (inviting more outliers),

the ASC model results in fewer outliers and provides a superior fit to the data. This

suggests that the ASC picture of the influence of a hole on tensile strength may capture

the physics of failure better than the PSC does, at least in paper samples.

The advantage of the ASC model is further demonstrated by results for Material C,

2-direction (Figure 2.4). For this sample, the regression limits established give σu = σM

and Reff = 0 mm for the PSC model. However, according to Table 3, the same cases
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Figure 2.6: Modified PSC (dark line) and modified ASC (gray line) applied to Mate-
rial F (filter paper) tensile data.

calculated σu > σM and Reff > 0 mm for modified ASC. This suggests that the ASC

model may represent a more precise, as well as more accurate, measure of performance.

Both PSC and ASC models are able to differentiate between similar materials in ways

that could ultimately prove very useful; for example, consider how the models treat

similar, high grammage materials: linerboards L1 and L2, and cylinder boards S1 and S2.

The exact compositions of materials L1 and L2 are unknown, and they were produced on

different paper machines. Nevertheless, Table 2 shows that their densities and ultrasonic

mechanical properties are very similar. Only in applying the models are differences made

apparent. With Reff close to 0 mm and σu ∼ σM in the 1-direction, sample L1 (Figure

2.7) is close to achieving its maximum potential. Though similar in many properties,

Sample L2 (Figure 2.8) has considerable room for improvement in the 1-direction. In

the 2-direction, L1 and L2 samples perform somewhat similarly. Both of these cases

have room for improvement.

Materials S1 and S2 were manufactured on a cylinder machine, which typically produces

a material with discrete layers, very similar to plies in laminated fiber-matrix composites.
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Figure 2.7: Modified PSC (dark line) and modified ASC (gray line) applied to Mate-
rial L1 (linerboard 1) tensile data.

Additionally, uniform mass distribution is difficult to attain in the cylinder process.

As such, these materials add a defect configuration to those present in conventional

linerboard papermaking, namely defects between plies.

Figure 2.9 shows the analysis of Material S1 tensile behavior and illustrates its unique

defect configurations. For the 1-direction, all specimens having either a 1.25 or 1.88 mm

radius hole failed at these holes, but one of the specimens, which had a 2.5 mm radius

hole, failed away from the hole. No other material demonstrated such behavior. The

Material S1 in the 2-direction also exhibits some unique behavior in that one specimen

of each of those whose hole radius was 1.25, 1.88, or 2.50 mm failed away from the hole.

Characterization of an inherent defect size in cylinder-machine papers may not be as

important as the demonstration that the material has many defect sizes present.

The supplier of Materials S1 and S2 explained that both materials were made on the

same machine but that a proprietary processing change was made to enhance the con-

verting performance of Material S2. Figure 2.10 shows an application of the models

to Material S2 tensile behavior and indicates a more uniform defect configuration than
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Figure 2.8: Modified PSC (dark line) and modified ASC (gray line) applied to Mate-
rial L2 (linerboard 2) tensile data.

that of Material S1. In the 1-direction of Material S2, only 1 of 15 specimens having a

hole of radius larger than Reff failed away from the hole. In the 2-direction of the S2

Material (Figure 2.10), only one specimen failed at its 1.25 mm hole (close to Reff) and

all specimens having holes larger than Reff failed at the holes. Distributions of inherent

defect sizes in this material would seem to be narrower than that of Material S1, perhaps

indicating improved ply bonding.

Table 2.3 summarizes results of the analysis. The calculated unnotched strength σu is

considered to be the maximum potential tensile strength in a defect-free material made

with the same fibers and corresponding fiber-to-fiber bonding. Reff is calculated as the

hole radius where the models produce the mean measured unnotched tensile strength σM .

As such, Reff is considered to be the size of the inherent defect in the material. Using

a fracture mechanics approach, Donner [34] determined the defects in two newsprint

samples (a short-fiber material) to range from 0.5 to 0.9 mm in the 1-direction and 1.2

to 1.7 mm in the 2-direction. These ranges are about twice the ranges observed for Reff

in Table 2.3 for papers that are made, for the most part, from long-fiber material.
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Figure 2.9: Modified PSC (dark line) and modified ASC (gray line) applied to Mate-
rial S1 (cylinder board 1) tensile data.

Table 2.3: Calculated model parameters

Point stress Average stress

Measured Calculated Calculated
unnotched unnotched unnotched

strength strength strength
σM σu σM/σu Reff σu σM/σu Reff

Material Direction (kN/m) (kN/m) x100% (mm) (kN/m) x100% (mm)

C
1 5.12 5.25 97.4 0.11 5.61 91.3 0.17
2 2.20 2.20 100.0 0.00 2.33 94.3 0.24

E
1 6.00 6.72 89.4 0.44 7.20 83.3 0.40
2 2.34 2.72 85.9 0.93 3.09 75.7 0.99

F
1 4.96 5.34 92.9 0.53 5.63 88.2 0.51
2 2.76 2.86 96.5 0.26 3.00 92.1 0.33

L1
1 14.39 14.41 99.8 0.01 15.20 94.6 0.14
2 6.88 9.63 71.4 1.53 11.72 58.7 1.49

L2
1 14.20 18.84 75.4 0.88 19.64 72.3 0.76
2 6.41 9.32 68.8 1.55 10.28 62.4 1.45

S1
1 15.17 18.08 83.9 0.64 19.95 76.1 0.62
2 4.08 4.51 90.5 0.91 4.80 85.0 0.97

S2
1 13.87 18.30 75.8 0.74 18.97 73.1 0.64
2 3.94 4.77 82.7 1.15 5.33 74.0 1.20
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Figure 2.10: Modified PSC (dark line) and modified ASC (gray line) applied to
Material S2 (cylinder board 2) tensile data.

The physical presence of a defect with a radius Reff is unlikely. Rather, the inherent

defect size accounts for innate interactions in the material during testing. Defects tend

to interact with each other, producing lower or higher stresses than would be experienced

independently. The combination of size and location of defects has not been thoroughly

investigated except in special cases [35].

Table 2.4: Adjusted valued for Reff based on binomial statistical hypothesis test

Point stress Average stress

Adjusted Adjusted
Reff Reff Reff Reff

Material Direction (mm) (mm) (mm) (mm)

E 2 0.93 0.88 0.99 0.95
L1 2 1.53 1.63 1.49 1.60

L2
1 0.88 0.87 0.76 0.75
2 1.55 1.56 1.45 1.46

S1
1 0.64 0.66 0.62 0.63
2 0.91 0.82 0.97 0.89

S2
1 0.74 0.73 0.64 0.63
2 1.15 1.10 1.20 1.16
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Figure 2.11: Relationship between ASC and PSC defect calculations.

Because both models, PSC and ASC, are based on the same stress distribution near the

hole, Equation 2.1, the calculated defect sizes for each model are related to each other.

Figure 2.11 shows the linear relationship between the Reff values for PSC and ASC. For

Reff < 0.81 mm, PSC predicts a smaller Reff than does ASC. The modified ASC is more

reliable during regression, is less sensitive to initial parameter estimates, and calculates

a finite-sized inherent defect, even as Reff → 0.

Figures 2.4-2.10 demonstrate the difficulty in application of Equations 2.7 and 2.8 to

experimental strength data of materials with unknown defects, namely that by intro-

ducing a defect similar in size to the inherent defect, some failures will occur away from

the introduced defect. Results of those tests were not included in the regression, thereby

effectively adding statistical weight to results of the large hole strength data and reduc-

ing the effect of results near the region of interest (i.e., the smaller defects). To improve

accuracy near the region of interest, for situations when the entire group of specimens

failed away from the introduced defect, the standard binomial statistical-hypothesis test

was used to test the hypothesis: tensile specimens fail at the largest inherent defect.
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As stated earlier, the strength-controlling defect may be introduced, such as by hole

punching, or it may be inherently part of the material. The standard binomial statistical-

hypothesis test was used to determine the likelihood that the experimental strength

would be above or equal to the model (either PSC or ASC). For the five replicates used

in this study, only when all five specimens with the same introduced defect had strengths

below the predicted (PSC or ASC) model would the one-sided alternative be significant

at the 5% level, according to the two-sided table in Snedecor and Cochrane [36]. Such

a result would violate the statistical rules of chance. For this study, the binomial hy-

pothesis test indicated that the following materials failed at inherent defects that were

larger than the smallest (0.25 mm) defect: E (2-direction), L1 (2-direction), L2 (both

directions), S1 (both directions), and S2 (both directions).

For these eight cases, the strength data at 0.25 mm introduced defect can be moved to the

Reff for the particular sample and maintain variability of the model. These additional

data were used to determine an adjusted Reff. Table 2.4 gives the adjusted Reff for

samples in those eight cases. Adjusted Reff was greater than original Reff for Materials

L1 (2-direction), L2 (2-direction), and S1 (1-direction) because the mean tensile strength

of specimens with 0.25 mm defect was greater than for the unnotched specimen. All other

adjusted Reff values were less than original Reff. Application of the binomial statistical

hypothesis test changed Reff in a manner expected from graphical observation.

2.5 Conclusion

The classical PSC and ASC have been modified to determine inherent defect size Reff and

maximum potential tensile strength σu for seven cellulose fiber materials. Calculated

defect sizes were well related to observations during tensile testing relating to location

of failure in that failure away from the introduced defect indicated an inherent defect

larger than the introduced hole. As expected, printing and writing grade papers exhibit

the smallest size defects. The models are effective for a wide range of material weights

and two manufacturing methods. The modified ASC model had more rapid parameter

convergence than the modified PSC model and calculated a finite-sized defect for all

materials. Data were well characterized by the modified PSC and modified ASC even

though these theories are strictly valid only for orthotropic linear elastic materials.
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The binomial hypothesis test was used to determine cases where the inherent defect

size analysis could be adjusted. The adjustment produced changes in accordance with

observed data trends.

Because defect-free samples are the exception, the present approach extends the PSC

and ASC in a manner beneficial for real-world situations. For the materials studied here,

30 tensile tests were sufficient for defect size and maximum potential tensile strength

determination in one of the directions of orthotropy. Papermakers may use this approach

to determine the favorable effect on strength of improving formation for cost-benefit

analysis.
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Chapter 3

General anisotropy identification

of paperboard with the Virtual

Fields Method

3.1 Introduction

Paper, paperboard and other cellulose fiber composites have received significant atten-

tion for use in materials and structures where biocompatibility is an important consid-

eration because cellulose fiber composites are renewable, recyclable and compostable.

However, even though single-sheet papermaking is more than 4000 years old and mod-

ern papermaking is 200 years old, analysis of paper’s engineering properties remains a

significant research area.

Production of paper and paperboard includes the separation of cellulose fibers, which

are themselves anisotropic [37], from wood through a pulping process, which may be me-

chanical, as in newsprint, or chemical, as in sack paper. Resulting fiber flexibility and

inter-fiber bonding are improved through additional mechanical action called beating.

Absent requirements for fiber bleaching, the fibers are dispersed at low concentrations,

usually less than 1% fiber/water, prior to being sprayed on a moving screen. Travel

direction of the screen is called the machine direction (MD) while the in-plane direc-

tion perpendicular to the travel direction is called the cross-machine direction (CD). A

combination of the spraying action and screen travel tend to orient the fibers in the

MD which usually corresponds with the 1-direction of material properties. Depending
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on the type of paper produced papermachines can operate at speeds of 1500 m/min

or higher. While ratios vary, the typical ratio for E11/E22 is near 2. Offline stiffness

measurement is used in process control [38]. Paper and paperboard are frequently sold

on a strength/weight or stiffness/weight basis and so reduction of property variability

and mechanical property improvement are persistent goals of papermakers, even though

costs associated with variability are rarely acknowledged [39].

The objective of this work was to develop a load fixture and analysis method to identify

the anisotropic stiffnesses of paper, paperboard and other thin materials. While the

paper industry considers paper to be an orthotropic material, general anisotropy is de-

veloped if the MD is not aligned with the 1-direction and is called ’rotated orthotropy.’

The assumption of orthotropy requires confirmation as the papermaking process has

many variables affecting sheet mechanical properties including fiber properties, fiber

orientation [40], fiber length distributions, sheet density, and drying restraint [41, 42].

Finally, identification of Qij , the in-plane stiffnesses, is important for process control [43]

and for structures made from paper and paperboard, e.g. corrugated fiberboard [44],

wound cores [45] and paper/foil composites [46]. Additionally, anisotropic Qij identi-

fication is important for other thin materials, including surgical meshes [47], biological

tissues [48], textiles [49], rubber [50], among many others.

Identification of a fully-populated Qij matrix requires a specimen and load configura-

tion in which heterogeneous strain fields of each ε1, ε2, and ε6, are developed. Several

methods have been proposed for creating those heterogeneous fields, such as uniaxial

tensile coupons cut in different orientations [51], uniaxial tensile coupons with a central

hole [52], cruciform [53], bulge tests [54], thin-walled cylindrical tubes [55]. Each of

these specimens and load configurations had some aspect which made them unsuitable

for the current work. For example, identification using uniaxial tensile specimens would

require many specimens to develop statistical certainty of identification; other configu-

rations would cause specimen wrinkling. Some specimens, such as cruciform specimens

with and without central holes have stress concentrations at corners and/or holes where

nonlinear constitutive behavior may be present. Small aspect-ratio tensile and bulge

tests are incapable of producing different principal stress ratios. Tube configurations are

complicated by a joining seam and the difficulty of full-field examination.

Most of the these geometries require some type of full-field measurement of displacements

in order to determine strains and DIC (digital image correlation) [56] is the most common

choice, and is used here, given its general ease of use and extensive development of

analysis algorithms. In some cases greater measurement resolution is required and so
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holography [57], moiré [51], speckle interferometry [58] and grid methods [59] have been

used. Techniques with less spatial resolution than DIC include grip displacement [60]

and marker tracking [61? ].

Parameter identification from full-field heterogeneous strains is accomplished by the use

of an inverse method. VFM [1] was chosen for this work because it is general, flexible

and faster than other methods which include FEM-Updating [62, 63], energy-based [64]

and equilibrium gap [65] methods. VFM requires no additional programs, such as an

FEM-solver, and analysis scripts can be easily written in Matlab R©.

Ultrasonic techniques have also been used to determine the Qij of paper [66, 67]. Work

by Habeger [67] appears to be the first attempt to determine Q16 and Q26 in paper ma-

terials. Three difficulties are associated with ultrasonic examination. First, significant

wave attenuation occurs that requires sophisticated analysis to determine time-of-flight.

Second, transmitted waves combine effects of all Qij and so relative scale of individual

Qij makes it difficult to identify smaller parameters, such as Q16 and Q26. Finally, in

rate-dependent materials ultrasonic properties depend on excitation frequency.

In the current chapter, two cellulose-fiber webs were examined: a filter paper and a

paperboard, a packaging grade known in the industry as linerboard. Details of the

load fixture and analysis method, along with quantification of parameter identification

accuracy are provided. The VFM analysis was extended to include identification of

Q16 and Q26, along with associated methods to reduce effect of strain measurement

noise. While the analysis assumes that the materials are linear elastic and homogeneous,

extension of the analysis to more general behavior is straight-forward. Comparison of

Qij identification from VFM, ultrasonic and tensile coupons is included.

3.2 Material

Two materials were examined. The first material was Whatman R© Chromatography Pa-

per 3MM CHR and will be referred to as filter paper. It had nominal physical properties:

grammage 180 g/m2, thickness 0.28 mm and density 635 kg/m3. Filter papers are used

in a variety of household, commercial and scientific applications to capture particulate

matter. The material was 100% cellulose as it is entirely comprised of cotton linters, a

cellulose fiber that is typically 5-10 mm long.
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The second material was a commercial unbleached, kraft single-ply linerboard which had

nominal physical properties: grammage 209 g/m2, thickness 0.30 mm and density 688

kg/m3. Fiber composition of this material is unknown, but likely contains both virgin

and recycled fibers. This material is commonly used in structural products such as

corrugated fiberboard containers. Even as non-traditional packaging is being developed

more than 3.5B m2 [68] corrugated sheet stock were produced in 2011.

The materials will be referred to as Filter and Linerboard, but such designation is

not meant to indicate these materials are general representatives of filter papers and

linerboards. Each of these materials can be manufactured with an almost endless variety

of fiber furnish, drying, pressing and additives.

3.3 Load Fixture

A schematic of the specially designed load fixture is shown in Figure 3.1; the actual

fixture is shown in Figure 3.2. Forces are applied by four moveable grips on the top half

of the fixture and measured with Sensotec (Honeywell International, Inc., Columbus,

Ohio) Model 31BR load cells (range ±444 N) attached to Sensotec Model GM signal

conditioners. The four grips located on the bottom half of the specimen are station-

ary. An additional fixture, not shown, was used as a template to cut the specimen and

properly locate and punch holes for each grip. Prior to placing the specimen within

the fixture, an alignment jig was used to adjust the top four grips to a precise starting

location such that the specimen would experience no forces upon initial placement in

the fixture. The aluminum knobs attached to the movable grips are rotated to generate

radial tensile forces. A load configuration consisted of a unique force vector containing

actual values for F1 − F4. Each specimen was subjected to multiple load configurations

which created a series of different full-field strains for Qij evaluation. For each load

configuration, individual forces were kept constant or increased, with respect to the pre-

vious load configuration, so that relaxation stiffnesses were avoided. As both materials

were hygroscopic all tests were performed on the adsorption isotherm at 50%RH, 23◦C.

The 24.5-cm-diameter specimen was gripped at eight locations 45◦ apart. Grips consisted

of two small brass plates approximately 12 mm square. One plate had a threaded hole;

the other a through-hole. Holes were punched at grip locations in the specimen, which

was then clamped between plates with a small bolt. A torque wrench was used to ensure

uniform clamping pressure for each grip. Special care was taken to prevent the top
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brass gripping plate from twisting and introducing undesirable stresses on the specimen.

Without special care the initial stress state around the grips would have compressive

stresses on one side and tensile stresses on the other side.

F1

F2F3

F4

x

y

22.5◦

45◦

Figure 3.1: Schematic of load fixture.

3.4 Digital Image Correlation

The paperboard surface was examined with a Dantec R© (Dantec Dynamics, Inc., Holts-

ville, New York) stereo DIC system whose details are listed in Table 3.1. The dot pattern

was produced on the specimens using Sharp R© (Sharp Electronics Corp., Mahwah, New

Jersey) MX-3100N copier. Static specimen images were captured by waiting 5 min after

load configuration adjustment. A single reference image was used for each test. For each

specimen, the initial load configuration had forces approximately 15 N greater, at each

load grip, than forces for the reference image. Initial forces on the specimen were used

to ensure that the specimen was planar and grips were fully engaged.

3.5 The Virtual Fields Method

An abbreviated introduction to VFM is presented in order to introduce extension of VFM

to identify a fully-populated Qij matrix; the recent book [1] provides full development
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Figure 3.2: Actual load fixture.

