
Chapter 13 
Recent Advances on the Genomics of 
Litter- and Soil-Inhabiting Agaricomycetes 

Phil Kersten and Dan Cullen 

13.1 Introduction 

Woody biomass makes up the major portion of terrestrial carbon, and forest 
ecosystems contain enormous reservoirs of lignocellulose belowground, in dead 
trees, and litter. Decomposition of this recalcitrant material and mobilization of 
nutrients are essential for forest health [reviewed by Boddy and Watkinson (1995)]. 
Although mechanisms are incompletely understood, initial decomposition of ligno­
cellulose is efficiently carried out by certain filamentous fungi, and the genomes of 
representative species have been recently sequenced. This review covers these 
genome studies and the insight they provide regarding lignocellulose degradation. 
Emphasis is placed on extracellular oxidative systems which are widely thought to 
be involved in lignin degradation but increasingly implicated in the depolymeriza­
tion of cellulose and hemicellulose. Areas of uncertainty are highlighted. Detailed 
descriptions of the voluminous literature are not provided. Instead, interested 
readers are referred to earlier reviews (Cullen and Kersten 2004; Hatakka and 
Hammel 2010; Kersten and Cullen 2007). 

13.2 Microbiology of Woody Litter Decay 

Wood cell walls represent a complex and formidable substrate. Cellulose, essen­

tially linear chains of ß-1,4-linked cellobiose organized into microfibrils, is the 

major component. Where chains are tightly stacked, the polymer is crystalline and 

resistant to hydrolysis, Nevertheless, many microbes are capable of cellulose 

utilization by hydrolyzing the ß-1,4 linkages [reviewed by Baldrian and Valaskova 
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(2008)]. Hemicellulose is also widely utilized although a more diverse set of 
hydrolases are needed to fully degrade the branched polymer [reviewed by van 
den Brink and de Vries (2011)]. In contrast to cellulose and hemicellulose, lignin is 
a complex phenylpropanoid polymer (Higuchi 1990; Ralph et al. 2004). Few 
microbes have the capacity to depolymerize lignin, and none have been convinc­
ingly shown to utilize native lignin as a sole carbon source (Hatakka and Hammel 
20 10). 


Efficient wood degradation is typically attributed to Agaricomycetes, and two 
basic forms are recognized: white rot and brown rot. White rot fungi depolymerize 
and mineralize all cell wall components including cellulose, hemicellulose, and the 
more recalcitrant lignin. Decay patterns vary among fungal species and strains as 
well as among wood species, morphology, and composition (Blanchette 1991; 
Daniel 1994; Eriksson et al. 1990; Schwarze 2007). Cell wall erosion by most 
white rot fungi, including “Phanerochaete chrysosporium” involves simultaneous 
degradation of all three polymers, whereas Ceriporiopsis subvermispora selectively 
degrades lignin in advance of cellulose and hemicellulose (Blanchette et al. 1992, 
1997; Srebotnik and Messner 1994). In this context, it should be noted that reports 
of lignin depolymerization should be suspect in the absence of persuasive experi­
mental support such as cleavage of non-phenolic lignin model compounds (below) 
and the degradation of radiolabeled lignin or synthetic lignins. Experiments relying 
on commercially available “lignin” should be carefully interpreted as these 
preparations typically contain contaminants and sulfonated lignin of varying 
molecular weight. 

In contrast to white rot, brown rot fungi modify lignin but the polymeric residue 
remains (Niemenmaa et al. 2007; Yelle et al. 2008, 2011). Also distinctive, brown 
rot fungi rapidly depolymerize cellulose (Gilbertson 1981; Kirk et al. 1991; 
Kleman-Leyer et al. 1992; Worrall et al. 1997) in advance of extensive weight 
loss, This observation, together with microscopic localization of decay and studies 
of cell wall porosity, strongly argue for the involvement of small molecular weight 
oxidants diffusing into cell walls (Blanchette et al. 1997; Cowling 1961; Flournoy 
et al. 1993; Srebotnik and Messner 1991; Srebotnik et al. 1988). Hydroxyl radical 
has been repeatedly implicated as the diffusible oxidant, and its production 
attributed to Fenton reactions (H2O2 + Fe2+ + H+ H2O + Fe3+ + ·OH) 
(Arantes et al. 2011; Cohen et al. 2002, 2004; Xu and Goodell 2001). Typically 
invoked to explain brown rot, such reactive oxygen species may also be operative in 
white rot as recently suggested (Arantes et al. 2011; Gomez-Toribio et al. 2009). In 
any case, the role of hydroxyl radical in situ is unresolved, and any reasonable 
model must accommodate the generation of highly reactive radical at or near the 
substrate as well as the need for a plausible redox system [reviewed by Arantes 
et al. (2012) and Goodell (2003)]. The involvement of small molecular weight iron 
chelators (Xu and Goodell 2001), cellobiose dehydrogenase (Henriksson 
et al. 2000a, b), and hydroquinone redox cycling (Paszczynski et al. 1999; Suzuki 
et al. 2006) has been proposed. 