Table 3.1: DIC system components and parameters

Camera Allied Vision Technologies (Stadtroda, Germany) Stingray Model F504B
Lens Computar (Commack, NY) M1614-MP2, 16 mm, f1.4
Lighting Red LED, 4x3 array, wavelength 610-640 nm
Resolution 2452 x 2056
Facet Size 21 pixels, approx 3.3 mm x 3.3 mm
Software Istra (Dantec) 4-D v2.1.5
Strain Smoothing 7x7 cubic spline

of VFM. For a plane stress problem, the Principle of Virtual Work can be written as∫
S

(σ1ε
∗
1 + σ2ε

∗
2 + σ6ε

∗
6) dS =

∫
Lf

T̄iu
∗
i dl, (3.1)

where S is the area of 2-D domain, σi are stresses within S, u∗i are kinematically ad-

missible virtual displacements, ε∗i are virtual strains associated with u∗i , T̄i are tractions

applied on boundary of S, and Lf is the portion of S over which T̄i are applied.
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Assuming a linear elastic anisotropic material, the constitutive equation, using con-

tracted index notation, is given by
σ1

σ2

σ6

 =


Q11 Q12 Q16

Q12 Q22 Q23

Q16 Q26 Q66



ε1

ε2

ε6

 (3.2)

If the material is homogeneous, then each Qij is a constant and can be placed outside

the integrals in Equation 3.1. Substituting Equation 3.2 into Equation 3.1 gives

Q11

∫
S
ε1ε
∗
1dS +Q22

∫
S
ε2ε
∗
2dS +Q12

∫
S

(ε1ε
∗
2 + ε2ε

∗
1) dS + · · ·

· · ·+Q16

∫
S

(ε1ε
∗
6 + ε6ε

∗
1) dS +Q26

∫
S

(ε2ε
∗
6 + ε6ε

∗
2) dS +Q66

∫
S
ε6ε
∗
6dS =

∫
Lf

T̄iu
∗
i dl

(3.3)

In practice, six different u∗i are used in Equation 3.3, one to identify each Qij . Special

virtual fields simplify identification by choosing six different u∗i so that only one integral

term, one for each Qij , exists on the left side of Equation 3.3. By approximating the

integrals in Equation 3.3 as discrete summations, a system of linear equations is devel-

oped whose solution requires minimal computation. As described earlier, DIC provides

information on each εi throughout specimen surface and load cells provide values for

each T̄i.

An important part of VFM analysis is to characterize the sensitivity of the identified

parameters to strain noise. This work extends VFM to reduce the sensitivity to noise

on parameter identification of Q16 and Q26 using the same procedure given by Avril et

al. [69] for orthotropic Qij . They showed that variance of each Qij , V(Q), due to noise

in strain measurements was given by:

V(Q) = γ2

(
S

n

)2

Qapp ·G ·Qapp, (3.4)

where γ is the amplitude of the strain noise represented by a zero-mean Gaussian distri-

bution, S is the area of the specimen, n is the number of discrete measurements within

S, Qapp is the approximate Qij assuming noise is present but not accounted for and G

is given by:
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where ε
∗(ij)
m,k is the special virtual strain (m = 1, 2 or 6) for the discrete region, k,

associated with identification of a particular stiffness Qij .

Defining

V(Q) = γ2η2 (3.6)

the standard deviations of Qij are given by ηij . Due to the great differences in magnitude

of Qij the coefficients of variation, ηij/Qij , are commonly used to compare sensitivity

of identified Qij to strain noise.

The remainder of the description regarding the use of G to minimize the effect of mea-

surement noise on the identification of Qij corresponds to that given by Pierron and

Grédiac [1], except that some scaling was used to reduce effects of great differences in

magnitude of Qij . The larger G (6x6 for anisotropy vs 4x4 for orthotropy) given in

Equation 3.5 slightly increases the number of iterations used for identification. In this

work six iterations were typically sufficient for identification.

3.6 Selection of VFM Mesh

Most VFM applications use a virtual mesh of 4-node quadrilateral isoparametric ele-

ments, similar to a FEM mesh, to create kinematically admissible virtual fields. How-

ever, VFM mesh density analysis has no analogy to FEM mesh convergence studies,

but balances competing influences of sufficient degrees of freedom for accurate param-

eter identification with the knowledge that increased mesh density amplifies the effects

of strain noise and decreases accuracy of identification. Figures 3.3-3.5 show example

VFM meshes at three mesh densities.

Choice of VFM mesh density for subsequent parameter identification was based on

mesh’s capacity to identify Q12 as the smallest Qij that was sure to exist; both Q16 and

Q26 may be zero. Effect of mesh density on Q12 identification is shown in Figure 3.6;

units are km2/s2, or specific stiffness units, and are equivalent to MN · m/kg.

The criteria for mesh density was to choose the coarsest mesh that had sufficient degrees

of freedom to identify all Qij and was appropriate for both materials. The difficulty for

a 25 element mesh to identify small Q12 is not surprising as the mesh contains only four

interior, unconstrained nodes, and therefore eight degrees of freedom, to identify six Qij .

Above 225 elements the ability to detect small Q12 tends to decrease. The 36 element

mesh appeared to have difficulty discerning the Poisson effect, probably due to interior
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F1

F2F3

F4

Figure 3.3: Example of 25 element virtual mesh for Figure 3.1.

F1

F2F3

F4

Figure 3.4: Example of 49 element virtual mesh for Figure 3.1.
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F1

F2F3

F4

Figure 3.5: Example of 225 element virtual mesh for Figure 3.1.

Figure 3.6: Q12 identification for different VFM mesh densities.

node locations that experienced very low strains. The 49 element mesh, Figure 3.4,

contains 24 interior, unconstrained nodes and appeared to be the coarsest mesh, to

reduce the effects of strain noise, for good identification and was used for all subsequent

analyses. Differences in Q12 identification between the 49 and 64 element meshes were

small and so the coarser mesh was selected.

In order to have a kinematically admissible virtual field, grip nodes are virtually fixed

in both u and v displacement because they correspond to stationary grips in Figure 3.1.
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Additionally, radially-oriented forces are prescribed at the load grips corresponding to

forces F4, F3, F2, and F1. VFM meshes are not required to conform to specimen

boundaries. Some VFM elements lie completely outside the specimen area, S, while

other elements straddle the external boundary of S. Only terms in Equation 3.3 with

nonzero, experimentally-measured εi have a contribution to stiffness evaluation.

3.7 Supporting Tests

Ultrasonic tests on individual specimens were performed with a Nomura Shoji R© SST-

250 paper tester. Transmission probe oscillated at 25 kHz. A central circular region,

with 15 cm diameter, was examined for each specimen. Ultrasonic velocity was mea-

sured from 0◦ to 175◦ in 5◦ increments. Q66 was determined by measuring shear wave

velocity transmitted along the 2-principal material direction using a second, modified

SST instrument. The Musgrave Transformation [70, 71] was used to convert from wave

velocity to phase velocity. Phase velocity was used to determine remaining stiffnesses,

as Q66 was determined directly, according to the procedure described by Habeger [67].

Three tensile coupons were cut from each circular specimen after DIC and ultrasonic

evaluations. Coupons were cut at 0◦, 45◦, 90◦ from 1-principal material direction.

Coupons were 25 mm wide and each had a nominal gage length of 175 mm. Speci-

mens were tested in an Instron R© Model 5865 load frame with a grip displacement rate

of 0.5 mm/min. DIC images were captured at 1 Hz and used to determine longitudinal

and transverse strains. Longitudinal strains were used to determine E11 and E22 and

transverse strains were used to determine ν12 and ν21 using the 0◦ and 90◦ coupons,

respectively. Q66 was determined using data from all three coupons by stiffness trans-

formation (Equation 3.7), as described in several sources, e.g. Jones [72].

Q66 =
1(

4
E45
− 1

E11
− 1

E22
+ 2ν12

E11

) (3.7)

Each test, VFM, ultrasonic and tensile, identifies a different Qij ; VFM identifies secant

tensile stiffness, ultrasonic identifies compression stiffness at very low strain levels and

tensile identifies tangent tensile stiffness. For a linear elastic material all these different

types of stiffness are the same. For nonlinear, viscoelastic materials ultrasonic Qij will

be greater than the VFM secant Qij , that will, in turn, be greater than tensile Qij .
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The rationale for choosing tangent stiffness as opposed to secant stiffness for tensile data

was made because selection of the appropriate applied force to compare with this new

geometry is not possible and tangent stiffness is used throughout the paper industry.

The choice to use secant stiffness as opposed to tangent stiffness for this new geometry

was based on the difficulty to measure strains between two adjacent load increments;

importance of developing sufficient strains for Qij identification will be discussed in the

next section. Example Linerboard tensile tests for MD and CD are shown in Figure 3.7.

Figure 3.7: Example tensile tests for Linerboard.

3.8 Analysis

Three different specimens for each material, filter and linerboard, were tested with a

minimum of ten load configurations; after the initial test, specimens were removed from

load fixture, reinserted and retested.

As both materials were known to have nonlinear behavior it was assumed that only

a range of load configurations could be used for linear elastic parameter identification.

Determination of material nonlinear behavior is not straightforward for this load fixture.

As the geometry was intentionally designed to produce sufficient strains, εi, for evalu-

ation of all six Qij , it is not possible to directly determine onset of material nonlinear

behavior. Furthermore, nonlinear behavior is unlikely to occur simultaneously for each

Qij . An example pair of tests for each material is shown in Figure 3.8 which examines
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the manner in which forces induced strain in these tests, where norm refers to 2-norm,

εc is given by Equation 3.8 and n is the number of strain measurements on the specimen

surface. This figure suggests that the specimens behaved elastically for each load con-

figuration and for each test. Elastic behavior is illustrated by the relative coincidence of

points for each test of each material.

εc =
1

3n

√√√√ n∑
i=1

[
(ε1,i)

2 + (ε2,i)
2 + (ε6,i)

2
]

(3.8)

Figure 3.8: Examination of applied forces and induced strain for Filter, Specimen 3
and Linerboard, Specimen 2, where εc is given by Equation 3.8.

Figure 3.8 indicates nonlinear behavior occurred for both materials, but does not indicate

non-linearity occurred for all εi and at all locations within the specimen. Nonlinear

behavior was more likely to occur near the eight grips. Based on similar behavior

for repeated tests, parameter identification was limited to load configurations where

norm(Fi) was less than 65 N for Filter and 80 N for Linerboard.

An additional tool to determine quality of parameter identification is the comparison of

ηij/Qij for each load configuration, as seen in Figures 3.9 and 3.10 ; η16/Q16 and η26/Q26

are not shown to reduce vertical scale. Strains used for identification were determined

from a single reference image, one for each material. Applied forces were the difference

between those in the analyzed image and the reference image. Horizontal axes in these

figures corresponds to vertical axis in Figure 3.8. An incremental analysis, where two
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consecutive loadings are compared, was not used because strain differences between two

consecutive loadings were too small for identification. As expected, η12/Q12 was higher

than other ηij/Qij because Q12 is generally smaller than Q11, Q22, and Q66 and is more

difficult to identify as demonstrated by the non-monotonic behavior of η12/Q12 with

increasing norm(Fi). The other ηij/Qij behaved consistently with improved identifica-

tion, i.e. lower ηij/Qij , with increasing forces and strains. Figures 3.9 and 3.10 were

representative of identifications for each material. Based on this analysis, load configu-

rations with any of η11/Q11, η22/Q22, or η66/Q66 above 100 for Filter and above 200 for

Linerboard were not used for identification.

Figure 3.9: COV for Filter, Specimen 2, Test 2.

High ηij/Qij for load configurations where norm(Fi) is less than 40 N, for either material,

was expected given resolution of DIC strains. Figure 3.11 shows DIC strain for three

scenarios, 3.11(a)-3.11(c), that had no change in forces between reference and analyzed

image so norm(Fi) = 0 N, 3.11(d)-3.11(f) Linerboard, Specimen 1, Test 1, Load Con-

figuration 1, where norm(Fi) = 34 N and, 3.11(g)-3.11(i) Linerboard, Specimen 1, Test

1, Load Configuration 5, where norm(Fi) = 62 N. Strain contours for 3.11(a) through

3.11(f) have few obvious differences while strain gradients for 3.11(g)-3.11(i) are more

apparent. Furthermore, differences between the Q11, Q22, Q12, and Q66 comparing

3.11(d)-3.11(f) to 3.11(g)-3.11(i) were only 13.8%, -5.9%, -13.3% and -6.2% respectively

and validate the performance of VFM. The standard deviation of strains for the no

load and Load Configuration 1 were very similar, showing that Load Configuration 1

had strain only slightly above the strain noise. The scale used in Figure 3.11 is quite

small, hence the difficulty with identification. So, while parameter identification seemed
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Figure 3.10: COV for Linerboard, Specimen 2, Test 2.

reasonable for small norm(Fi), those individual load configurations with high ηij/Qij ,

as discussed earlier, were not used in the final analyses.

Load configurations for each material and test are given in Tables 3.2 -3.3. The last

column identifies those configurations used in identification.

3.9 Results and Discussion

After selection of load configurations for each test those load configurations were su-

perimposed to create a single, superposition load condition where ε1, ε2 and, ε6 were

created by the addition of the εi from each load condition and the Fi were created by

the addition of forces from each load condition. A minimum of three load conditions

were combined for each superposition identification.

Table 3.4 lists those results along with Qij determined from ultrasonic and tensile tests.

Columns for I1 and I2 represent anisotropic stiffness invariants [73] and are given in

Equation 3.9. The last column, φ, represents the difference from orthotropy as deter-

mined from Equation 3.10 from [67] where φ = 0◦ would be a perfectly orthotropic

material and φ = 10◦ would denote an anisotropic material whose 1- and 2-principal

material directions, where 1- and 2-direction correspond directions of maximum Q11

and Q22 respectively, are oriented 80◦ to each other.
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Table 3.2: Load configurations for Filter, units (N)

Used
VFM Load for

Specimen Test Configuration F1 F2 F3 F4 norm(Fi) identification

1

1

1 16.90 17.35 18.99 17.79 35.55
2 18.24 21.35 27.49 19.13 43.70
3 19.13 22.69 27.62 20.91 45.61 *
4 21.80 26.69 29.49 22.24 50.52 *
5 24.02 30.69 32.69 25.35 56.84 *
6 25.80 35.59 38.48 30.69 65.99
7 28.47 37.37 39.06 32.03 68.98
8 29.80 38.25 40.03 33.36 71.19
9 33.36 42.26 45.33 37.37 79.68
10 35.14 44.04 47.51 40.03 83.87

2

1 17.79 16.01 17.88 15.57 33.69
2 17.35 20.02 21.31 14.68 37.03
3 18.24 22.69 24.29 17.35 41.69
4 20.46 26.69 27.76 20.02 47.98 *
5 23.13 28.91 29.71 21.80 52.24 *
6 25.35 30.69 31.36 21.80 55.17 *
7 26.69 34.70 35.81 23.58 61.27 *
8 29.36 36.48 37.90 25.35 65.36
9 32.03 38.25 41.46 28.47 70.84
10 36.92 44.04 44.30 33.81 80.05

2

1

1 14.23 16.90 21.97 12.01 33.40
2 16.01 21.35 25.53 16.90 40.62
3 17.79 21.35 28.38 18.68 43.90
4 23.58 25.35 30.29 22.24 51.10 *
5 25.80 29.36 31.67 24.47 55.94 *
6 28.47 32.47 34.70 26.24 61.30 *
7 30.25 33.36 36.43 27.58 64.15 *
8 32.47 35.14 40.17 29.80 69.22
9 33.81 36.92 40.92 30.69 71.57
10 33.81 40.03 43.33 33.81 75.93
11 34.70 44.04 45.55 37.81 81.53

2

1 12.90 21.35 19.53 17.35 36.12
2 15.12 24.02 23.00 20.02 41.66
3 16.46 25.35 25.93 24.02 46.51
4 17.79 27.13 27.85 27.13 50.64 *
5 19.57 29.36 30.25 28.47 54.50 *
6 20.91 32.47 33.14 31.14 59.66 *
7 23.13 34.70 35.50 32.47 63.67 *
8 24.47 36.48 37.01 34.25 66.87
9 28.02 38.25 38.61 36.03 70.98
10 29.36 38.70 40.83 38.70 74.33
11 32.47 42.70 47.91 40.03 82.32

3

1

1 16.90 20.02 17.13 16.46 35.36
2 18.24 22.24 21.57 17.35 39.92
3 21.80 26.24 24.78 20.46 46.87
4 22.69 28.02 25.71 21.80 49.36
5 24.02 30.25 28.16 24.02 53.50 *
6 24.91 32.92 30.43 26.69 57.81 *
7 26.69 34.70 37.01 28.91 64.20 *
8 29.80 37.37 39.32 32.03 69.69
9 31.14 38.70 41.06 32.92 72.36
10 33.81 41.37 43.55 35.59 77.57
11 36.92 44.04 44.04 38.70 82.09

2

1 15.57 12.01 14.10 11.12 26.63
2 16.90 17.79 16.81 13.34 32.61
3 20.02 20.02 17.39 18.68 38.12
4 21.35 20.91 19.79 18.68 40.42
5 22.69 22.69 22.24 22.24 44.93
6 24.02 27.13 23.62 24.02 49.48 *
7 24.47 27.58 26.47 23.58 51.14 *
8 27.58 30.25 27.00 23.58 54.41 *
9 32.92 33.36 33.72 31.14 65.60
10 32.92 36.48 33.36 33.36 68.12
11 35.59 36.92 35.85 34.70 71.54
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Table 3.3: Load configurations for Linerboard, units (N)

Used
VFM Load for

Specimen Test Configuration F1 F2 F3 F4 norm(Fi) identification

1

1

1 16.90 18.24 15.88 16.46 33.78
2 20.02 23.13 20.73 19.57 41.81
3 21.80 27.13 23.44 22.69 47.70 *
4 23.13 30.25 26.20 24.47 52.30 *
5 27.13 35.14 33.45 27.58 62.05 *
6 31.58 39.59 36.74 32.92 70.70 *
7 34.70 43.59 40.70 35.14 77.43 *
8 38.25 47.60 44.75 37.37 84.42
9 38.70 52.93 48.26 40.03 90.73
10 45.37 58.27 55.07 42.26 101.35
11 48.49 60.94 57.56 44.93 106.75

2

1 19.57 23.58 25.18 20.91 44.83
2 21.80 26.24 31.14 20.91 50.70 *
3 25.80 32.92 37.68 24.91 61.56 *
4 28.91 38.25 43.28 28.02 70.41 *
5 31.14 41.37 43.95 29.80 74.17 *
6 35.59 44.93 48.53 33.81 82.36
7 39.14 50.26 49.69 38.25 89.39
8 43.15 52.04 54.58 40.92 96.04
9 44.93 56.05 58.00 41.37 101.17
10 50.26 62.28 66.59 47.60 114.47
11 58.27 70.28 73.17 55.16 129.35

2

1

1 22.69 22.69 20.95 23.58 44.99
2 28.91 30.69 26.64 26.69 56.57
3 28.91 31.14 29.58 27.13 58.45 *
4 28.02 31.58 31.67 29.80 60.61 *
5 29.80 35.59 35.94 33.81 67.74 *
6 29.80 40.48 39.54 36.92 73.85 *
7 35.59 42.70 41.15 38.70 79.25 *
8 36.03 46.26 46.17 41.81 85.55
9 40.48 48.04 49.11 44.48 91.31
10 45.37 51.60 51.64 48.04 98.47
11 48.04 60.94 55.91 52.04 108.89

2

1 13.34 16.01 13.52 11.57 27.41
2 17.35 21.35 18.68 15.57 36.72
3 21.80 27.13 22.73 17.79 45.22
4 23.13 31.14 25.58 20.46 50.77 *
5 27.58 34.70 29.67 23.13 58.14 *
6 29.36 37.37 30.87 28.02 63.22 *
7 32.47 40.48 33.32 30.25 68.69 *
8 34.70 43.59 38.97 32.92 75.54 *
9 35.59 50.26 42.57 36.48 83.28
10 39.59 53.82 49.38 40.03 92.22
11 42.26 57.83 51.02 43.15 97.95

3

1

1 18.68 17.35 16.59 17.35 35.02
2 21.35 21.35 20.95 22.69 43.19
3 24.47 26.24 24.60 22.24 48.86 *
4 27.58 30.69 29.18 26.69 57.15 *
5 29.36 32.47 31.63 33.81 63.71 *
6 32.92 35.14 36.92 35.59 70.34 *
7 35.14 40.48 39.81 41.37 78.55 *
8 40.03 42.26 41.64 43.59 83.80
9 44.93 47.60 47.37 48.04 94.00
10 49.82 50.71 52.04 52.04 102.33
11 53.38 58.27 56.67 54.71 111.58

2

1 16.01 13.79 15.75 11.12 28.60
2 19.13 18.24 19.13 12.46 34.92
3 21.35 21.80 22.55 14.68 40.68
4 28.91 29.36 27.58 17.79 52.68
5 30.69 31.14 31.09 20.46 57.42 *
6 32.47 33.81 35.32 23.58 63.25 *
7 35.59 38.25 39.59 25.80 70.45 *
8 40.03 43.15 46.22 32.03 81.40
9 48.04 51.15 51.96 36.92 94.80
10 50.71 56.49 56.14 41.81 103.26
11 54.27 61.83 60.99 47.60 112.93
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(a) ε1 with no forces applied, stan-
dard deviation = 0.02 mm/m.

(b) ε2 with no forces applied, stan-
dard deviation = 0.03 mm/m.

(c) ε6 with no forces applied, stan-
dard deviation = 0.06 mm/m.

(d) ε1 with Load Condition 1, stan-
dard deviation = 0.07 mm/m.

(e) ε2 with Load Condition 1, stan-
dard deviation = 0.03 mm/m.

(f) ε6 with Load Condition 1, stan-
dard deviation = 0.06 mm/m.

(g) ε1 with Load Condition 5, stan-
dard deviation = 0.05 mm/m.

(h) ε2 with Load Condition 5, stan-
dard deviation = 0.05 mm/m.

(i) ε6 with Load Condition 5, stan-
dard deviation = 0.13 mm/m.

Figure 3.11: DIC strains for (a)-(c) no applied forces, (d)-(f) Linerboard, Specimen 1,
Test 1, Load Configuration 1 (g)-(i) Linerboard, Specimen 1, Test 1, Load Configuration

5; units for scale (mm/m). Specimen diameter = 24.5 cm.

I1 = Q11 +Q22 + 2Q12

I2 = Q66 −Q12

(3.9)
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φ = − Q16

Q11 −Q12 − 2Q66
− Q26

Q22 −Q12 − 2Q66
(3.10)

The 1-principal direction was nearly vertical (y-axis in Figure 3.1) for all tests so

Q22 > Q11; this specimen orientation was intentionally used to develop more strain

in the stiffest direction because the y-axis is bracketed by load grips while the x-axis is

bracketed by a load and stationary grip.

VFM identified Q11 and Q22 were generally larger than those determined by tensile

tests and smaller than those identified ultrasonically and suggests that some nonlinear

behavior was present. Ultrasonic identification of Q12 is difficult and the values given

in Table 3.4 are larger than expected, especially when Poisson’s Ratios are compared.

Important considerations for ultrasonic measurements are that Q66 and Q12 are coupled

and so errors in Q66 are propagated to Q12 and that Q12 has a smaller contribution to

the phase velocity than Q11 and Q22. Comparison of the invariants, I1 and I2, shows

good agreement between VFM and tensile values while individual specimen ultrasonic

values were higher for I1 and lower for I2.

Filter had general agreement with Q11 and Q22 among the tests, while Q12 and Q66

were lower for VFM identification than for ultrasonic or tensile tests. For an orthotropic

material Q12 is the most difficult to identify using inverse methods [1]. However the

consistently lower values for Q12 and the general agreement of the invariants suggest

that the secant Q12 may be lower than Q12 identified with other methods. Differences

between identification methods were more apparent for Linerboard. Q11 and Q22 were

comparable for VFM and ultrasonic tests and were higher than for tensile tests. Those

results agree with differences between secant and tangent modulus for nonlinear ma-

terials. As with Filter, the invariants of VFM and tensile were more similar than for

ultrasonic tests. In general, the pattern of differences between Qij from each identi-

fication method were expected given that both materials have nonlinear behavior and

sufficient strain is required to provide reasonable identification.

The combination of Q16, Q26 and φ values near zero suggest that both materials were

orthotropic. Linerboard, Specimen 3, Test 2 demonstrates rotated orthotropy because

it had non-zero shear-coupled stiffnesses but near zero φ value. This particular test indi-

cated the specimen was rotated 7.4◦ within the load fixture. Using stiffness transforma-

tion, the values for Q22, Q11, Q12, and Q66 are 11.32, 5.61, 0.95, and 2.97 respectively,

and have better agreement with Qij associated with Test 1 of that specimen.
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Table 3.4: Comparison of different methods for evaluating Qij ; units for Qij , I1 and
I2 are km2/s2; units for φ are degrees

Material Specimen Test Q11 Q22 Q12 Q66 Q16 Q26 I1 I2 φ

Filter

1

VFM-Test1 2.59 6.16 0.92 1.34 -0.12 -0.21 10.6 0.4 -0.04
VFM-Test2 2.74 6.24 0.77 1.53 -0.08 0.16 10.5 0.8 -0.14
Ultrasonic 3.29 6.91 2.21 1.68 -0.30 -0.05a 14.6 -0.5 -0.09

Tensile 3.09 5.13 1.31 1.47 N/A N/A 10.8 0.2 N/A

2

VFM-Test1 2.85 6.10 0.79 1.17 -0.07 -0.38 10.5 0.4 -0.12
VFM-Test2 2.59 7.46 1.07 1.39 -0.09 -1.10 12.2 0.3 0.23
Ultrasonic 3.28 7.05 2.08 1.68 -0.18 -0.04a 14.5 -0.4 -0.06

Tensile 2.98 5.70 1.35 1.53 N/A N/A 11.4 0.3 N/A

3

VFM-Test1 2.90 8.41 1.07 1.38 -0.05 -0.42 13.5 0.3 0.04
VFM-Test2 3.45 6.40 1.10 1.08 0.03 -0.33 12.1 0.0 -0.05
Ultrasonic 3.24 6.94 2.34 1.68 -0.14 0.03a 14.9 -0.7 -0.08

Tensile 3.06 5.63 1.28 2.78 N/A N/A 11.3 1.5 N/A

Linerboard

1

VFM-Test1 4.38 12.32 1.77 2.57 -0.14 0.42 20.2 0.8 -0.13
VFM-Test2 3.82 11.86 1.43 2.75 -0.26 -0.05 18.5 1.3 -0.07
Ultrasonic 5.16 12.42 4.63 2.51 -0.11 -0.22 26.8 -2.1 0.05

Tensile 3.81 8.80 1.40 3.56 N/A N/A 15.4 2.2 N/A

2

VFM-Test1 6.07 13.82 2.16 3.21 -0.48 0.17 24.2 1.1 -0.22
VFM-Test2 5.16 13.66 1.91 2.71 0.16 -0.04 22.6 0.8 0.08
Ultrasonic 5.13 12.87 4.16 2.50 -0.17 -0.10 26.3 -1.7 -0.02

Tensile 3.83 9.45 1.49 3.09 N/A N/A 16.3 1.6 N/A

3

VFM-Test1 5.46 11.16 1.41 2.10 0.02 -0.72 19.4 0.7 0.26
VFM-Test2 4.65 11.19 1.49 3.51 -0.46 1.67 18.8 2.0 -0.74
Ultrasonic 5.05 13.13 4.68 2.51 0.04a -0.07a 27.5 -2.2 0.03

Tensile 5.67 8.20 1.91 2.18 N/A N/A 17.7 0.3 N/A

aNot statistically different from 0 at 95% confidence interval

Test repetition was used to demonstrate repeatability of results. As shown in Figure 3.8,

applied forces produced similar strains for the first and second tests of each specimen.

Table 3.4 show good repeatability of Qij for each replication. Differences can be justified

by a small specimen rotation disagreement between tests, as discussed previously, or

by some specimen damage caused by unintentional plastic deformation. Specifically,

damage seems to have occurred during tests of Linerboard, Specimens 1 and 2 because

Qij for Test 1 were higher than for Test 2.

Parameter identification by inverse methods is improved by using the experimentally

measured data to determine the fewest possible parameters. Since our identification re-

sults indicate both materials were orthotropic it is appropriate to examine the possibility

that the materials were ’special’ orthotropic in which Q66 is independent of orientation

angle, as most recently discussed by Ostoja-Starzewski and Stahl [74] and predicted for

other composite materials by Vannucci [75]. For materials of this type the normal four

orthotropic constitutive parameters are reduced to three according to Equation 3.11,
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where E11, E22, ν12, and ν21 can be expressed in terms of Q11, Q22, and Q12. Fig-

ure 3.12 compares the identified Q66 with Qs66 as determined by Equation 3.11, where

those parameters were determined by rotating the VFM-identified Qij to their principal

directions. Figure 3.12 suggests that Filter and Liner may be special orthotropic, but

additional testing would be required for more definitive affirmation.

1

Qs66

=
1 + ν12

E11
+

1 + ν21

E22
(3.11)

Figure 3.12: Examination of angular independence of Q66; line denotes Q66 = Qs
66

and is not a fit to the data.

3.10 Conclusion

A new load fixture and VFM parameter identification process applicable to general

anisotropic sheet materials have been created. This process improves parameter identi-

fication in cases where material principal directions are not known a priori or specimen

fabrication is not aligned with material principal directions.

An overview was presented of the manner in which this new load fixture can be used for

parameter identification. Future use of this fixture will quantify the effect of specimen

orientation and load configuration on identified parameters, similar to that performed

by Pierron et al. [76] and Rossi and Pierron [77] on the unnotched Iosipescu specimen

geometry. Some combination of orientation and load configuration may provide optimum

strain contours to improve identification and reduce noise effects.
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This work extended VFM identification to general anisotropic sheet materials and in-

troduced a novel load fixture designed to produce the necessary strain fields. DIC was

used to investigate full-field strains under a variety of multi-axial load configurations for

two different paper materials. Quantification of nonlinear constitutive behavior, quality

of parameter identification, and examination of the effect of VFM mesh density were

performed. For each material, VFM-evaluated Qij were repeatable and compared favor-

ably with those determined by ultrasonic and tensile coupon tests. A multi-step process

is provided to improve VFM parameter identification through recognition of orthotropy

and to recognize independence of angular orientation of Q66.
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Chapter 4

Stiffness identification of

simulated heterogeneous

materials with VFM

4.1 Introduction

In Chapter 3 identification of anisotropic Qij with VFM was validated by performing

experiments and comparing the identification with those determined by ultrasonic and

tensile tests. It is not feasible to perform a similar validation for heterogeneous mate-

rials because material fabrication is an important component of the analysis. Use of

numerically simulated materials eliminates that component and provides greater confi-

dence that the identification algorithms are effective. This chapter describes validation

of VFM parameter identification on numerically simulated heterogeneous materials.

Pierron and Grédiac [1] have used simulated tests and materials to develop optimal

test geometry for parameter identification. Rossi and Pierron [77] have created a test

simulator that numerically reproduces the entire measurement and analysis process to

find the best compromise between experiment variables. Devivier et al. [78] numerically

simulated damage in composite materials to validate a detection algorithm.

The objective of this chapter is to verify analysis procedures used to identify local

stiffnesses in heterogeneous materials. Because the precise nature of stiffness gradients

in cellulose materials is unknown procedures were developed that range from broad

scope identification to a narrow scope. Heterogeneous materials were simulated with
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FEM models and their local stiffnesses were determined. These analyses were used to

characterize systematic error in identification, benefits of one method over another and

validation of the proposed methods. Accuracy and resolution were addressed directly,

where possible, and indirectly in other cases.

The overall goal of this thesis is the characterization of the heterogeneity of paper.

Whether paper is used as a structural material, for communicating a message in print

or a moisture barrier it is generally not sold directly to the consumer. Instead, paper

is usually sold to a converter who adds value to the paper through specific processes.

The integrity of the paper is critical for the converter and quality issues are discovered

in their converting processes. These processes not only require a certain paper quality

but also uniformity of quality. As stated by Bristow and Kolseth in [79]‘Uniformity of

quality depends on uniformity of structure.’

The inability to relate physical properties, e.g. mass and fiber orientation, and mechan-

ical properties provides an important motivation for this work. The primary focus of

paper structure has been on mass uniformity, e.g. [80]. However, local fiber orientation

varies throughout paper and the manner of variation depends on papermachine vari-

ables [81]. Enomae et al. [82] measured macroscopic fiber orientation and found that

fiber orientation did not, in general, agree with ultrasound-measured anisotropy. These

works suggest three different types of heterogeneity in paper materials, mass-based,

mass-based with non-uniform fiber orientation and stiffness-based but uncorrelated to

any mass-based heterogeneity. Therefore, parameter identification algorithms should be

constructed cognizant of these types of heterogeneity.

Improvements in DIC coupled with VFM analyses provide a new opportunity to inspect

local stiffness behavior independent of mass variation. This work focuses on development

of VFM analyses appropriate of heterogeneous evaluation of materials.

4.2 Application of VFM to heterogeneous materials

Three modifications to previous VFM analyses are presented for the purpose of hetero-

geneity characterization. The PVW (Equation 3.1 for 2-D case) provides the basis for

use of VFM to examine heterogeneous materials.
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4.2.1 Location of inclusion known a priori

Assume that the region S in Equation 3.1 contains an inclusion whose location and

boundaries are known. If S = S1 ∪ S2, where S2 is the inclusion region and S1 is all of

S outside S2, then PVW can be rewritten as

∫
S1

(σ1ε
∗
1 + σ2ε

∗
2 + σ6ε

∗
6) dS1 +

∫
S2

(σ1ε
∗
1 + σ2ε

∗
2 + σ6ε

∗
6) dS2 =

∫
Lf

T̄iu
∗
i dl (4.1)

Accordingly, if k inclusions exist within S, then the left hand side of Equation 4.1 would

contain k + 1 integral terms, where the +1 refers to the region not contained in the in-

clusions, i.e. the matrix material. For simplicity, the following development will assume

only a single inclusion, but the development for multiple inclusions is straightforward.

If S1 and S2 are assumed to be comprised of different linear elastic anisotropic materials

then Qij are constants and can be placed outside the integrals in 4.1. Using Qkij , where

k = 1, 2 denotes region S1 or S2 the new equilibrium equation becomes

Q1
11

∫
S1

ε1ε
∗
1dS1 +Q1

22

∫
S1

ε2ε
∗
2dS1 +Q1

12

∫
S1

(ε1ε
∗
2dS1 + ε2ε

∗
1) dS1 + · · ·

· · ·+Q1
16

∫
S1

(ε1ε
∗
6 + ε6ε

∗
1) dS1 +Q1

26

∫
S1

(ε2ε
∗
6 + ε6ε

∗
2) dS1 +Q1

66

∫
S1

ε6ε
∗
6dS1 + · · ·

Q2
11

∫
S2

ε1ε
∗
1dS2 +Q2

22

∫
S2

ε2ε
∗
2dS2 +Q2

12

∫
S2

(ε1ε
∗
2 + ε2ε

∗
1) dS2 + · · ·

· · ·+Q2
16

∫
S2

(ε1ε
∗
6 + ε6ε

∗
1) dS2 +Q2

26

∫
S2

(ε2ε
∗
6 + ε6ε

∗
2) dS2 +Q2

66

∫
S2

ε6ε
∗
6dS2 = · · ·

· · · =
∫
Lf

T̄iu
∗
i dl

(4.2)

While no limit on the number of Sk exists, Qkij identification requires sufficient strain

data, εi, for each region. Practical experience in this work has shown unstable identifi-

cation for k > 5.

Additional development of VFM for cases in which inclusion location and geometry are

known corresponds to work in Section 3.5.
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4.2.2 Qij varies spatially

If the material is assumed to be heterogeneous, but the nature of the heterogeneity is

unknown, the Qij can be approximated by a spatially varying function such as Qij =

fij(x, y) where x, y represent coordinate location within the material. Here a polynomial

is used to describe Qij as follows

Q11 =
n+1∑
i=1

n+1∑
j=1

αij11(
x1

R
)i−1(

x2

R
)j−1

Q22 =

n+1∑
i=1

n+1∑
j=1

αij22(
x1

R
)i−1(

x2

R
)j−1

Q12 =
n+1∑
i=1

n+1∑
j=1

αij12(
x1

R
)i−1(

x2

R
)j−1

Q66 =

n+1∑
i=1

n+1∑
j=1

αij66(
x1

R
)i−1(

x2

R
)j−1

Q16 =
n+1∑
i=1

n+1∑
j=1

αij16(
x1

R
)i−1(

x2

R
)j−1

Q26 =

n+1∑
i=1

n+1∑
j=1

αij26(
x1

R
)i−1(

x2

R
)j−1,

(4.3)

where R is the radius of the circular specimen used for examination.

Equation 4.3 is written specifically for this work; a more general formulation would

include different polynomial order for x1 and x2 variation and for each Qij . This work

uses a fourth order polynomial, i.e. n = 4, unless otherwise specified. The αijkl are

constants and can be placed outside the integrals; Equations 3.2 and 4.3 are substituted

into Equation 3.1 to create a VFM for a polynomial Qij as
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n+1∑
i=1

n+1∑
j=1

αij11

∫
S

(x1

R

)i−1 (x2

R

)j−1
ε1ε
∗
1dS+ · · ·

· · ·+
n+1∑
k=1

n+1∑
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αkl22

∫
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(x1

R

)k−1 (x2

R
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ε2ε
∗
2dS+ · · ·

· · ·+
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αpq12

∫
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R

)p−1 (x2

R
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∗
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∗
1) dS+ · · ·

· · ·+
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n+1∑
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αrs16

∫
S

(x1

R

)r−1 (x2
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(ε1ε

∗
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∗
1) dS+ · · ·

· · ·+
n+1∑
t=1

n+1∑
u=1

αtu26

∫
S

(x1

R

)t−1 (x2

R

)u−1
(ε2ε

∗
6 + ε6ε

∗
2) dS+ · · ·

· · ·+
n+1∑
v=1

n+1∑
w=1

αvw66

∫
S

(x1

R

)v−1 (x2

R

)w−1
ε6ε
∗
6dS+ · · ·

=

∫
Lf

T̄iu
∗
i dl

(4.4)

Additional development of VFM for cases in whichQij vary spatially corresponds to work

in Section 3.5. The polynomial Qij formulation of VFM is used to estimate location of

inclusions and stiffness variation within a specimen.