Beyond the wood-decay Agaricomycetes, several litter-inhabiting fungi have the 
capacity to degrade lignin, albeit less efficiently. These include the commercial 



button mushroom Agaricus bisporus (Durrant et al. 1991), other basidiomycetes 
and a few higher ascomycetes [reviewed by Eriksson et al. (1990) and Hatakka 
(2001)]. Certain litter-decomposing fungi likely play a crucial role in the transfor­
mation and degradation of humic substances, a major fraction of soil organic matter 
(Kluczek-Turpeinen et al. 2005; Snajdr et al. 2010; Steffen et al. 2002). Recently, a 
white rot fungus Trametes sp. has been shown to degrade humic substances, and a 
Fenton-based mechanism implicated (Grinhut et al. 2011a, b). 

Unexpectedly, recent studies have also connected hydroxyl radical-based degra­
dation of humic substances by ectomycorrhizal (ECM) fungi. Ectomycorrhiza 
obtain carbon from plant hosts, but under some conditions, soil organic matter 
may be at least partially degraded (Baldrian 2009; Cullings and Courty 2009). As 
described below, scant ECM genome evidence (Martin et al. 2008; Vaario 
et al. 2012) supports a role for facultative saprotrophy, but transcriptome analyses, 
together with lignin structure determinations, suggest mechanisms by which soil 
organic extracts could be degraded by Paxillus involutus (Rineau et al. 2012). 

13.3 Physiology and Genetics 

13.3.1 Peroxidases 

Peroxidases catalyze oxidations of diverse substrates with reduction of peroxide, 
which groups these enzymes under EC 1.11.x [donor: hydrogen peroxide oxidore­
ductase] in the NC-IUBMB system of nomenclature (Fleischmann et al. 2004). 
Beyond this description of chemical reaction, the classification of peroxidases 
based on protein properties is evolving as new enzymes are discovered and struc­
tural details are delineated indicating structure-function relationships. Not only 
may a single peroxidase have diverse substrates, but peroxidases of distinctly 
different structures may catalyze the same reaction. Furthermore, peroxidases 
may have different modes of oxidation while catalyzing the same net overall 
reaction. This presents significant challenges for classification of peroxidases into 
groups that adequately reflects function, protein structure, and phylogenetic relat­
edness (Hofrichter et al. 2010). 

The first opportunity to classify a selection of secreted fungal peroxidases based 
on their crystal structure occurred in the early 1990s; lignin peroxidase (LiP), 
manganese peroxidase (MnP), and Coprinus cinereus peroxidase (CiP) were 
shown to be sufficiently similar in overall 3D structure and active site to group as 
Class II peroxidases, distinct from Class I intracellular peroxidases, and Class III 
secretory plant peroxidases (Welinder 1992). Versatile peroxidase (VP), more 
recently discovered, shows properties of both LiP and MnP and is likewise a 
Class II peroxidase. However, other newly discovered heme-thiolate peroxidases 
(HtPs) and the dye-decolorizing peroxidases (DyPs) are clearly distinct in 
sequence, protein structure, and catalysis, justifying establishment of HtP-like 
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and DyP-like peroxidase superfamilies, separate from the Class II peroxidases, 
These complexities of fungal peroxidases and differences between “new” and 
“classic” families have been recently reviewed (Hofrichter et al. 2010). Salient 
properties of peroxidases as they may relate to litter and soil ecosystems are briefly 
summarized here. 