4.2.3 Equilibrium gap

A further development in the virtual fields method [78] comes from the understanding

that PVW can also be used to examine local equilibrium. A similar procedure has been

used to examine errors in FEM modeling [83]. Discrepancies in local equilibrium are

‘equilibrium gaps’ and can be used to locate boundaries of regions which are not in

equilibrium with each other when material homogeneity is assumed.

Equation 3.3 can be written as:

Q11

∫
S
ε1ε
∗
1dS +Q22

∫
S
ε2ε
∗
2dS +Q12

∫
S

(ε1ε
∗
2 + ε2ε

∗
1) dS +Q16

∫
S

(ε1ε
∗
6 + ε6ε

∗
1) dS+ · · ·

· · ·+Q26

∫
S

(ε2ε
∗
6 + ε6ε

∗
2) dS +Q66

∫
S
ε6ε
∗
6dS −

∫
Lf

T̄iu
∗
i dl = 0

(4.5)
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Equation 4.5 describes the equilibrium of a region S, where S is a portion of a larger

region. If all Qij are known and u∗ are kinematically admissible then summation of the

integrals should be zero; a non-zero result is termed to be an ‘equilibrium gap.’

A piecewise approach to the virtual fields was used with four elements, as shown in

Figure 4.1. The four elements cover a region under inspection. The inspection window,

comprised of the 4 virtual elements, is rastered, horizontally and vertically, across the

entire specimen. Two parameters can be adjusted to produce different types of EG

maps, the number of data points in each element and the movement of the inspection

window to the next location. For this work two different window sizes were used; each

virtual element contained 4 simulated-DIC data points (2 points horizontally x 2 points

vertically) or 25 simulated-DIC data points (5 points x 5 points). The inspection window

was moved by a single simulated-DIC row or column.

1

2

3

4

5

6

7

8

9

x

y

Figure 4.1: Four virtual elements used in EG analysis.

All virtual degrees of freedom for nodes on the edge of the inspection window are set

to zero, i.e. nodes 1, 2, 3, 4, 6, 7, 8, 9. This process eliminates all work of external

forces on the window boundary. Node 5 is subject to a horizontal displacement fixed at
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u = 1. Equation 4.5 is discretized using summations and the equilibrium gap contour is

determined by sliding the window over the entire specimen.

4.3 Model Geometry

Model geometry was based on work in the previous chapter in which a circular specimen

under multiaxial force produced heterogeneous strain fields for determination of the six

anisotropic Qij . The same model is used here and is shown in Figure 4.2. Forces and

fixed positions are 45◦ apart and are offset from the global coordinates by 22.5◦. The

150 N forces were chosen based on estimated total forces of the superposition tests used

in Chapters 3 and 5. The appropriateness of the geometry will be demonstrated to be

independent from the load configuration to demonstrate the ability of VFM to identify

hetergeneous Qij .

150 N

150 N150 N

150 N

x

y

22.5◦

45◦

Figure 4.2: Schematic of model used for simulations.

4.4 Simulated Materials

A simulated heterogeneous material with four inclusions, regions of stiffness different

from surrounding material, was created in a quasi-random process. Heterogeneities were

assumed to be inclusions shaped as ellipses with a 2:1 ratio of major to minor axis. The

2:1 ratio was selected based on expected ratio in paper materials. Length of major axis
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of the ellipse was allowed to vary within a range so that the area of the heterogeneity was

never larger than 8% of the total specimen area. Orientation of the ellipses was allowed to

vary ±10◦; location was allowed to vary with the requirement that the heterogeneities lay

completely within the specimen with no overlapping heterogeneous regions. Orientation

of the principal material direction was allowed to vary with respect to the surrounding

material. Two additional materials were created by choosing a single inclusion from the

first simulated material, either hard (stiff) or soft (compliant), but inclusion size was

allowed to increase up to 8% maximum of total specimen area.

(a) Material 1 with a single soft in-
clusion.

(b) Material 2 with a single hard in-
clusion.

(c) Material 3 with two soft inclu-
sions (gray) and two hard inclusions
(white).

Figure 4.3: Simulated materials showing size and location of inclusions.

Figure 4.3 shows the materials with locations and sizes of inclusions used in this work.

Material 1, Figure 4.3(a), represents a material with a soft inclusion; the inclusion had

moduli E11, E22, and G12 set to 75% of those in the surrounding material, called the

matrix. Poisson’s Ratio, ν12, was the same for both the inclusion and the matrix.

Principal material direction for inclusion was rotated 11.66◦ to that of the matrix. Area

of the inclusion was 6.20% of the total specimen area and the orientation of the inclusion

was rotated 10.28◦ with respect to the global coordinate axes.

Material 2, Figure 4.3(b), represents a material with a hard inclusion; the inclusion had

moduli E11, E22, and G12 set to 125% of those in the matrix. Poisson’s Ratio, ν12, was

the same for both the inclusion and matrix. Principal material direction for inclusion

was rotated -3.32◦ to that of the matrix. Area of the inclusion was 5.55% of the total

specimen area and the orientation of the inclusion was rotated 4.55◦ with respect to the

global coordinate axes.

Material 3, Figure 4.3(c), represents a material with soft and hard inclusions; both soft

inclusions, denoted in gray, had the same moduli E11, E22, and G12 which were set to
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70% of those in the matrix. Principal material directions for the soft inclusions were

rotated 11.66◦ to that of the matrix. Both hard inclusions, denoted in white, had the

same moduli E11, E22, and G12 which were set to 130% of those of the matrix. Principal

material directions for the hard inclusions were rotated -3.32◦ to that of the matrix.

Area of the smaller soft inclusion was 2.75% of the total area and the orientation of the

inclusion was rotated 10.28◦ with respect to the global coordinate axes; the larger soft

inclusion was 7.60% of the total area and the orientation of the inclusion was rotated

5.17◦ with respect to the global coordinate axes. Area of the smaller hard inclusion

was 1.36% of the total area and the orientation of the inclusion was rotated 4.55◦ with

respect to the global coordinate axes; the larger hard inclusion was 2.47% of the total

area and the orientation of the inclusion was rotated 18.81◦ with respect to the global

coordinate axes. Poisson’s Ratio, ν12, was the same for all inclusions and the matrix.

4.5 FEM analysis

A FEM model was created in ANSYS R© using the PLANE82, 6-node triangular element,

in plane stress. This element was chosen because it is well-suited to modeling curved

boundaries of the specimen and inclusions. Mesh was freely-mapped; inclusions were

initially meshed and then surrounding matrix material. Mesh density was high with

over 108K elements for each of the materials in Figure 4.3 and was established with a

mesh convergence study performed for fixture geometry validation.

Figures 4.4-4.6 show the results of the FEM analysis for each material, using the load

configuration shown in Figure 4.2. Inclusions were hardly noticeable in displacement

contour plots, but were evident on strain contour plots.

The strain contours showed significant gradients, especially near the grip locations. Each

material had small ε1 and ε6 over a large portion of the specimen. Because of these small

strains parameter identification was greatly influenced by the grip regions.

4.6 Numerical implementation of VFM for heterogeneous

materials

Numerical implementation was performed in Matlab R© and was based on analysis in

Chapter 3 for homogeneous materials. Extension of that analysis for a single inclusion,



59

(a) u, units (mm). (b) v, units (mm).

(c) ε1, units (mm/m). (d) ε2, units (mm/m). (e) ε6, units (mm/m).

Figure 4.4: FEM displacements and strains for Material 1.

(a) u, units (mm). (b) v, units (mm).

(c) ε1, units (mm/m). (d) ε2, units (mm/m). (e) ε6, units (mm/m).

Figure 4.5: FEM displacements and strains for Material 2.

Equation 4.2 required 12 special, optimized virtual fields for the 6 Qij of the matrix

and the 6 Qij of the inclusion. Similarly, modifications of G (Equation 3.5), the noise

optimization matrix, were made for the inclusions.

Polynomial formulation for Qij used a fourth order polynomial, n = 4 unless otherwise
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(a) u, units (mm). (b) v, units (mm).

(c) ε1, units (mm/m). (d) ε2, units (mm/m). (e) ε6, units (mm/m).

Figure 4.6: FEM displacements and strains for Material 3.

specified, and required the identification of 150 α’s, ((n + 1)2 · 6) and, therefore, 150

special, optimized virtual fields. Limit of order of the polynomial must be examined on

a case-by-case basis. For these simulations the identification started to become unstable

at n = 6, but other simulations, used for preliminary work and not included here, were

stable up to n = 8. Here, the polynomial formulation was intended to show the existence

of heterogeneities and a high polynomial order adds little information.

The EG analysis was performed by using the same analysis used in Chapter 3, i.e.

assume the material is homogeneous and determine Qij . Those Qij were then used in

the EG analysis as described in Section 4.2.3. When the sliding window covers the

boundary of the specimen the EG analysis believes a gap in equilibrium exists. Those

results were set to equilibrium, i.e. 0.

4.7 VFM Mesh density determination

The objectives for this portion of the work were to demonstrate the systematic error

of the simulation and to determine an appropriate VFM mesh density for subsequent

simulations. The systematic error consists of combined errors of the FEM analysis,

discrete summation of the integrals in Equation 4.2, numerical errors associated with

operations, including interpolation and optimization, in Matlab R©.
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While not required in practice, it was desirable to use the same virtual mesh element

for each of the analyses here in order to reduce simulation variables. Effect of different

mesh densities were examined, from 49 total VF elements to 400 total VF elements, on

accuracy of Qij identification. For this analysis no noise was added to the FEM strains,

i.e. the FEM strain were used directly in Equation 4.2 for parameter identification.

(a) Matrix Qij identification.

(b) Inclusion Qij identification.

Figure 4.7: Effect of VF mesh density on error of Qij identification for Material 1.

Figure 4.7 shows small, but increasing error for matrix Qij identification in Material 1.

As the mesh density increased, the conditioning of the optimization matrix degraded
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because additional virtual node displacements were determined that were not necessary

for the solution. Inclusion Qij identification had larger error but error stabilized after

92 elements because fewer elements did not provide sufficient degrees of freedom for

identification.

For Material 1, using 152 virtual elements, the systematic error was about 1% or less

for Q11 and Q22 in both the matrix and inclusion. Errors for the other Qij were slightly

higher, but quite low for the matrix.
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(a) Matrix Qij identification.

(b) Inclusion Qij identification.

Figure 4.8: Effect of VF mesh density on error of Qij identification for Material 2

Figure 4.8 shows small errors for Material 2 matrix Qij identification, similar to Ma-

terial 1, which increased with mesh density. The y-scale for inclusion Qij error was

reduced to better show the error greater mesh density. For Material 2 inclusion identi-

fication did not stabilize until 142 elements. Identification error for the hard inclusion

in Material 2 was larger than for the soft inclusion in Material 1. The primary factor

creating identification error was due to less strain in the inclusion as seen in Figure 4.5.
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In particular, ε6 was smaller in the hard inclusion than surrounding matrix which cre-

ated the large identification errors for Q66, Q16, Q26. Another contributing factor was

that the hard inclusion in Material 2 was smaller than the soft inclusion in Material 1.

Both factors combined to reduce the magnitude and quantity of the strain data. While

the identification error in the inclusion is high, the errors associated with 152 elements

are less than 3% for Q11, Q22, Q12 and Q66.
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(a) Matrix Qij identification.

(b) Soft inclusions: Qij identification.

(c) Hard inclusions: Qij identification.

Figure 4.9: Effect of VF mesh density on error of Qij identification for Material 3.
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Figure 4.9 shows identification error for Material 3 which had two soft and two hard

inclusions. Material 3 had good identification at all mesh densities for the matrix and

soft inclusions. But, like the hard inclusion in Material 2, the hard inclusion in Material 3

required a slightly greater mesh density, up to 142 elements, before identification error

became stable. The physical separation of the soft inclusions did not adversely affect

identification, in fact, the greater proportional area of the soft inclusions in Material 3 as

compared to the single soft inclusion in Material 1 tended to improve inclusion parameter

identification, as seen in Figures 4.7(b) and 4.9(b).

Systematic identification error for Material 3 was less than 5% for the matrix and soft

inclusions and for Q11 and Q22 in the hard inclusions. Error for Q12 in the hard inclusion

was slightly higher. Inability to accurately identify those stiffnesses associated with

shear, Q66, Q16 and Q26, is related to several factors, including specific load condition,

location and size of inclusions and simulation parameters. For paper materials, large

stiffness gradients are unlikely to occur; a more gradual gradient is expected.

Based on error analysis the 225 element (152) virtual element mesh shown in Figure 4.10

was used for all subsequent analyses. This mesh does not have uniform element size.

The outer boundary of elements had larger aspect ratios to accommodate grip and force

application nodes. Most interior elements are square except for those which have a

boundary colinear with a grip or force application nodes.

Elements completely outside the specimen boundary (blue circular line) do not con-

tribute to parameter identification. Those elements which straddle the specimen bound-

ary only have a contribution for the portion inside the boundary. Nodes outside the

boundary had no displacements conditions specified.

4.8 Simulation of experimental data

In order to simulate experiment strain data, different levels of noise were added to the

FE strains shown in Figures 4.4-4.6. Random Gaussian noise with zero mean value was

added to strain data at ten different, equally-spaced, standard deviations with the largest

standard deviation as 0.9 mm/m. This maximum noise level was large compared to the

calculated FE strains and represented three times the standard deviation of the DIC

strain determined from two consecutively captured no-load specimens from earlier work.

A single standard deviation, 0.3 mm/m strain, represents resolution of the DIC system

and is specific to DIC pattern, lighting, cameras and their settings, and DIC analysis
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F1

F2F3

F4

Figure 4.10: Virtual element mesh used; 225 elements.

including any data smoothing. Ten randomizations of noise addition were performed for

each noise level. Figure 4.11 shows an example random strain noise addition to Material

1, where the strain noise was the largest possible, i.e. 0.9 mm/m. At this noise level the

soft inclusion was obscured in the strain maps, Figures 4.11(d) and 4.11(e).

(a) FEM ε1, units (mm/m). (b) FEM ε2, units (mm/m). (c) FEM ε6, units (mm/m).

(d) Noisy ε1, units (mm/m). (e) Noisy ε2, units (mm/m). (f) Noisy ε6, units (mm/m).

Figure 4.11: FEM strains for Material 1 with no noise (top row) and with noise
addition (bottom row).
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4.8.1 Inclusion location and geometry known

Given the location and geometry of inclusion or inclusions Equation 4.2, or modified

version to include an additional region S3, was used for parameter identification. One

hundred simulations were performed (10 noise levels x 10 randomizations of white noise

for each noise level) for each material.

Table 4.1: Comparison of identified Qij for Material 1 when inclusion location is
known. Units for Qij are km2/s2

Q11 Q22 Q12 Q66 Q16 Q26

Matrix

Reference 3.49 3.49 0.95 1.35 0.64 0.64
Mean VFM 3.49 3.51 0.95 1.36 0.64 0.65
Error(%) -0.10 0.46 0.38 1.04 -0.06 1.51
COV (%) 0.01 0.02 0.05 0.02 0.04 0.03

Inclusion

Reference 2.24 3.01 0.70 1.00 0.42 0.46
Mean VFM 2.21 2.99 0.73 1.01 0.43 0.47
Error(%) -1.39 -0.73 4.12 1.35 1.39 0.93
COV(%) 0.24 0.23 1.02 0.59 0.60 0.42

Table 4.1 shows identification results for Material 1. Reference values denote those used

in FEM modeling. Mean VFM are the mean of the identifications of the 100 simulations.

Error shows % difference between Reference and Mean VFM identifications and is the

accuracy of the method. This accuracy does not include errors caused by interpolation,

smoothing and other data manipulations, such as coordinate transformation. Similarly,

COV gives the coefficient of the variation of the 100 simulations and is the resolution of

the method.

The errors associated with Material 1 Qij identification were less than 2%, except for

inclusion Q12, which is the most difficult stiffness to identify using full field techniques.

Even so, the identification error for inclusion Q12 was only 4%. Q12 was also difficult

to identify in Chapter 3. The low COV’s suggest the analysis was quite stable and was

able to find the special, optimized virtual fields reliably.

An orthotropic inclusion with a different orientation of material principal properties with

respect to an orthotropic matrix will produce an ‘homogenized’ anisotropic material, i.e.

if the material is assumed to be homogeneous, as in Chapter 3, the stiffness identification

will show the material is anisotropic. Table 4.1 shows that if the inclusion location and

geometry are known the analysis can separately determine the orthotropic stiffnesses of

the matrix and inclusion.
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(a) Matrix identification error.

(b) Inclusion identification error.

Figure 4.12: Effect of orientation of material principal directions on Qij identification
for Material 1.

Orientation of material principal axes within the specimens does have a small effect on

parameter identification. For Table 4.1 orientation of matrix material principal direc-

tion was 45◦ and orientation of the inclusion principal material direction was 56.66◦.

Figure 4.12 shows identification error for matrix and inclusion of Material 1 for different

orientations of matrix material principal direction. Location and size of the inclusion

were not changed; material principal direction of the inclusion was kept at +11.66◦ with
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respect to the matrix properties. Matrix reference values for Q16 and Q26 are zero at 0◦

and 90◦ and their errors were set to 0 in Figure 4.12(a) even though small values were

identified. Matrix identification error was small for all orientations; inclusion identifica-

tion error was smallest for 30◦ but was 5% error or less for orientations above 0◦. The

consistently small error regardless of material property principal directions indicates a

level of robustness in the identification method.

(a) Effect of strain noise on matrix COV(Qij). (b) Effect of strain noise on inclusion COV(Qij).

Figure 4.13: Effect of strain noise on COV(Qij) for Material 1.

Figure 4.13 shows the COV (ηij/Qij) for each stiffness as related to added strain noise

for Material 1. The lines represent a linear correlation of the points for each respective

stiffness; symbols represent the mean value of the 10 simulations at each noise level.

Magnitude of line slope indicates the relative effect of noise on identification. The matrix

Q16, Figure 4.13(a), was more affected by noise than the other stiffnesses; Q22 was least

affected by noise. Accurate identification of Q22 was also observed in the previous

chapter and was attributed to loading geometry. For the inclusion, relative order of

influence of noise on identification was the same as the matrix, though the effect of noise

was much larger on inclusion identification. Somewhat surprisingly, identification of Q12

was more affected by noise than Q26 for both the matrix and inclusion. Determination

of Poisson’s effect is challenging in many configurations [1].