13.3.1.1 	 High Oxidation Potential Class II Peroxidases (LiP, MnP, 
and VP) 

Three Class II peroxidases, the LiPs (systematic name 1,2-bis 
(3,4-dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide oxidoreductase; EC 
1.11.l.14), VPs (systematic name reactive-black-5:hydrogen peroxide oxidoreduc­
tase; EC 1.1 1.1.16), and MnPs (systematic name Mn(II):hydrogen peroxide oxido­
reductase; EC 1.11.1.13) are able to modify lignin and other recalcitrant aromatic 
molecules in part due to their high oxidation capacity, in contrast to low redox 
potential peroxidases (e.g., CiP and NoP, also Class II peroxidases; see following 
section), LiP and VP are the most powerful of the peroxidases with redox potentials 
of approximately 1.5 V and able to oxidize non-phenolic lignin model compounds 
directly by one electron (Kersten et al. 1985; Kirk et al. 1986; Miki et al. 1986). 
Another feature of both LiP and VP is an enzyme surface tryptophan that mediates 
oxidation through long-range electron transfer (LRET) enabling oxidation of larger 
sterically hindered non-phenolic substrates (Choinowski et al. 1999; Doyle 
et al. 1998). 

Unlike LiPs and VPs, the MnPs do not have a conserved Trp at the enzyme 
surface and are not able to efficiently oxidize non-phenolic aromatics directly. 
Instead, MnPs have a conserved solvent-exposed Mn-binding site in the vicinity 
of a heme propionate and therefore are able to catalyze the oxidation of Mn2+ to 
Mn3+ in the presence of peroxide and suitable Mn3+ chelators (Sundaramoorthy 
et al. 1994; Wariishi et al. 1992). The VPs similarly have a Mn-binding site and 
therefore have hybrid characteristics of both LiPs and MnPs (Ruiz-Dueñas 
et al. 2009). A likely, physiological Mn3+ chelator for the MnP- and VP-catalyzed 
reactions is oxalate, which is known to be secreted by these fungi (Kuan and Tien 
1993). Therefore, one role of MnPs and VPs is thought to be generation of 
diffusible Mn3+ chelates, which can oxidize phenolics directly. A more complex 
role may also be possible via oxidation of the chelates, thus generating other 
oxidizing species such as superoxide and perhydroxyl radical, which initiate radical 
chain reactions (e.g., in the presence of lipids) to generate ligninolytic radicals 
(Kapich et al. 1999). Phylogenetic analyses show the rise to two groups of MnPs, 
the so-called long-MnPs and the short-type hybrid MnPs which are more closely 
related to LiPs and VPs (Lundell et al. 2010). 

The oxidizing capacity of these Class II peroxidases is achieved through the 
classical peroxidative cycle where “resting” enzyme is oxidized with peroxide by 
two electrons to generate Compound I enzyme intermediate. Compound I oxidizes 
substrates by one electron to produce oxidized substrate and Compound II enzyme 



intermediate. The Compound II also oxidizes substrate, returning the enzyme back 
to “resting” state. In the case of LiPs and VPs with non-phenolic aromatics, the 
oxidized substrate are cation radicals and, as demonstrated with various substrates, 
the fate of the cation radical substrate intermediates is in large part determined by 
the substrate structure. Importantly, these reactions result in fragmentation of lignin 
model compounds and lignin (Miki et al. 1986; Tien and Kirk 1983). 

Genes encoding Class II peroxidases have been identified in all lignin-degrading 
fungi, but not in brown rot or ECM. Trametes versicolor and P. chrysosporium 
genomes each feature ten LiP genes, but the corresponding proteins were not 
identified after 5 days growth in media containing ground aspen as sole carbon 
source (Table 13.1). On the other hand, ground pine wood and nutrient limited 
defined media support high transcript levels and secretion of several 
P. chrysosporium LiP and MnP isozymes (Vanden Wymelenberg et al. 2005, 
2006b, 2009, 2010, 2011). Relative to LiPs, MnP-encoding genes appear more 
widely distributed. Sixteen MnP genes were identified in the genome of white rot 
fungus Fomitiporia mediterranea, and the corresponding proteins of seven are 
secreted in aspen cultures. Two A. bisporus MnP genes have been identified, and 
significant transcript accumulation occurs for one of these in compost (Morin 
et al. 2012). No Class II peroxidases were detected in the Schizophyllum commune 
genome. Although often classified as a white rot fungus and thereby presumed 
ligninolytic, the genetic repertoire of S. commune is consistent with weak or 
nonexistent lignin degradation (Boyle et al. 1992; Schmidt and Liese 1980). 

Many wood- and litter-inhabiting fungi are clearly able to transform lignin or 
structurally related components of humic substances, but little is known about the 
role, if any, of high oxidation potential peroxidases in litter and soils. 14C-labeled 
lignin and humic acid are degraded by litter decomposers Gymnopus erythropus 
and Hypholoma fasciculare when cultured on sterile leaf litter. MnP activity was 
higher in G. erythropus colonized litter, but degradation was less efficient for both 
species on non-sterile material, presumably due to interspecific competition (Snajdr 
et al. 2010). Similarly, laboratory experiments demonstrated degradation of 14C­
labeled humic acid and production of MnP by the litter decomposer, Collybia 
dryoplzila (Steffen et al. 2002). Laboratory studies of P.chrysosporium-colonized 
wood chips and soil have quantified transcript levels of specific LiP and MnP genes 
(Bogan et al. 1996b; Janse et al. 1998), and MnP activity was measured in 
organopollutant-contaminated soil (Bogan et al. 1996a). 

13.3.1.2 Low Oxidation Potential Class II Peroxidases (CiP and NoP) 

“Coprinopsis cinerea peroxidase” or CiP (systematic name phenolic donor: hydro­
gen-peroxide oxidoreductase; EC 1.11.1.7) is not able to oxidize non-phenolics 
such as veratryl alcohol; neither does it have the manganese-binding site of VP or 
MnP. Rather, CiP very efficiently oxidizes phenolics as a low oxidation peroxidase. 
As with other Class II peroxidases, CiP is similar in structure with conserved 
proximal and distal histidines near the heme active site; however, when compared 



Table 13.1 Agaricomycete genes potentially involved in lignocellulose degradation: mass spectrometry-identified proteins-genenumber 

White rot Brown rot Saprotrophs ECM 

Gene Ad Cs Ds _Fm Ha Pc Ps Sc Sh Tv Cp Fp Gt Pp Sl Wc Ab Cc Lb 
LiP 0-0 0-0 0-0 0-0 0 0-10 0-0 0 0-0 0-10 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0 0-0 
MnP 0-5 2-13 0-9 7-16 8 0-5 1-10 0 0-10 2-13 0-0 0-0 0-0 0-0 0-0 0-0 2 0 0-0 
VP 0-0 0-2 0-3 0-0 0 0-0 0-0 0 0-0 1-2 0-0 0-0 0-0 0-0 0-0 0-0 0 0 0-0 
HtP 1-16 0-9 0-4 0-4 5 0-3 0-8 3 0-10 0-3 0-2 1-4 0-6 0-5 0-3 0-5 24 8 0-5 
DyP 1-11 0-0 1-1 0-3 1 0-0 1-5 0 0-2 1-2 0-0 0-0 0-0 0-2 0-0 0-0 0 4 0-2 
Lac 0-7 1-7 3-11 5-10 13 0-0 2-12 2 0-15 4-7 0-6 0-5 4 0-3 1-4 1-5 12 17 0-9 
GLX 0-2 0-0 0-5 0-0 0 0-1 1-3 0 0-3 1-5 0-0 0-0 0-0 0-0 0-0 0-0 3 0 0-0 
Cro1 0-0 0-0 0-1 0-1 1 0-1 0-0 0 0-0 0-1 0-1 0-1 0-0 0-0 0-0 0-1 2 3 1-6 
Cro2 2-3 0-2 1-1 0-1 1 0-2 1-3 1 1-3 1-1 3-4 1-1 2-1 0-1 0-1 1-1 2 2 2-2 
Cro3/5 1-1 0-1 1-1 0-1 1 0-3 1-1 0 0-1 1-1 0-0 0-1 0-0 1-1 0-1 1-1 1 1 0-2 
Cro6 1-2 0-1 0-1 0-1 1 0-1 0-1 1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 1 1 0-0 
CDH 0-1 0-1 1-1 0-1 1 0-1 1-1 1 1-1 1-1 1-1 0-0 0-1 0-0 0-2 0-0 1 1 0-0 
GH61 1-19 0-9 3-15 0-13 10 2-15 6-13 22 1-16 1-16 0-10 0-4 1-4 0-2 0-5 0-2 11 35 0-5 
GH6 2-2 1-1 1-1 0-2 1 1-1 1-1 1 1-1 1-1 0-2 0-0 0-0 0-0 0-1 0-0 1 5 0-0 
GH7 2-6 1-3 1-4 0-2 1 3-6 1-5 2 1-3 1-4 0-2 0-0 9-0 0-0 0-0 0-0 1 6 0-0 
UP 56 98 43 20 NA 27 30 NA 36 44 49 65 53 9 NA 21 NA NA NA 
TP 151 121 180 85 NA 90 135 NA 208 218 269 253 174 64 NA 171 NA NA NA 
Hyphenated entries report the number of published proteins identified by mass spectrometry followed by the total number of predicted genes. Citations and 
abbreviations: (Floudas et al. 20 12) Ad, Auricularia delicata; Ds, Dichomitus squalens; Fm, Fomitiporia mediterranea; Ps, Punctularia strigosozonata; Sh, 
Stereum hirsutum; Tv, Trametes versicolor; Cp, Coniophora puteana; Fp, Fomitopsis pinicola; Gt, Gloeophyllum trabeum; and Sc, Wolfiporia cocos. 
(Fernandez-Fueyo et al. 20 12) Cs, Ceriporiopsis subvermispora. (Olson et al. 2012) Ha, Heterobasidion annosum. (Vanden Wymelenberg et al. 2011) Pc, 
Phanerochaete chrysosporium. (Ohm et al. 2010) Sc, Schizophyllum commune. (Martinez et al. 2009) Pp, Postia placenta. (Eastwood et al. 20 11) Sl, Serpula 
lacrymans. (Morin et al. 2012) Ab, Agaricus bisporus. (Stajich et al. 2010) Cc, Coprinopsis cinereus. (Vincent et al. 2012) Lb, Laccaria bicolor. The total 
number of proteins identified in aspen-containing medium and those designated as uncharacterized are indicated by TP and UP, respectively. Additional 
abbreviations include the following: LiP, lignin peroxidase; MnP, manganese peroxidase; VP, versatile peroxidase; HTP, heme-thiol peroxidase; DyP, 
dye-decolorizing peroxidases; Lac, laccase; GLX, the copper radical oxidase glyoxal oxidase; CROs, copper radical oxidases most closely related to those of 
P. chrysosporium (Vanden Wymelenberg et al. 2006a); CDH, cellobiose dehydrogenase; and GH61, GH6, and GH7, members of the glycoside hydrolase 
families 61, 6, and 7, respectively 