Identification results for Material 2 are shown in Table 4.2. Matrix identification was

similar to Material 1 will small errors and COVs for all Qij . Inclusion identification

had larger errors and higher COVs. Increased difficulty in identification of inclusion

Qij was not surprising considering the small strain gradients in the inclusion shown in

Figures 4.5(c)-4.5(e). Location of the hard inclusion within the matrix greatly reduced

the effects of external forces. Strains, especially ε6, transmitted by the matrix material

to the inclusion were damped within the inclusion. Consequently, identification of Q66,

Q16, and Q26 were adversely affected.
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Table 4.2: Comparison of identified Qij for Material 2 when inclusion location is
known. Units for Qij are km2/s2

Q11 Q22 Q12 Q66 Q16 Q26

Matrix

Reference 3.49 3.49 0.95 1.35 0.64 0.64
Mean VFM 3.50 3.50 0.96 1.35 0.65 0.65
Error(%) 0.29 0.15 0.71 0.33 0.71 0.87
COV (%) 0.02 0.01 0.06 0.02 0.05 0.05

Inclusion

Reference 4.55 4.18 1.19 1.68 0.81 0.79
Mean VFM 4.59 4.13 1.20 1.66 0.85 0.74
Error(%) 0.94 -1.14 1.28 -1.51 5.23 -5.75
COV(%) 0.58 0.76 1.31 3.20 3.53 4.07

(a) Effect of strain noise on matrix COV(Qij). (b) Effect of strain noise on inclusion COV(Qij).

Figure 4.14: Effect of strain noise on COV(Qij) for Material 2.

Figure 4.14 shows the COV (ηij/Qij) for each stiffness as related to added strain noise

for Material 2. Since the matrix material had similar area for Materials 1 and 2 it is

instructive to compare matrix identification for these materials in Figures 4.13(a) and

4.14(a). The y-axis in these figures is similar for both materials, except for Q12 of

Material 2 which was more affected by noise. Identification for Material 2 matrix Q11

was more affected by noise than for Material 1. This effect seems to be caused by the

reduced strain in the matrix caused by the hard inclusion. Figure 4.14(b) shows the

difficulty in identification of stiffnesses associated with shear strain, namely Q66, Q16,

and Q26. Note that error of inclusion Qij scaled with their respective COVs in Table 4.2.

Identification results for Material 3 are shown in Table 4.3. The VFM analysis under-

estimated the soft inclusion Qij , except for Q11. Figure 4.9(b) shows the identification

was stable with respect to mesh density. Hard inclusion identification error for Material

3 was large, but it is important to note that COV’s were smaller than errors. In this

case, resolution of this analysis was greater than the accuracy. This result is encouraging

because some of the error can be attributed to FEM analysis, discrete summation, noise
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Table 4.3: Comparison of identified Qij for Material 3 when inclusion locations are
known. Units for Qij are km2/s2

Q11 Q22 Q12 Q66 Q16 Q26

Matrix

Reference 3.49 3.49 0.95 1.35 0.64 0.64
Mean VFM 3.50 3.50 0.96 1.35 0.65 0.65
Error(%) 0.27 0.14 0.79 0.42 0.63 0.95
COV (%) 0.01 0.03 0.07 0.02 0.06 0.04

Reference 2.09 2.81 0.66 0.93 0.39 0.43
Soft Mean VFM 2.10 2.80 0.65 0.92 0.39 0.43

Inclusions Error(%) 0.29 -0.30 -1.45 -1.20 -0.64 -0.69
COV(%) 0.17 0.08 0.25 0.11 0.40 0.36

Reference 4.73 4.34 1.23 1.75 0.84 0.82
Hard Mean VFM 4.50 4.27 1.09 1.33 0.51 0.65

Inclusions Error(%) -4.93 -1.79 -11.58 -23.73 -39.79 -20.22
COV(%) 2.62 0.27 2.55 8.36 20.45 5.28

optimization and selected VFM mesh. Figure 4.9(c) shows that a 142 mesh would likely

have produced smaller errors.

(a) Effect of strain noise on matrix COV(Qij). (b) Effect of strain noise on soft inclusions
COV(Qij).

(c) Effect of strain noise on hard inclusions
COV(Qij).

Figure 4.15: Effect of strain noise on COV(Qij) for Material 3.

Figure 4.15 shows the COV (ηij/Qij) for each stiffness as related to added strain noise

for Material 3. Notice the large disparity in y-scale in each figure which indicates the
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relative difficulty in parameter identification; the matrix was least affected by strain

noise and the hard inclusions were most affected by strain noise. The relative difficulty

of stiffness identification was similar for the matrix and soft inclusions in that the order

of colors was similar. However, for the hard inclusion the shear-related stiffnesses were

more affected by strain noise than the other parameters.

4.8.2 Spatial variability of Qij

In order to simulate experimental data, the FE strains shown in Figures 4.4-4.6 were

interpolated to a grid, 300x300 points, meant to represent the output of DIC (digital

image correlation) analysis using the Matlab R© function TriScatteredInterp. The grid

spacing was larger than any element in the FEM model; the grid had a total of 90K

points and the FEM model had 108K+ elements, but the elements were completely

within the specimen boundary. Approximately 19K grid points, of the 90K total, laid

outside the specimen boundary. Grid size was chosen to approximate window size in

the DIC analysis in Chapter 3. Random Gaussian white noise with zero mean value was

added to gridded strain data at ten different, equally-spaced, levels with the largest level

as 0.9 mm/m. This maximum noise level was large compared to the calculated FE strains

and represented three times the standard deviation of the DIC strain determined from

two consecutively captured no-load specimens from earlier work. Ten randomizations of

noise addition were performed for each noise level. A fourth order polynomial was used to

examine the ability of a smoothly varying function to perform parameter identification.

Total number of parameters fit was 150 (25 parameters for 6 Qij) and, therefore, 150

special optimized virtual fields were required.

Figure 4.16 shows the contour maps for each Qij for Material 1. Mappings show large

gradients, narrow color contours, near and around the soft inclusion. Mappings were

created by averaging 100 αklij (10 strain noise levels x 10 randomizations/noise level).

Figure 4.17 shows contour maps of the ratio of Qij/Q
FEM
ij . Green contours indicate that

identified Qij agreed with QFEM
ij , i.e. their ratio = 1.

The polynomial mapping of Qij for Material 1 gave a general indication of size and loca-

tion of the soft inclusion. Viewing Figure 4.16 without prior knowledge of the inclusion

an analyst would infer an inclusion existed and further analysis was warranted. Fig-

ures 4.16(a) and 4.16(c) seemed to show the presence of the inclusion more dramatically

than other Qij .
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(a) Q11 for Material 1. (b) Q22 for Material 1. (c) Q12 for Material 1.

(d) Q66 for Material 1. (e) Q16 for Material 1. (f) Q26 for Material 1.

Figure 4.16: Fourth order polynomial Qij contour maps for Material 1, units km2/s2.

Figure 4.18 shows the contour maps for each Qij for Material 2. These maps do not

provide clear indication of the hard inclusion geometry and location. However, the maps

still have unusual contours that suggest presence of some foreign material.

Figure 4.19 shows contour maps of the ratio of Qij/Q
FEM
ij . The light blue color within

the inclusion location shows the polynomial formulation underestimated the inclusion

stiffnesses. As stated in the previous section with regard Material 2, identification of the

hard inclusion was made more difficult because the interior of the hard inclusion showed

less strain than the matrix material adjacent to the inclusion and its strain gradients

were small.

Figure 4.20 shows the contour maps for each Qij for Material 3. Presence of inclusions

are not apparent in these maps, but large gradients in the maps for Q11 and Q66 suggest

that analysis with a higher order polynomial should be considered. Since Figure 4.20(d)

contains a large, interior region where Q66 < 0, which is physically impossible, the 4th

order polynomial was unable to provide reasonable identification.

Figure 4.21 shows contour maps of the ratio of Qij/Q
FEM
ij for Material 3. While none

of the inclusions had good stiffness identification, the best inclusion identification was

for the large soft inclusion near bottom of specimen. Large portion of blue for Fig-

ures 4.21(c)-4.21(f) indicate large underestimation of those stiffnesses. Gradients were
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(a) Q11/QFEM
11 for Material 1. (b) Q22/QFEM

22 for Material 1. (c) Q12/QFEM
12 for Material 1.

(d) Q66/QFEM
66 for Material 1. (e) Q16/QFEM

16 for Material 1. (f) Q26/QFEM
26 for Material 1.

Figure 4.17: Ratio of Qij contour maps for Material 1 using 4th order polynomial.

smallest for Q22; Q22 is the consistently best identified stiffness given loading configura-

tion.

For Material 3 only a 5th order polynomial was used for Qij . The Qij contours are shown

in Figures 4.22 and 4.23. As expected, increasing the spatial frequency for stiffness did

not improve stiffness mapping. Errors were greater for all stiffnesses as seen when

comparing Figure 4.21, the 4th order polynomial representation, to Figure 4.23, the 5th

order polynomial representation. The 5th order polynomial consistently underestimated

stiffnesses.

4.8.3 Equilibrium Gap

Materials were assumed to be homogeneous and VFM Qij identification was performed

as in Chapter 3. The Equilibrium Gap analysis was performed with two window sizes.

Figure 4.24 shows the EG analysis for each material at two window sizes, 2x2 and 5x5.
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(a) Q11 for Material 2. (b) Q22 for Material 2. (c) Q12 for Material 2.

(d) Q66 for Material 2. (e) Q16 for Material 2. (f) Q26 for Material 2.

Figure 4.18: Fourth order polynomial Qij contour maps for Material 2, units km2/s2.

Figures 4.24(g)-4.24(i) show EG contours with addition of 0.3 mm/m of strain noise. A

smaller strain noise was added here because this is the expected noise, as determined in

Chapter 3.

Without added noise, Figures 4.24(a)-4.24(f), EG maps were able to locate inclusion

boundaries. The large soft inclusion of Material 3, Figures 4.24(c) and 4.24(f), showed

some non-equilibrium within the inclusion due to mismatch in Poisson’s Ratio between

the homogeneous VFM estimate and the actual Poisson’s Ratio in the inclusion.

Inclusion boundary colors are related to the direction of rastering during the EG calcu-

lation. If rastering direction was reversed the colors would reverse. The large regions of

green denote local equilibrium, but does not indicate accurate Qij identification. The

EG formulation given in Equation 4.5 will give the same EG mapping, though at a

different scale, independent of any Qij . If the EG window covers a region comprising

only a single material the EG contour will show the region is in equilibrium regardless

of Qij choice, because these terms cancel each other. For example, virtual displacement

of node 5 in Figure 4.1 creates virtual tensile strain, ε∗1, in two elements and exactly

equal, but opposite, compressive strain in the other two elements. Regardless of any

choice for Q11, the integral term associated with ε1ε
∗
1 is zero when the window covers a

homogeneous portion of the specimen. Similar explanations can be made for each term

in Equation 4.5.
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(a) Q11/QFEM
11 for Material 2. (b) Q22/QFEM

22 for Material 2. (c) Q12/QFEM
12 for Material 2.

(d) Q66/QFEM
66 for Material 2. (e) Q16/QFEM

16 for Material 2. (f) Q26/QFEM
26 for Material 2.

Figure 4.19: Ratio of Qij contour maps for Material 2 using 4th order polynomial.

Added strain noise, Figures 4.24(g)-4.24(i), tended to obscure inclusion boundaries.

More importantly, the added strain noise was sufficient to indicate areas of non-equilib-

rium throughout the materials, indicated by small regions of yellow and blue. Inclusion

boundaries are broken and the bottom of each material shows non-equilibrium similar to

the magnitude of inclusion boundaries. Unfortunately, stronger data smoothing erodes

Qij identification, particularly Q12.

4.9 Discussion

Systematic error was examined by direct use of FE strains in the VFM identification

procedure without addition of any artificial strain noise and was shown in Figures 4.7-

4.9. Error associated with matrix parameter identification was less than 3% for each

material. Inclusion identification had greater error, around 5% for the soft inclusions and

10% or more for the hard inclusions. These errors are reasonable considering that the
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(a) Q11 for Material 3. (b) Q22 for Material 3. (c) Q12 for Material 3.

(d) Q66 for Material 3. (e) Q16 for Material 3. (f) Q26 for Material 3.

Figure 4.20: Fourth order polynomial Qij contour maps for Material 3, units km2/s2.

only mesh variable adjusted was density. Iterative meshing which would create greater

VF node density with inclusions would further reduce systematic error.

When inclusion location and geometry are known the accuracy and resolution of VFM

parameter identification is good, as shown in Tables 4.1-4.3. Even with errors associated

with FEM analysis, discretization of integrals and noise optimization, the VFM analysis

produced results which allow discrimination between matrix and inclusion properties.

Users of this technique will be able to determine the contribution to errors from phys-

ical properties (location, geometry) and mechanical properties. Analysis of Material 3

provides an additional challenge for the material scientist, namely that they can have

confidence that two (or more) inclusions have the same mechanical properties and can

be identified as a single material.

Effect of material orientation, Figure 4.12, was small, except if the material principal

directions were aligned with global x− y axes. Generally, some physical evidence, such

as fiber alignment, or knowledge of material production, can provide an approximation

for material principal directions. Accuracy of inclusion identification was significantly

improved if material principal directions were not aligned with x− y axes in Figure 4.2.

Larger inclusions had more accurate identification than smaller inclusions. In most

cases the interaction stiffnesses, i.e. Q12, Q16 and Q26, were more difficult to identify,

with the exception being the hard inclusions in Material 3 where all Qij identifications
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(a) Q11/QFEM
11 for Material 3. (b) Q22/QFEM

22 for Material 3. (c) Q12/QFEM
12 for Material 3.

(d) Q66/QFEM
66 for Material 3. (e) Q16/QFEM

16 for Material 3. (f) Q26/QFEM
26 for Material 3.

Figure 4.21: Ratio of Qij contour maps for Material 3 using 4th order polynomial.

were greatly affected by noise. In most cases, error scaled directly with COV. This

scaling provides an additional method for evaluation of experimental results. Often

experimental accuracy determination is elusive but COV is readily available. The scaling

allows accuracy comparison between each Qij .

Characterizations of heterogeneous stiffness often include bounds on different homong-

enized stiffnesses [84]. The Reuss [85] and Voigt [86] estimates provide lower and upper

bounds on compliances and stiffnesses of heterogeneous materials. The Reuss estimate

assumes the average stress of each inclusion and the matrix is equal to the applied stress

and is given by

C = (1− f)C +

s∑
p=1

fpC
p (4.6)
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(a) Q11 for Material 3. (b) Q22 for Material 3. (c) Q12 for Material 3.

(d) Q66 for Material 3. (e) Q16 for Material 3. (f) Q26 for Material 3.

Figure 4.22: Fifth order polynomial Qij contour maps for Material 3, units km2/s2.

The Voigt estimate assumes the average strain of each inclusion and the matrix is equal

to the applied strain and is given by

Q = (1− f)Q +

s∑
p=1

fpQ
p (4.7)

where C and Q are the compliance and stiffness matrices respectively, fp is the area

fraction of the inclusion of inclusion p and f is the area fraction of all inclusions.

Table 4.4 lists the Reuss and Voigt estimates with the mean homogeneous VFM identifi-

cation and the mean polynomial stiffness for each material. For the VFM identification,

10 randomizations of 0.3 mm/m strain noise was added to FE strain data. Only a single

level of noise was added for these calculations. For these materials the Reuss and Voigt

estimates gave narrow bounds, generally less than 1% and usually even less. Therefore,

under a variety of load conditions, these materials will act as if they are homogeneous.

With the exception of one case, the homogeneous VFM identified Qij were within the

Reuss and Voigt estimates or greater than the Voight estimate. The single exception

is the Material 2, Q26. The largest disparity between the Voight and homogenized

VFM identificaton was for Material 3, Q12, just of 6%. The good agreement between

these estimate bounds and mean homogenized VFM identified Qij shows some of the

difficulty in characterization of heterogeneous materials. Materials which lack periodic
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(a) Q11/QFEM
11 for Material 3. (b) Q22/QFEM

22 for Material 3. (c) Q12/QFEM
12 for Material 3.

(d) Q66/QFEM
66 for Material 3. (e) Q16/QFEM

16 for Material 3. (f) Q26/QFEM
26 for Material 3.

Figure 4.23: Ratio of Qij contour maps for Material 3 using 5th order polynomial.

heterogeneity complicate identification because the effect of different load conditions,

whose bounds are given by the Reuss and Voigt estimates, are smaller than experimental

error.

Mean Qij of the 4th order polynomial were similar to the mean homogenized stiffnesses.

A portion of this result can be attributed to the large portion of the matrix as com-

pared to the inclusion(s). Except for Material 3, the mean polynomial stiffnesses were

below the Reuss estimate. This result is encouraging because Reuss and Voigt estimates

are generally unavailable or not possible to calculate. The homogenized VFM, a 0th

order polynomial, and higer order polynomial stiffnesses create bounds which can be

determined directly from testing.

Expansion of these bounds can give a more precise estimate of the stiffness range within

a material. The 5th order polynomial had greater overall error than the 4th order poly-

nomial as shown in Figures 4.21 and 4.23. However, the mean value of the 5th order

polynomial Qij was closer to those in the soft inclusions and effectively reduced the lower
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(a) Material 1, 2x2 window size. (b) Material 2, 2x2 window size. (c) Material 3, 2x2 window size.

(d) Material 1, 5x5 window size. (e) Material 2, 5x5 window size. (f) Material 3, 5x5 window size.

(g) Material 1, 5x5 window size
with noise.

(h) Material 2, 5x5 window size
with noise.

(i) Material 3, 5x5 window size with
noise.

Figure 4.24: Equilibrium gap analysis for each material at different window sizes and
with 0.3 mm/m noise where indicated; units for scale are dimensionless.

Qij estimate for Material 3. Many qualifications to this result can be offered, e.g. the

soft inclusions had uniformly lower stiffnesses than the matrix which may rarely occur

in practice, but careful use of spatially varying polynomial formulations for Qij can be

an effective tool for heterogeneous characterization. Alternatively, these materials were

a kind of worst case scenario for the chosen polynomial formulation for Qij due to the

asymmetries of inclusion location and geometry.
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Table 4.4: Comparison of Reuss and Voight estimates, homogeneous VFM identified
Qij and mean polynomial Qj . Units for Qij are km2/s2

Material Method Q11 Q22 Q12 Q66 Q16 Q26

1

Reuss 3.37 3.45 0.93 1.32 0.62 0.62
Voight 3.41 3.46 0.93 1.33 0.63 0.63
VFM 3.43 3.49 0.93 1.36 0.64 0.65

4th Order Polynomial 3.40 3.32 0.90 1.23 0.57 0.59

2

Reuss 3.54 3.52 0.96 1.36 0.65 0.65
Voight 3.55 3.53 0.96 1.37 0.65 0.65
VFM 3.52 3.50 0.97 1.35 0.65 0.64

4th Order Polynomial 3.52 3.51 0.86 1.35 0.63 0.68

3

Reuss 3.29 3.43 0.91 1.30 0.61 0.61
Voight 3.39 3.45 0.93 1.32 0.62 0.63
VFM 3.44 3.44 0.97 1.31 0.66 0.61

4th Order Polynomial 3.53 3.48 0.95 1.32 0.69 0.61
5th Order Polynomial 2.94 2.87 0.95 0.71 0.21 0.23

The EG analysis, Figure 4.24, was able to locate inclusion boundaries effectively. EG

mapping should produce zero everywhere except at inclusion boundaries. The 2x2 win-

dow size (Figures 4.24(a)-4.24(c)) had more noise near grip and force locations. Some of

this noise could be caused by non-equilibrium of the FEM solution. The 5x5 window size

(Figures 4.24(d)-4.24(f)) had less noise but the boundaries of the inclusions were wider.