to LiP, the distal side substrate channel is more open to easily oxidized reducing 
aromatic substrates (Kunishima et al. 1994; Petersen et al. 1994). However, CiP can 
be engineered to have activity with veratryl alcohol, the standard high redox 
potential substrate for LiP, by mutations to introduce the surface Trp and negatively 
charged microenvironment (Smith et al. 2009). Based on sequence analysis, genes 
encoding such low oxidation peroxidases have also been identified in brown rot 
fungi F. pinicola, P. placenta, and W. cocos as well as the white rot fungi 
C. subvermispora, C. strigosozonata, F. mediterranea, H. annosum, S. hirsutum 
(Floudas et al. 2012), and P. chrysosporium. Designated NoP, the P. chrysosporium 
structure has been studied in some detail (Larrondo et al. 2005). High transcript 
levels and secreted proteins have not been observed, and the role of these 
peroxidases remains uncertain. 

13.3.1.3 Heme-thiolate Peroxidases 

Heme-thiolate peroxidases (HtPs) comprise a superfamily of secreted fungal 
peroxidases distinguished from the Class II peroxidases, not only by the proximal 
cysteine and distal glutamate heme ligands but also by distinctive 3D structure, 
protein sequence, and remarkable catalytic capacity. HtPs are classified based on 
dominating reactions that are consistent with chloroperoxidase (CPOs; systematic 
name chloride:hydrogen-peroxide oxidoreductase; EC 1.1 1.1.10) and aromatic 
peroxygenase (APOs; systematic name substrate:hydrogen peroxide oxidoreduc­
tase (RH-hydroxylating or -epoxidizing); EC 1.1 1.2.1) activities. 