Addition of strain noise, Figures 4.24(g)-4.24(i) obscured inclusion boundaries and cre-

ated regions of non-equilibrium throughout the materials. Given that the inclusions here

had large stiffness gradients, ±25-30% of the matrix stiffness, and that less severe gra-

dients are expected in polymeric materials, use of EG mapping in polymeric materials

should be used carefully. Determination of differences between non-equilibrium caused

by experimental noise and those of heterogeneities may be formidable.

The simulations used in this work were chosen to validate specific approaches to quan-

tifying heterogeneities that may occur in polymers like paper. These simulations do

not scale for understanding of micro- or nano-sized inclusions in stiffer, e.g. crystalline,

materials. At the smaller scales in these materials misfit strains develop between ma-

trix and inclusion that require the addition of interface energy for equilibrium [87]. For

these materials equilibrium is dependent on anisotropy, interface energy, inclusion size

and deformation [88].
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4.10 Conclusion

Stiffness identification was performed on three, simulated, heterogeneous materials using

two VFM formulations. Systematic errors were less than 5% for the matrix and soft

inclusions and between 5%-10% for hard inclusions. Accuracy and resolution of Qij

identification were determined by comparison with those used to create the materials in

the FEM models. Good accuracy and high resolution validated the VFM approaches

described here.

For narrow scope parametrization, spatially-specific stiffness identification was used to

describe matrix and inclusion stiffnesses when locations and geometries of the inclusions

were known. For broad scope parametrization, a general spatially varying stiffness for-

mulation was used. The broad and narrow scope provided upper and lower bounds on

stiffnesses that corresponded well with each material.

A third VFM formulation was used to locate inclusion boundaries. Addition of artificial

strain noise blurred inclusion boundaries but boundaries were still evident.
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Chapter 5

Heterogeneous, anisotropic

stiffness characterization of

paperboards with VFM

5.1 Introduction

This chapter characterizes the heterogeneity of three paperboards by specifying upper

and lower local stiffness bounds which were identified by different VFM analyses. To

the author’s knowledge this work represents the first work to use stiffness instead of

grammage variation as a measure of heterogeneity.

5.1.1 Background

Strain and deformation heterogeneity in paper and paperboard have been observed by

many researchers. Lyne and Hazell [57] produced a comprehensive work attempting

to related tensile strength to formation, local strain as measured by holography, and

surface temperature distribution. They found a reasonable correlation of COV (ε) to

COV (formation), where COV (ε) was determined from holograms of tensile specimens.

Axelrad et al. [89] used double-sided holographic interferometry to examine a light-

weight (62 g/m2) paper strip in tension. Though not explicitly stated, the specimen

appeared to be a handsheet. Stresses were determined on strips across specimen width

that were approximately 10 mm long. Stresses in these strips varied widely from near
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zero to almost three times the mean macroscopic stress in the specimen. de Oliveira et

al. [61] evaluated local strain fields in tissue paper. Heterogeneous strains were mea-

sured; local strains in direction of applied load were measured up to three times higher

and down to 75% lower than macroscopic strain. Hanada and Onabe used holography

to examine local deformation field variation [90, 91] of uniaxial tensile specimens. Their

holographic images of the macroscopically elastic region showed very large fringe pattern

differences between a handsheet with good formation and a handsheet with poor forma-

tion. Korteoja et al. [15] examined translucence variation of silicone-impregnated paper

during tensile straining and incorporated those results in a FEM model to simulate ten-

sile modulus variation. They did not expect, and their findings did not support, a direct

relationship between formation and tensile strength due to competing influences of non-

uniform intra-fiber bonding, varying fiber density (along fiber length), uneven planar

distribution of fines (very short fibers, < 1 mm long), uneven z-direction distribution of

fillers, and non-oriented drying strains. Translucent lines were not observed in MD at

any strain level but were observed in CD beginning below 50% εfail. They performed a

numerical simulation in which E, tensile modulus, was assumed to have COV (E) = 10%

and E was linearly related to grammage. Two other parameters for their simulation were

G/E, shear modulus to tensile modulus ratio and ratio of εfail/εyield. They assumed

flocs were approximately 5 mm in diameter. Two interesting results were increased

COV (E) led to increased strain localization, and macroscopic E did not significantly

change even up to COV (E) = 30%. Subsequent work by Korteoja et al. [16, 23, 92]

used modeling to show COV (E) ∝ COV (ε). To support their modeling, they performed

4000+ tensile tests and determined that max(E)/mean(E) ranged from 1.2 to 3.1 and

min(E)/mean(E) ranged from 0.1 to 0.7.

Yamauchi and Murakami [93] examined acoustic emissions and opacity changes of dif-

ferent papers under increasing tensile stress and found almost complete lack of acoustic

events during linear elastic loading portion of the test. They also used thermography

to examine well-formed and poorly-formed papers [94]; the poorly-formed papers had

uneven temperature maps quite early during tensile testing.

Variation of fiber orientation also creates heterogeneity. Enomae et al. [82] mea-

sured macroscopic fiber orientation and found that fiber orientation did not, in gen-

eral, agree with ultrasound-measured anisotropy, which they attributed to non-uniform

drying stresses. Erikkilä et al. [81] found fiber orientation varied through thickness of

material and the manner of variation depended on rush/drag ratio, the ratio of fiber
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speed to papermachine wire speed at moment of contact. Odell and Pakarinen [95] mea-

sured local (3 mm x 3 mm region) fiber orientation. Their Figure 27 shows a quiver

plot, with wide variation, of fiber orientation and anisotropy ratio for an approximately

150 mm wide x 36 mm long paper strip. Though only qualitative, it appeared that fiber

mis-orientation tended to decrease anisotropy ratio. Osaki [96] showed fiber orientation

varies from +24◦ to −30◦ across the width of a paper web. While at International Paper

David Vahey helped develop a laser system to analyze local fiber orientation on the

millimeter scale. He found that local orientation can vary between ±10◦ and ±20◦ [? ].

Paper cockling is local out-of-plane deformation. In-plane size of cockles is usually 5-

50 mm in diameter and the out-of-plane deviation around 1 mm. Leppänen [97] used

a sheet-splitting and imaging technique developed by Erikkilä et al. [81] and found

disorder of the local fiber orientation angles was an important factor in the cockling

tendency of paper. Relevant for this work is a quote from his thesis, ”When considering

the future of the modelling of the cockling phenomenon, the lack of measured material

parameters could be seen as a huge weakness of these models.”

Some researchers have successfully related grammage to stiffness. I’Anson et al. [98]

developed a random fiber network model to examine the effects of grammage on tensile

specific modulus and specific strength. Their model and associated experiments indi-

cated that the grammage-modulus relationship was more complicated and depended on

constituent fibers and amount of pressing. Below a certain grammage, approximately

40 g/m2, grammage and modulus were directly related; above 40 g/m2 the specific mod-

ulus plateaued. Ostoja-Starzewski and Castro [22] cross-correlated formation images

with a biaxial tests of two paper materials. By assuming a constitutive relation that

was a function of grammage they achieved good cross-correlation with biaxial tests and

an FEM model of the tests and concluded that the representative volume element was

on the order of 10 times the floc size.

Wong et al. [19] may have some of the most directly applicable results for this work

where they tested laboratory handsheets made at different formation levels. Local gram-

mage was measured using β-radiation. DIC was performed on tensile specimens with

dimensions 2 cm wide x 5 cm long. They reported a direct linear relationship between

local grammage and local axial strain, though their Figure 9 is not strong evidence of

this conclusion; the linear relationship had R2 = 0.22. They suggested that local ori-

entation of properties, material principal property direction, varied from point-to-point

in the sheet and would tend to disrupt that linear relationship. One particularly inter-

esting discussion point was shielding, where close proximity of high and low grammage
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regions could have beneficial or detrimental effects. High grammage regions surround-

ing a low grammage region seemed to reduce local strains while low grammage regions

surrounding a high grammage region seemed to magnify strain in the low grammage

regions.

This chapter shows how upper and lower bounds of local stiffness can be defined in order

to characterize paperboard heterogeneity. No new techniques or analysis approaches are

developed in this chapter, rather, work from previous chapters is employed to define

these bounds. The VFM is central to all the work in this chapter and a more full use of

all identification parameters is described. Upper and lower stiffness bounds are validated

by visual comparison with formation and with VFM-determined stiffness variation.

5.2 Materials

Three materials were examined, two linerboards and a filter paper. Linerboards were

denoted Linerboard 2 and Linerboard 3; Linerboard 2 was also examined in Chapter 2

where it was also denoted Linerboard 2 and in Chapter 3 where it was denoted Liner-

board. A designation ’Linerboard 1’ was used in Chapter 2 and so that designation is

not used here. The filter paper was also examined in Chapters 2 and 3, where it was

denoted as F or Filter. Linerboard 3 was not examined previously.

Filter is a commercial filter paper manufactured by Whatman R© International (Maid-

stone, Kent, UK), identified as Chromotography Paper, Model 3MM CHR, and was

chosen because it is 100% cellulose from cotton linters, one of the longest cellulose fibers

available. Linerboard 2 was made on a Fourdrinier papermachine and is an unbleached,

kraft single-ply linerboard; Linerboard 3 was made on a different Fourdrinier paperma-

chine than Linerboard 2, but is also an unbleached, kraft single-ply linerboard. Both

linerboards represent those used in structural paperboard products such as corrugated

containers.

Filter was chosen for this analysis because it is visually homogeneous and its homogene-

ity is important in application. As with the linerboards, it is made on a Fourdrineir

papermachine, but at lower speed, approximately 3x lower, than the speed used for gen-

eral linerboard production. The lower speed, lower grammage and density, help reduce

material variability. Material variability in linerboards is higher, but is considered to be

an inherent part of the manufacturing process and is compensated for by using higher
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grammage and larger safety factors when used in structural applications. A safety factor

of 5 or higher is not uncommon in corrugated structures.

Table 5.1: Physical and mechanical properties of materials examined

Property Filter Linerboard 2 Linerboard 3

Grammage (g/m2) 187 209 214
Thickness (mm) 0.31 0.30 0.33
Density (kg/m3) 603 688 645

5.3 Experimental plan

Chapter 3 described the load frame used to provide full-field strains used to identify

anisotropic stiffnesses. Those stiffnesses were identified using a VFM analysis which as-

sumed a homogeneous material. Variation of identified stiffnesses was used to determine

quality of identification.

Chapter 4 described three VFM analysis methods which were used to characterize sim-

ulated heterogeneous materials. The first method assumed that heterogeneous regions

were known a priori. The second method used a spatially-varying polynomial function

for Qij . The third method, labeled ’EG’ for ’equilibrium gap’, examined the specimen

to define borders between dissimilar materials.

Here, the load fixture described in Chapter 3 and the homogeneous VFM analysis are

used to identify stiffness values which should be contained within upper and lower stiff-

ness bounds. The VFM analysis developed in Chapter 4, in which location and geometry

of inclusions were known a priori, were used on the same data used to identify homoge-

neous stiffnesses to determine if Qij variation was grammage-based. Such a relation may

exist for some paper materials, such as handsheets, but would be unexpected for the ma-

terials selected here. An entirely grammage-based variation for stiffness would suggest

either that the entire specimen had the same fiber orientation or that fiber orientation

also varied directly with mass. Either possibility is unlikely in Fourdrinier papermaking.

To examine the possibility that local stiffness and mass were related, local grammage

was measured prior to specimen preparation. The method used to measure grammage

variation is described in the following section.

Following measurement of local grammage variation the specimens were prepared ac-

cording the the procedure in Chapter 3. Dot pattern used for prior DIC investigations
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was photocopied on specimens with a Sharp R© (Sharp Electronics Corp., Mahwah, New

Jersey) MX-3100N copier.

In Chapter 3 specimens were approximately aligned so that MD was coincident with

the y-direction of the load fixture, Figure 5.1, to maximize the strains in the 1-principal

direction of the material. Since the concern here is for accurate parameter identifica-

tion of all stiffnesses the MD was oriented at approximately 135o. This orientation will

maximize the absolute value of Q16 and Q26 and provide reasonable η (COV of stiff-

ness) for those parameters. All other measurement details correspond with those in

Sections 3.3-3.4.

F1

F2F3

F4

MD

x

y

22.5◦

45◦

Figure 5.1: Schematic of load fixture, note orientation of MD.

5.4 Measurement of grammage variation1

Different methods are used to determine grammage variation, but all methods involve

measurement of energy through the material. White light [99, 100], beta-radiation [101]

and x-rays [102] have been successfully used to examine grammage variation. NIR

(near infrared radiation) has many beneficial attributes for examination of cellulose

materials [103] and, important for this work, is its relative insensitivity to lignin. NIR

is preferred over visible light, especially for unbleached linerboards containing lignin.

Lignin absorbs more in the ultraviolet and visible regions than in the NIR, resulting

1This section was produced in collaboration with Dr. Vahey.
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in dark images with poor resolution. NIR transmission was used to provide a local

grammage map for each material.

A beam of NIR of uniform intensity was projected on a paper specimen and the trans-

mitted output was imaged by a CCD camera. Brightness of the NIR source and aperture

of the camera lens were adjusted so that the average GV (gray value) of the image was

close to 128 on a scale from 0 to 256. The bell-shaped curve describing the histogram

of the image indicates darker regions (GV < 128), generally corresponding to higher

grammage regions, and lighter regions (GV > 128) generally corresponding to lower

grammage regions.

The actual relation between grammage and GV depends on the constituents and struc-

ture of the paper, and is not likely to be linear. Nevertheless, the NIR method is fast,

inexpensive and safe compared to common alternatives involving beta rays or X-rays,

especially when there is need to measure large areas with high spatial resolution. If one

can tolerate coarse resolution, such as limiting consideration to high, medium and low

grammage regions, the use of NIR transmission is a good surrogate for grammage.

Figure 5.2 is a diagram of the grammage measurement system. The source was a 10x10

array of LEDs with 90% of its output above 800 nm in wavelength and 65% of its

output in the range 800 850 nm. The manufacturer was DVT Systems, now Cognex

(Cognex Corporation, Inc., Natick, MA, USA). The LED array was 5 cm on a side,

small compared to the 25 cm diameter of the region of interest of the paper specimen.

Distance from paper specimen to array was 60 cm. The LED array was powered by

12V DC, at a constant current of 900 mA, and was not changed during the course of

the experiments, except that the array was occasionally powered down to avoid heating

effects on output.

The camera was a Hitachi CCD Model KP-160 (Hitachi High Technologies America, Inc.,

Schaumburg, IL, USA) which had peak spectral response at 750 nm, falling to 50% of

peak at 900 nm. Camera images were 640x480 pixels and the sensor format was 1/2 inch.

The lens was a Schneider lens optimized for 400-1000 nm wavelengths. Focal length

was 12 mm and the maximum aperture was 1.4. In operation, the lens aperture was

electronically adjusted to a midrange value that produces histograms centered between

70 and 140 GV for the different materials examined. Once adjusted, the aperture was not

changed. Keeping both the power to the LED array and the aperture constant maximizes

but does not insure the utility of GV as a surrogate for grammage; changes in GV from

sheet to sheet are reflective of changes in constituents and structure of the papers and



92

Figure 5.2: Schematic layout for NIR grammage variation measurement.

not changes to the optics. Distance from the specimen to the lens in Figure 5.2 was

72 cm and a 5 mm extender tube was inserted between the lens and camera to provide

focus at the required field of view. The ability to measure 0.5 mm variations in GV over

a 25-cm field of view is not believed to be common to devices manufactured specifically

for measurements of paper samples, owing to the large footprint required.

NIR energy distribution was not uniform across the specimen. Because Filter material

was 100% cellulose, and therefore contained no lignin to affect NIR absorbance, and had

small grammage variation, it was chosen to create a master image for correcting the

NIR energy distribution. A single image of NIR transmission though a Filter specimen

is shown in Figure 5.3(a) and is shown in color for better visualization. Specimen was

a rectangle nominally 36 cm wide and 25 cm in height. Ten successive images were

taken and averaged to reduce affects of electronic fluctuations in system components.

A 10-image average is shown in Figure 5.3(b). Figure 5.3(b) was ’blurred’ using a

PSF (point-spread function) to reduce the GV fluctuations of the Filter specimen. The

PSF was set to 31 pixels of linear camera motion and 11o of rotation. The ’blurred’

image is shown in Figure 5.3(c) and represents the NIR energy distribution transmitted

through a 100% cellulose sheet with density equal to the Filter material. Variation of

NIR energy distribution was corrected by performing a pixel by pixel division of the 10-

image averaged image by the ’blurred’ image. An example normalized image is shown
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in Figure 5.3(d).

(a) Step 1: Original image. (b) Step 2: Average of 10 different filter images.

(c) Step 3: Blurrred image. (d) Step 4: Normalized image.

Figure 5.3: Processing of images to identify density variation. Rectangular specimens
were 28 cm high and 36 cm wide.

It was important to spatially correlate images used to evaluate grammage variation with

those used in DIC measurements. Accordingly, prior to NIR imaging, two reference

holes were punched in each specimen. These holes corresponded to grips at locations

22.5o and 202.5o. Ten NIR images were taken of each specimen; images were taken

approximately one minute apart without any changes to the NIR system. These ten

images were averaged and then a pixel by pixel division by the image in Figure 5.3(c)

was performed to produce a corrected GV image of each material. Using the reference

holes, the image was rotated and cropped to correspond to the actual specimen placed in

the load fixture. GV images for each material along with their coinciding GV-normalized

histograms are shown in Figures 5.4-5.6.
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(a) Linerboard 2 corrected grayscale image,

specimen was 24.5 cm in diameter.

(b) Linerboard 2 corrected grayscale his-

togram.

Figure 5.4: NIR image with associated histogram for Linerboard 2.

Mottled appearance of Linerboard 2 in Figure 5.5 represents grammage variation, with

higher grammage regions being darker and lower grammage regions being lighter. Be-

cause Linerboard 2 had higher grammage than Filter the mean corrected GV value was

below ’1’.

(a) Linerboard 3 corrected grayscale image,
specimen was 24.5 cm in diameter.

(b) Linerboard 3 corrected grayscale his-
togram.

Figure 5.5: NIR image with associated histogram for Linerboard 3.

Linerboard 3 had higher grammage than Linerboard 2, therefore its mean corrected GV

was lower than that of Linerboard 2. The right tail of the histogram is slightly extended,

producing a marginally non-normal GV distribution. The extended right tail indicates

that the lighter grammage regions were not reciprocated by heavy grammage regions.
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(a) Filter, corrected grayscale image, specimen
was 24.5 cm in diameter.

(b) Filter, corrected grayscale histogram.

Figure 5.6: NIR image with associated histogram for Filter.

The histogram for Filter, Figure 5.6(b), has a greater peak and narrower half-height

width suggesting less grammage variation. The corrected GV image, Figure 5.6(a)

shows much less variation than those of Linerboard 2 and 3, Figures 5.4(a) and 5.5(a).

5.5 Specimen preparation and testing

After NIR imaging, the DIC pattern was laser printed on each specimen. Specimen were

then cut using alignment holes placed in the specimens prior to NIR imaging and so that

the nominal MD was oriented in the load frame at 135o. All tests were performed at

50% RH and 23oC.

No changes were made in the load frame from Chapter 3. The load configurations in

those tests were used as a guide for the load configurations used here and were selected

to help ensure linear behavior.

5.6 Use of VFM to characterize heterogeneity

The investigation in this chapter incorporates previously developed VFM analyses.

Three items used in the VFM analysis in Chapter 3 are important here. First, super-

position of tests, i.e. adding strains and applied loads from individual tests to create

a new test, improved identification by reducing strain signal to noise ratio. While that
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particular aspect is important here, test superposition can also be used to create tests,

from different materials, which have similar strain levels. Secondly, the ηij/Qijs, which

are COV(Qij), were used in Chapter 3 to compare quality of parameter identification.

In this chapter, the ηij/Qijs will be used to provide a relative estimate of parameter

variation, where relative means comparison between the same Qij . Because the ηij/Qij

depend on strain level, this was illustrated in Chapter 3, superposition tests for each

material was created to have similar strain levels. Thirdly, the Qij identified with the

homogeneous material assumption should lie within Qij heterogeneous bounds.

Each of the three analyses developed in Chapter 4 were used here to characterize het-

erogeneity. Equation 4.2 was used when location and geometry of regions of different

materials were known within the specimen. In the present work, the specimens were

divided into different regions based on grammage determined by NIR imaging. While

the paper specimen can be divided into regions of similar grammage, fiber orientation,

density and drying stresses were unknown in these regions. Since these properties were

unknown, VFM parameter identification of a material segmented by grammage is greatly

improved if all these properties are constant throughout the specimen, i.e. stiffness is

directly related to grammage. Unlike the simulated materials in Chapter 4 in which

the inclusions comprised a small portion of the specimen, 8%, similar grammage regions

comprise a large portion of the specimen, which improves identification, but are sub-

divided throughout the material, which tends to damp differences in identification. This

damping occurs because full-field measured strains are smooth and piecewise virtual

fields tend to further increase smoothing.

Equation 4.4 was used to identify a spatially-varying Qij . In Chapter 4 both 4th and

5th order polynomials were used to provide lower bounds on parameters. Higher order

polynomial formulations for Qij require successively more parameters to be identified.

A 4th order polynomial requires 150 parameters to be identified; a 6th order polynomial

requires 294 parameters to be identified, nearly twice as many. Likewise, VFM mesh

density needs to adjusted so that proportionate degrees of freedom are available. In

Chapter 4, the noise optimization matrix, G, became ill-conditioned when high artificial

strain noise was added and a 6th order polynomial was used; at low levels of strain noise

higher order polynomials could be used. NIR images suggest that spatial frequency of

grammage variation is greater than 6th order. The polynomial formulation for Qij will

help provide upper and lower bound estimates for the parameters.

The third VFM analysis developed on Chapter 4 was EG (equilibrium gap) mapping.

There EG mapping was effective at determining inclusion boundaries, though addition of
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artificial strain noise tended to obscure those boundaries. Similar mapping was employed

here.

All of these analyses were used with the same, superimposed test data to maximize

strain signal-to-noise ratio.

5.6.1 Selection of VFM mesh density

Selection of VFM mesh for subsequent analyses is not straightforward for heterogeneous

materials, especially when the manner of heterogeneity is unknown. Sufficient degrees

of freedom, determined by unconstrained virtual nodes, are needed for accurate identi-

fication. Figure 5.7 shows Qij identification for several mesh densities. Generally, the

coarsest mesh possible for good identification is chosen as high mesh densities tend to in-

tensify strain noise. For two VFM analyses, assumed homogeneity and area-segmented,

102 mesh density was used. For the polynomial Qij VFM analysis 202 mesh density was

used in order to have necessary degrees of freedom for identification.
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(a) Effect of mesh density on Qij identification for Linerboard 2.

(b) [Effect of mesh density on Qij identification for Linerboard 3.

(c) [Effect of mesh density on Qij identification for Filter.

Figure 5.7: Effect of virtual mesh density on Qij identification for each material.
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5.7 Results

Tables 5.2-5.4 give identification results for each of the three materials. The first section

of each table gives the Qij , ηij and Fi for individuals tests; analysis assumed the ma-

terial was homogeneous. Rows labeled ’mean’ and ’COV’ list the mean and COVs for

identification results of the individual tests. The row labeled ’Superposition’ lists iden-

tification results when individual tests are superimposed to create a single, composite

test. This approach was also used in Chapter 3. For this test, individual strains and

forces were added together, i.e. superimposed, to maximize strain and reduce effects of

experiment noise on parameter identification. Though not shown, force-strain behavior

of the individual tests were examined to ensure materials had linear behavior. VFM

mesh used for each of these analyses had 100 elements.

The next section of each table lists results when material was partitioned into similar

grammage regions based on NIR images for each material, using GV as a surrogate for

grammage. For Linerboard 2 identification was performed by partitioning grammage

into three different types of subregions: (1) two equal-area subregions, a high grammage

region and a low grammage region, (2) three equal-area subregions, and (3) three sub-

regions with the high grammage region and low grammage subregions at 25% each of

specimen area and a medium grammage region at 50% specimen area. Figure 5.8 shows

Linerboard 2 divided into three equal-area grammage subregions. Similar subdivisions

were made for Linerboard 3, except that the optimized, special virtual fields could not

be found for when the grammage was divided into 3 equal-area subregions. For Filter,

special optimized virtual fields were found only when grammage was divided in two re-

gions of equal area. All identification in this section was performed using superimposed

strain-force data. VFM mesh used for these analyses used 100 elements.
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Figure 5.8: Linerboard 2: grammage division into 3 equal-area subregions, where
white: high grammage regions, gray: medium grammage regions, and black: low gram-

mage regions.

The final section of each table lists the polynomial identification results. Three different

polynomial orders were used for identification; 400 VF elements were used for the poly-

nomial analysis. A single, high density mesh was used to provide the necessary degrees

of freedom for parameter identification. The 5th order polynomial formulation required

identification of 216 parameters. Experience has shown that good identification requires

approximately twice the degrees of freedom as the number of parameter to be deter-

mined. All identification in this section was performed using superimposed strain-force

data.

Figure 5.9 shows the identification mapping for Linerboard 2 with a 4th order polynomial.

Figure 5.10 shows same mapping but normalized by the ’Superposition’ identification
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in Table 5.2; ’H’ denotes homogeneous identification. The wide scale for Figure 5.9

comprises large negative values, even for Q11 and Q22. Mapping for Q66 shows a negative

shear modulus for approximately one third of the specimen and has an axis of symmetry

at about -45o. Figure 5.10 shows amount of deviation from homogeneity.

(a) Q11 for Linerboard 2. (b) Q22 Linerboard 2. (c) Q12 Linerboard 2.

(d) Q66 Linerboard 2. (e) Q16 for Linerboard 2. (f) Q26 for Linerboard 2.

Figure 5.9: Fourth order polynomialQij contour maps for Linerboard 2, units km2/s2.

Figure 5.11 shows the identification mapping for Linerboard 3 with a 4th order polyno-

mial. Figure 5.12 shows same mapping but normalized by the ’Superposition’ identifi-

cation in Table 5.3. Very noticeable was a low stiffness region in Figure 5.9(b) and high

modulus regions in Figures 5.11(c) and 5.11(d). The normalized maps in Figure 5.12

showed large stiffness gradients in the central region, where the strain gradients were

small. Stiffness gradients near grip locations may be developed by some concentrated

nonlinear material behavior, but gradients in the central region of the specimen indicate

material heterogeneity.

Figure 5.13 shows the identification mapping for Filter with a 4th order polynomial.

Figure 5.14 shows the same mapping but normalized by the ’Superposition’ identification

in Table 5.4. The stiffness gradients near the grip regions are emphasized in Figure 5.14.

It is unclear why the grip regions indicated greater stiffness instead of reduced stiffness.

However, the high stiffness regions in Figure 5.13 comprise only a small portion of the

specimen area.

The left column of Figure 5.15 shows the EG mapping for each material using 3x3 data

points for each EG element. Stiffnesses used to calculate local equilibrium came from
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(a) QP
11/Q

H
11 for Linerboard 2. (b) QP

22/Q
H
22 for Linerboard 2. (c) QP

12/Q
H
12 for Linerboard 2.

(d) QP
66/Q

H
66 for Linerboard 2. (e) QP

16/Q
H
16 for Linerboard 2. (f) QP

26/Q
H
26 for Linerboard 2.

Figure 5.10: Fourth order polynomial QP
11/Q

H
11 contour maps for Linerboard 2, map-

pings are normalized by the homogeneous ‘Superposition’ identification in Table 5.2.

the Superposition test. The EG results were normalized by squaring each EG point and

those mappings are shown in the right column of Figure 5.15.

The left column of Figure 5.16 shows the EG mapping for each material using 5x5 data

points for each EG element. Stiffnesses used to calculate local equilibrium came from

the Superposition test. The EG results were normalized by squaring each EG point

and those mapping are shown in the right column of Figure 5.16. These EG maps look

very similar to those in Figures 4.24(g)-4.24(i) of Chapter 4. The matrix material for the

simulated materials in Chapter 4 was set similar to have properties similar to Filter. The

addition of artificial noise of magnitude was set to resolution of these DIC measurements

which tended to obscure the border of the simulated inclusions. The smaller stiffness

gradients in these materials were not discernible by EG mapping.
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(a) Q11 for Linerboard 3. (b) Q22 for Linerboard 3. (c) Q12 for Linerboard 3.

(d) Q66 Linerboard 3. (e) Q16 for Linerboard 3. (f) Q26 for Linerboard 3.

Figure 5.11: Fourth order polynomial Qij contour maps for Linerboard 3, units
km2/s2.

5.8 Discussion

The objective is to develop a characterization of heterogeneity in paper materials by

defining upper and lower bounds for Qij . Comparison of the range of these bounds

between materials will provide means to objectively determine degree of heterogeneity.

It was initially hoped that the EG mapping would be sensitive enough to locate hetero-

geneous regions which could then be examined by sub-dividing from the remainder of

the material. Clearly the EG mappings in Figures 5.15 and 5.16 were unable to separate

those regions due to strain noise. Several different EG window sizes, EG smoothing

parameters and number of VF elements were examined without improved resolution. In

these materials, the 3x3 EG element was 5.4 mm square which made the EG window

10.8 x 10.8 mm square; the 5x5 EG element was 9.0 mm square giving a 18.0 x 18.0 mm

square EG window.

However, for Linerboards 2 and 3 the grammage variation appears to occur such that the

3x3 EG window would have been able to determine heterogeneity if strain resolution were

improved and heterogeneity was grammage-based. While the grayscale NIR images have

not been contrast adjusted, camera aperture and light source have been set to maximize

grayscale differences. Grammage variation is considered poor if it is more than ±10%

and it is likely to be less in these materials.
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(a) QP
11/Q

H
11 for Linerboard 3. (b) QP

22/Q
H
22 for Linerboard 3. (c) QP

12/Q
H
12 for Linerboard 3.

(d) QP
66/Q

H
66 for Linerboard 3. (e) QP

16/Q
H
16 for Linerboard 3. (f) QP

26/Q
H
26 for Linerboard 3.

Figure 5.12: Fourth order polynomial QP
11/Q

H
11 contour maps for Linerboard 3, map-

pings are normalized by the homogeneous ‘Superposition’ identification in Table 5.3.

Assumption of homogeneity furnishes a starting point for bounding of Qij ; a minimal

assumption would be that the stiffnesses identified presupposing the material to be

homogeneous should be contained within the upper and lower bounds of the stiffness

range. The first section of Tables 5.2-5.4 showed homogeneous stiffness identifications.

Variation of parameter identification, as indicated by ηij , is quite good and smaller than

for similar tests on the same materials in Chapter 3; see Figures 3.9 and 3.10. The

highest COV for identified stiffnesses Q11, Q22, Q12 and Q66 was 6.9%. Superposition

of all the tests produced increased stiffnesses, with the only exception as Filter Q12

which decreased negligibly. Additionally, orthotropy of each material was examined by

comparing the orthogonality of the material principal directions. Using the superposition

Qij values the linerboards were orthotropic within 0.5o and Filter was orthotropic within

1.5o.

The bounds for Qij can be determined from grammage-based heterogeneity identification

and polynomial formulation for Qij . In Chapter 4 the hard inclusions were best identified
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(a) Q11 for Filter. (b) Q22 for Filter. (c) Q12 for Filter.

(d) Q66 for Filter. (e) Q16 for Filter. (f) Q26 for Filter.

Figure 5.13: Fourth order polynomial Qij contour maps for Filter, units km2/s2.

when their location was known. Here, local grammage was used as a surrogate for

knowledge of inclusion location and geometry, however a direct relationship between

grammage and stiffness is not expected and was not found in these materials. None of

the stiffness identification based on grammage variation trended with grammage, e.g.

stiffnesses in the high grammage regions were not uniformly higher than those in the

low grammage regions. Two other factors complicate this type of identification, namely

fiber orientation likely varies in regions of similar grammage and residual stresses, created

during restraint drying, do not generally align with either fiber orientation or the MD

(machine direction) of the material. But, even with those concerns, grammage-based

identification can provide some estimates for high stiffness regions.

Three different grammage-based identifications were performed for Linerboard 2 whose

results are shown in Table 5.2. In the first division the high and low grammage regions

were separated by the mean GV of Figure 5.4. Except for the value of Q66 in the high

grammage region, 11.69 km2/m2, the remaining stiffnesses were justifiable. The high

and low grammage division would correspond to a more stiff region and a softer region,

respectively, except that orthotropy changes dramatically between regions. In the high

grammage region Q22 is stiffer than Q11 and the converse is true in the low grammage

region. While the aforementioned Q66 may be a concern, the other identified stiffnesses

produced mean values in good agreement with those identified with the Superposition

test.
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(a) QP
11/Q

H
11 for Filter. (b) QP

22/Q
H
22 for Filter. (c) QP

12/Q
H
12 for Filter.

(d) QP
66/Q

H
66 for Filter. (e) QP

16/Q
H
16 for Filter. (f) QP

26/Q
H
26 for Filter.

Figure 5.14: Fourth order polynomial QP
11/Q

H
11 contour maps for Filter, , mappings

are normalized by the homogeneous ‘Superposition’ identification in Table 5.4.

Comparison COV of the identification provides another tool tool to evaluate perfor-

mance of the analysis method. Both the Superposition identification and the division

into two equal-sized region based on grammage used the same number of tests, six for

Linerboard 2. For all identifications, the ηij were greater for the grammage-based di-

visions than for a single homogeneous division. Clearly, grammage-based divisions did

not improve identification and, therefore, stiffness is not directly related to grammage.

However, one other trend is that ηijs were generally higher for lower grammage regions.

This trend was expected because they depend on strain level and the lower grammage

regions are likely to have higher strain; this trend is most evident in Linerboard 2 results.

The other two grammage divisions, one of three equal sized-regions and the other with a

large medium grammage regions and equal, but smaller high and low grammage regions,

gave results which tended to reinforce the results with two equal divisions of grammage.

Mean and weighted mean, the latter weighted by area, gave identifications which were



110

(a) EG: Linerboard 2. (b) EG: Linerboard 2, normalized.

(c) EG: Linerboard 3. (d) EG: Linerboard 3, normalized.

(e) EG: Filter. (f) EG: Filter, normalized.

Figure 5.15: EG contours for 3x3 window size.

similar to that of the Superposition test. These grammage divisions both identified aux-

etic, Q12 < 0, behavior in their respective high grammage regions. While such behavior

is possible, and has been observed simulated random fiber composites [104], here it seems

plausible that these values represent identification error. Values for ν12 < 0.10 have

been reported in paper materials [105].
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(a) EG: Linerboard 2. (b) EG: Linerboard 2, normalized.

(c) EG: Linerboard 3. (d) EG: Linerboard 3, normalized.

(e) EG: Filter. (f) EG: Filter, normalized.

Figure 5.16: EG contours for 5x5 window size.

The final section of Table 5.2 gives mean identifications from three different polynomial

formulations for Qij . Three orders of polynomial were evaluated because the polynomial

formulation tends to emphasize regions of low stiffness. If low stiffness regions are present

then the high order polynomial will identify lower stiffnesses than a low order polynomial.

Only two types of grammage division were possible with Linerboard 3. As listed in
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the footnote in Table 5.3, the special, optimized virtual fields needed to identify each

stiffnesses could not be found, after 100 iterations, for the case of three equal-sized

grammage-based subdivisions. As with Linerboard 2, neither of each grammage divisions

gave stiffness identification which corresponded with grammage. Due to heterogeneity,

the stiffnesses identified here are a type of average across the specimen; auxetic behavior

was identified for both high grammage regions, but, as stated for Linerboard 2, are

indicative of identification error.

The mean 3rd order polynomial Qij formulation for Linerboard 3 identified auxetic be-

havior of greater magnitude than identified in the high grammage divisions;

Q12 = − 0.53 for the polynomial and -0.13, -0.46 for the high grammage divisions. It is

still not possible to definitively state that auxetic behavior exists in Linerboard 3, but it

seems more prudent to maintain these identifications are representative of identification

error.

Only a single type of grammage division was possible for Filter, equal division into high

grammage and low grammage regions. Except for Q66 the means of the Qij agree rea-

sonably well with those determined by the Superposition identification. The polynomial

formulation gave decreasing Q11, Q22, Q12, Q66 with higher polynomial order. As the

’most’ homogeneous of the three materials and the material which experienced the least

drying restraint during manufacture, Filter also had the longest fibers and the small-

est orthotropy ratio. These factors reduce the effect of changing local fiber orientation

and residual stresses, allowing the polynomial formulation to better emphasize less stiff

regions.

Before developing Qij bounds recall that the specimens were approximately oriented

within the load fixture at 45o in order to have non-zero Q16 and Q26 and have improved

identification for Q11, which is difficult due to location of load cells and grips. Therefore,

all identifications correspond to stiffnesses at that orientation. However, due to the na-

ture of heterogeneity in these materials, local material principal directions are unknown.

An upper bound for Q11 or Q22 is more likely to reflect local primary material principal

direction when the specimen is oriented at 45o than for other orientations. If the speci-

men MD was vertically aligned then variation of local fiber orientation around the MD

would be emphasized at the sacrifice of local fiber orientation about the CD. By ori-

enting the specimen with the MD approximately aligned at 135o, local fiber orientation

about the MD and CD have similar likelihood for identification.
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Table 5.5: Upper and lower Qij bounds for each material, units (km2/s2)

Q11 Q22 Q12 Q66 Q16 Q26

Linerboard 2
Upper 7.31 8.48 3.82 10.84 0.05 0.41
Lower 1.58 2.44 -0.22 0.29 -2.79 -3.10

Superposition
ηij/Qij 7 7 22 15 -31 -20

Linerboard 3
Upper 10.24 8.90 4.05 20.36 3.85 1.46
Lower 1.39 3.95 -0.53 1.90 -4.55 -6.32

Superposition
ηij/Qij 9 9 42 23 -49 -33

Filter
Upper 4.39 6.58 1.23 6.05 1.14 0.00
Lower 1.96 1.90 0.26 0.29 -2.40 -0.82

Superposition
ηij/Qij 6 6 28 11 -22 -49

Upper bounds were set at the highest values of identification for either a grammage-

based heterogeneity or the 3rd or 4th order polynomial analyses. Similarly, lower bounds

were set at the lowest values of identification for either a grammage-based heterogeneity

or the 3rd or 4th order polynomial analyses. The 5th order polynomial analysis was not

used for bound determination to reduce range of the bounds. However, if included it

would have only changed the bounds for Linerboard 2 Q11, Linerboard 3 Q66, Filter Q11

and Q66, 4 of the 18 bounds. While these bounds seem large they are similar to those

found by Korteoja et al. [23] who measured modulus of over 4000 tensile specimens of

a single paper material to determine low modulus values at 10% of mean stiffness and

high modulus values at 300% of mean stiffness.

Earlier work used values for ηij/Qij to determine the effect of strain noise on the identi-

fication. As seen in the G matrix, Equation 3.5, their magnitudes depend on measured

strain; higher strain reduces the signal to noise ratio and improves (reduces) the ηij/Qijs.

Here, local strain variation caused by heterogeneity behaves as signal noise and tends

to increase ηij/Qij . Comparison between ηij/Qij for each material depends on the rel-

ative applied strain for each test. The composite strains, given by Equation 3.8, for

the Superposition test for Linerboard 2, Linerboard 3 and Filter were 6.5, 5.6, and

6.0 µε, respectively. Because strain levels were similar between tests, the ηij/Qij can be

compared between tests.

The ranges given in Table 5.5 tend to agree with the ηij/Qij . For example, comparing

the ranges for Q11 Linerboard 3 has the largest range and η11/Q11; Filter has the smallest
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range and η11/Q11. The range-ηij/Qij comparison always holds between Linerboard 2

and Linerboard 3 and between Linerboard 3 and Filter; it holds between Linerboard 2

and Filter for η11/Q11, η22/Q22 and, η66/Q66.

Besides agreement between range and ηij/Qijs, the ranges also tend to agree with the

grammage heterogeneity observed in Figures 5.4-5.6. The grayscale image of Filter is

dramatically smoother than those of the linerboards, which indicated less grammage-

based heterogeneity. Differences between Linerboard 2 and 3 are best seen in their GV

histograms where Linerboard 3 had a slightly extended right tail, indicating more low

grammage regions than high grammage regions, and so it’s range was expected to be

larger.

For the Superposition test of each material, Q12 had the second largest η12/Q12 which

suggests some difficultly in identification. Both linerboards had lower bounds for Q12

which indicated auxetic behavior in some region of the specimens, but as stated ear-

lier can likely be attributed to identification error. Developing a rationale to increase

these values to zero, or higher, is reasonable, but further investigation would be help-

ful. Increased resolution of the full-field measurements would be a good first step to

improving/refining upper and lower bounds.

In Chapter 3, the possibility of special orthotropy [74, 75] was examined for Linerboard 2

and Filter, but results were inconclusive. Interestingly, if each material is considered to

be homogeneous and orthotropic (not special) and the Superposition Qij are rotated

to maximize Q11, both linerboards are auxetic with Linerboard 2 Q12 = −0.14 and

Linerboard 3 Q12 = −2.47. More conclusive determination of special orthotropy is not

possible here because specimen orientation at 45o causes one of the special orthotropy

constants to equal zero.

5.9 Conclusion

A characterization of paper heterogeneity has been developed which agrees with visual

observation and variation of stiffness when homogeneity is assumed and is similar to those

found by other researchers. The characterization has two components which complement

each other, upper and lower bounds for each Qij and coefficient of variation for each Qij .

The characterization was used to compare three materials with different heterogeneity.
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The characterization used tools developed in earlier chapters. In Chapter 3, validation

of the load frame and homogeneous parameter identification was accomplished. A por-

tion of the homogeneous identification, namely variation of stiffness, was used for this

characterization. In Chapter 4, three different VFM analyses were developed to examine

local stiffness. Two of those analyses, area-segmented identification and a polynomial

formulation for Qij , were used here to define upper and lower stiffness bounds. The

third VFM analysis in Chapter 4, the Equilibrium Gap analysis, was ineffective here

because the strain measurement resolution was similar to strain variation created by

heterogeneity. While discouraging, the result was anticipated because artificial strain

noise in simulated materials tended to mask even dramatic ±30% stiffness variation.

This work represents the first reported effort, to the author’s knowledge, in which het-

erogeneity in paper was stiffness-based, as opposed to grammage-based. Improvements

in this heterogeneity characterization are possible; two of the most obvious are a higher

resolution strain measurement and modification of the load frame to allow tests at mul-

tiple specimen orientations.
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Chapter 6

Conclusion

This work has demonstrated that paper heterogeneity can be characterized by examina-

tion of strength loss and stiffness variability. Ultimate tensile strength, defined as tensile

strength without variability, was related to actual tensile strength by application of two

different strength criteria. Range of stiffnesses were determined through development of

a new multiaxial load fixture and three different VFM analyses.

Tensile strength variation and formation have been the de facto standards for character-

izing paper heterogeneity, even though multiple studies have showed little or no relation

between the two measurements. A new approach was used here which estimated the

amount of tensile strength improvement in the absence of variability. Because paper

materials are often sold on a strength/weight basis, this new approach provides a tool

for papermakers to use in cost/benefit analyses. Alterations to paper machinery are

expensive, in up front costs and machine down time. This methodology creates a basic,

easy-to-use relationship between variability and tensile strength.

The characterization of paper heterogeneity by defining upper and lower stiffness bounds

is original. Mathematical stiffness bounds for special materials require well-defined in-

clusions which don’t exist in paper. Instead, bounds were determined by direct mea-

surement of local strains, application of an appropriate constitutive relationship and the

requirement for equilibrium.

An underlying goal of paper physics research it to improve utilization of the cellulose fiber

resource. Reduction of heterogeneity in paper creates opportunities to reduce the amount

of fiber while improving performance. Some specific examples include extended currency

durability, stronger, lighter packaging, improved print registration, and increased vapor
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barrier properties. New, specialized products can be developed to include cellulose

fiber which require very small variability, such as flexible electronics and energy storage

devices.

These analysis methods can be extended to other, stiffer materials. Determination of

heterogeneity in those materials may require some novel fixture development, but the

analysis tools remain applicable.

When I reflect to the beginning of this work, the anticipated results and the manner in

which I thought paper materials behaved under stress, the results of this work surprised

me in two ways. I expected the strength variation to be larger and the stiffness variation

to be smaller. I anticipate these results will be surprising to many papermakers. These

results encourage me and provide many opportunities for paper physics research as

stiffness is a more critical property for many applications.

The primary contributions of this work are:

• A methodology to determine paper and paperboard maximum strength in absence

of heterogeneity

• Extension of VFM for analysis of fully anisotropic Qij . A critical component of

this extension was the determination of the noise optimization matrix, G, given

in Equation 3.5.

• Use of VFM for determination of anisotropic Qij on a thin web material, used

here on paperboard. A novel load fixture was designed and fabricated to create

heterogeneous strain fields while preventing wrinkling.

• Direct identification of local anisotropic Qij in simulated heterogeneous materials.

The basic methodology comes from Section 5.2 of Pierron and Grédiac [1], and

was extended here for anisotropic materials. The other portion of this contribution

was the understanding of how different VFM formulations provide complimentary

information on the nature of material heterogeneity.

• Specification of upper and lower stiffness bounds for paper. Analysis of full-field

strains with heterogeneous stiffness VFM formulations provided identification of

bounds. Mechanical property bounds are unique in paper physics work and provide

information which directly affects converting and end-use behavior.



118

• A more comprehensive understanding of the capability of VFM for anisotropic

material characterization. By examining the effects of resolution of full-field dis-

placements and strains, ill-conditioned matrices when trying to determine, e.g.,

200+ stiffness parameters, VFM mesh density, stiffness variability on anisotropic

material characterization the avenues for future work are more apparent.

6.1 Recommendations for Future Work

Selection of a linear elastic constitutive behavior was important to validate stiffness

identification. However, limit of that behavior was reached during some of the tests

here. Extension to heterogeneity and nonlinear elastic behavior is possible within the

VFM analysis.

The effect of fiber length on paper strength has been well-examined. Fiber length affects

flocculation and fiber orientation. It seems reasonable that paper constitutive behavior

would also contain a length component. Cosserat constitutive behavior has a length pa-

rameter which determines its ability to resist couple stresses. Cosserat behavior has been

observed in other fibrous materials. Examination of possible Cosserat behavior would

require some modification of VFM and DIC, or other full-field measurement technique.

Improved resolution for full-field displacement and strain measurements would provide

more precise parameter identification. The goal would be to improve strain resolution

sufficiently so that the equilibrium gap analysis could identify local stiffness changes.

Another benefit would the ability to perform identification at reduce stress levels.

Monte-Carlo sampling could be used for heterogeneity characterization. A general in-

clusion shape, such as an ellipse, could be used in the identification by performing many

simulations which uses different locations, sizes, ellipse-aspect ratios and, ellipse orien-

tations, to determine inclusion stiffnesses. A compilation of those results could help

identify regions of high or low stiffness.

New load fixtures could be simulated with FEM analyses to determine how to improve

identification. Grip location relative to load application points, number of grips and

load application points, and different sizes can be examined with the goal to improve

heterogeneous stiffness identification.
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[1] F. Pierron and M. Grédiac. The Virtual Fields Method: Extracting Constitu-

tive Mechanical Parameters from Full-Field Deformation Measurements. Springer,

2012.

[2] J.M. Considine, D.W. Vahey, J.W. Evans, K.T. Turner, and R.E. Rowlands. Eval-

uation of strength-controlling defects in paper by stress concentration analyses. J.

Compos. Mater., 46(11):1323–1334, 2011.

[3] P.P.J. Miettinen, J.A. Ketoja, and T. Hjelt. Simulated structure of wet fiber

networks. Nord. Pulp Pap. Res. J., 22(4):516–522, 2007.

[4] M. Rigdahl, H. Andersson, B. Westerlind, and H. Hollmark. Elastic behaviour

of low density paper described by network mechanics. Fibre Sci. Technol., 19(2):

127–144, 1983.

[5] J. Astrom, S. Saarinen, K. Niskanen, and J. Kurkijarvi. Microscopic mechanics of

fiber networks. J. Appl. Phys., 75(5):2383–2392, 1994.

[6] R.J. Norman. Dependence of sheet properties on formation and forming variables.

Consolidation of the Paper Web, Transactions of the IIIrd Fundamental Research

Symposium, 1:269–309, 1965.

[7] J.M. Moffat, L.R. Beath, and W.G. Mihelich. Major factors governing newsprint

strength. The Fundamental Properties of Paper Related to Its Uses, Transactions

of the Vth Fundamental Research Symposium, 1:104–127, 1973.

[8] M.M. Nazhad, E.J. Harris, C.T.J. Dodson, and R.J. Kerekes. The influence of

formation on tensile strength of papers made from mechanical pulps. Tappi J., 83

(12):63–63, 2000.

[9] M.M. Nazhad, W. Karnchanapoo, and A. Palokangas. Some effects of fibre prop-

erties on formation and strength of paper. Appita, 56(1):61–65, 2003.



120

[10] U.-B. Mohlin. Fiber dimensions-formation and strength. Nord. Pulp Pap. Res. J.,

16(3):235–239, 2001.

[11] B. Nordström. Effects of grammage on sheet properties in one-sided and two-sided

roll forming. Nord. Pulp Pap. Res. J., 18(3):280–287, 2003.

[12] R. Wathén and K. Niskanen. Strength distributions of running webs. J. Pulp

Paper. Sci., 32(3):137–144, 2006.

[13] S.J. I’Anson and W.W. Sampson. Competing Weibull and stress-transfer influ-

ences on the specific tensile strength of a bonded fibrous network. Compos. Sci.

Technol., 67(7):1650–1658, 2007.

[14] S.V. Suknyov. Estimation of the tensile strength reduction of a composite laminate

with a hole. Mech. Compos. Mater., 36(6):439–444, 2000.

[15] M.J. Korteoja, A. Lukkarinen, K. Kaski, D.E. Gunderson, J.L. Dahlke, and K.J.

Niskanen. Local strain fields in paper. Tappi J., 79:217–224, 1996.

[16] M.J. Korteoja, A. Lukkarinen, K. Kaski, and K.J. Niskanen. Computational study

of formation effects on paper strength. J. Pulp Pap. Sci., 23(1):J18–J22, 1997.

[17] D. Choi, J.L. Thorpe, and R.B. Hanna. Image analysis to measure strain in wood

and paper. Wood Sci. Technol., 25(4):251–262, 1991.

[18] G.J. Um and R.W. Perkins. Stress and strain for perforated tensile specimens,

Part 1: experimental measurements. Tappi J., 6(3):3–7, 2007.

[19] L. Wong, M.T. Kortschot, and C.T.J. Dodson. Effect of formation on local strain

fields and fracture of paper. J. Pulp Paper. Sci., 22(6):J213–J219, 1996.

[20] J.M. Considine, C.T. Scott, R. Gleisner, and JY Zhu. Use of digital image corre-

lation to study the local deformation field of paper and paperboard. Advances in

Paper Science and Technology, Transactions of the XIIIth Fundamental Research

Symposium, pages 613–630, 2005.

[21] D.T. Hristopulos and T. Uesaka. Structural disorder effects on the tensile strength

distribution of heterogeneous brittle materials with emphasis on fiber networks.

Phys. Rev. B: Condens. Matter, 70(6):064108, 2004.

[22] M. Ostoja-Starzewski and J. Castro. Random formation, inelastic response and

scale effects in paper. Philos. Trans. R. Soc. London, Ser. A, 361(1806):965–985,

2003.



121

[23] M. Korteoja, L.I. Salminen, K.J. Niskanen, and M. Alava. Statistical variation of

paper strength. J. Pulp Pap. Sci., 24(1):1–7, 1998.

[24] J. Rhee, H.K. Cho, D.J. Marr, and R.E. Rowlands. On reducing stress concen-

trations in composites by controlling local structural stiffness. In Proceedings of

Conference Experimental and Applied Mechanics, pages 193–199, 2005.

[25] R.W. Perkins and G.J. Um. Stress and strain for perforated tensile specimens,

Part 2: FEA simulations. Tappi J., 6(4):22–27, 2007.

[26] M.T. Kortschot and K. Trakas. Predicting the strength of paper containing holes

or cracks with the point stress criterion. Tappi J., 81(1):254–259, 1998.

[27] J. Awerbuch and M.S. Madhukar. Notched strength of composite laminates: pre-

dictions and experiments - A review. J. Reinf. Plast. Compos., 4(1):3–159, 1985.

[28] J.M. Whitney and R.J. Nuismer. Stress fracture criteria for laminated composites

containing stress concentrations. J. Compos. Mater., 8(3):253–265, 1974.

[29] S.G. Lekhnitskii. Theory of elasticity of an anisotropic elastic body. San Francisco,

CA: Holden-Day, 1963.

[30] W.H. Beyer and Chemical Rubber Compancy. CRC standard mathematical tables.

CRC Press Inc., Boca Raton, FL, 1987.

[31] U.A. Khashaba. Fracture behavior of woven composites containing various cracks

geometry. J. Compos. Mater., 37(1):5–20, 2003.

[32] S.C. Tan. Finite-width correction factors for anisotropic plate containing a central

opening. J. Compos. Mater., 22(11):1080–1097, 1988.

[33] J.C. McNulty, F.W. Zok, G.M. Genin, and A.G. Evans. Notch-sensitivity of fiber-

reinforced ceramic-matrix composites: Effects of inelastic straining and volume-

dependent strength. J. Am. Ceram. Soc., 82(5):1217–1228, 1999.

[34] B.C. Donner. An heuristic model of paper rupture. Fundamentals of Papermak-

ing Materials, Transactions of the XIth Fundamental Research Symposium, pages

1215–1247, 1997.

[35] J. Considine, D. Vahey, W. Skye, W. Chen, K. Turner, and R. Rowlands. Shielding:

new insight to the relationship between formation and strength, 2005. Poster

presented PaperCon ’09 TAPPI/PIMA paper conference and trade show, May 31

- June 3, 2009, St Louis, MO, USA.



122

[36] G.W. Snedecor and W.G. Cochran. Statistical methods. 1980.

[37] I. Diddens, B. Murphy, M. Krisch, and M . Müller. Anisotropic elastic properties

of cellulose measured using inelastic X-ray scattering. Macromolecules, 41(24):

9755–9759, 2008.

[38] G.A. Baum. Elastic properties, paper quality, and process control. Appita, 40(4):

289–294, 1987.

[39] R. Allan. The cost of paper property variation is high. Appita, 65(4):308–312,

2012.

[40] K. Schulgasser. Fibre orientation in machine-made paper. J. Mater. Sci., 20(3):

859–866, 1985.

[41] M. Htun, H. Andersson, and M. Rigdahl. The influence of drying strategies on

the anisotropy of paper in terms of network mechanics. Fibre Sci. Tech., 20(3):

165–175, 1984.

[42] G.L. Batten and A.H. Nissan. Invariants in paper physics. Tappi J., 69(10):

130–131, 1986.

[43] M. Titus. Ultrasonic technology - measurements of paper orientation and elastic

properties. Tappi J., 77(1):127–130, 1994.

[44] M.W. Johnson Jr and T.J. Urbanik. Buckling of axially loaded, long rectangular

paperboard plates. Wood Fiber Sci., 19(2):135–146, 1987.

[45] T.D. Gerhardt. External pressure loading of spiral paper tubes: theory and ex-

periment. J. Eng. Mater. Technol., 112(2):144–150, 1990.

[46] T. Garbowski, G. Maier, and G. Novati. On calibration of orthotropic elastic-

plastic constitutive models for paper foils by biaxial tests and inverse analyses.

Struct. Multidiscip. Optim., pages 1–18, 2012.

[47] M.V. Anurov, S.M. Titkova, and A.P. Oettinger. Biomechanical compatibility

of surgical mesh and fascia being reinforced: dependence of experimental hernia

defect repair results on anisotropic surgical mesh positioning. Hernia, 16(2):199–

210, 2012.

[48] S.I. Ranganathan, M. Ostoja-Starzewski, and M. Ferrari. Quantifying the

anisotropy in biological materials. J. Appl. Mech., 78(6):64501, 2011.



123

[49] A.K. Sengupta, D. De, and B.P. Sarkar. Anisotropy in some mechanical properties

of woven fabrics. Text. Res. J., 42(5):268–271, 1972.
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