CPO from Caldariomyces fumago halogenates suitable organic substrates in the 
presence of peroxide and halide (Morris and Hager 1966; Shaw and Hager 1959). 
The primary function of CPO here is oxidization of chloride (Cl-) to hypochlorous 
acid, which is a strong oxidant and able to chlorinate the organic compounds 
(Murali Manoj 2006). Bromide and iodide are also oxidized by CPO, but not 
fluoride. If halide is absent, CPO oxidizes suitably substituted phenols and anilines 
directly. In the case of chlorinated phenols, oxidations with CPO are much more 
efficient than with horseradish peroxidase, LiP or VP (Casella et al. 1994; Longoria 
et al. 2008; Osborne et al. 2007). Besides halogenation and phenol oxidation 
capability, CPO also has peroxygenase properties, resembling cytochrome P450­
dependent monooxygenase (also a heme-thiolate) in catalysis and structure (Manoj 
and Hager 2008; Sundaramoorthy et al. 1995). CPO is able to epoxidize alkenes and 
hydroxylates benzylic carbons via a peroxygenase mechanism (Manoj and Hager 
2008), but oxygen transfer to less-activated molecules such as alkanes or aromatic 
rings is not catalyzed. The proposed functional roles of the enzyme are varied, from 
biosynthesis of chlorinated metabolites (Morris and Hager 1966) to antimicrobial 
activity, due to the biocidal activity of hypochlorite (Bengtson et al. 2009). A 
consequence of the nonspecificity of CPOs and the reactive chemical species 
generated is the chlorination of lignin (Ortiz-Bermúdez et al. 2007). 

In contrast to CPO, the fungal peroxygenases (APOs) from Agrocybe aegerita 
(AaeAPO; Ullrich et al. 2004), Coprinellus radians (CraAPO; Anh et al. 2007; 
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Aranda et al. 2009), and Marasmius rotula (MroAPO; Gröbe et al. 2011) are all able 
to catalyze oxygen transfer reactions to aromatic rings, in addition to other divers 
reactions. AaeAPO was first described as a haloperoxidase but with further charac­
terization shown to be a functional hybrid with properties of both a peroxidase and a 
monooxygenase (Hofrichter et al. 2010). APOs have a wide variety of substrates 
including polyaromatics (e.g., naphthalene), recalcitrant heterocycles (e.g., pyri­
dine), ethers (with O-dealkylation resulting), and alkanes (e.g., propane and hex­
ane). The chemical transformations include hydroxylation, epoxidation, 
N-oxidation, sulfooxidation, bromination, and one-electron oxidations. However, 
the array of reactions is not shared by all APOs; the MroAPO of M. rotula does not 
have the brominating activity of AaeAPO and CraAPO (Gröbe et al. 2011). 

All sequenced Agaricomycete genomes feature genes encoding HtPs, but their 
number and expression vary substantially. Peptides were identified in culture 
filtrates of A. delicata and F. pinicola (Floudas et al. 2012). LC-MS/MS could 
not detect HTPs in P. chrysosporium or P. placenta cultures (Vanden Wymelenberg 
et al. 2011), although each species exhibited significant transcript accumulation of 
two HtP genes in wood-containing cultures relative to glucose medium. More 
impressive, 24 HtP genes were predicted in the A. bisporus genome, and 16 of 
these were significantly upregulated in compost (Morin et al. 2012). This observa­
tion suggests that HtPs may play an important role in metabolism of partially 
decomposed litter and humic substances. A Dacrymycete classified as a brown 
rotter, Dacryopinax sp., contains six putative HtP-encoding genes, and the 
corresponding protein has been detected for two of these (Floudas et al. 2012). 

13.3.1.4 Dye-Decolorizing Peroxidases 

Prototypical DyP was isolated from the Agaricomycete Bjerkandera adusta [first 
reported as Geotrichum candidum Dec 1, re-identified as Thanatephorus cucumeris 
Dec 1, and then B. adusta (Ruiz-Dueñas et al. 2011)] because of its 
dye-decolorizing activities (Kim and Shoda 1999; Kim et al. 1995; Sugano 2009). 
Subsequent structural and sequence comparisons indicate that the peroxidase is 
unlike any previously characterized peroxidase (Sugano et al. 2007; Zubieta 
et al. 2007). DyPs (systematic name Reactive-Blue-5:hydrogen peroxide oxidore­
ductase; EC 1.11.1.19) have a proximal histidine, but unlike the Class II and HtP 
peroxidases, DyPs have a distal Asp. The model substrate, Reactive Blue 5, is 
converted to products by a combination of oxidation and hydrolytic steps. Other 
dyes, anthraquinone derivatives and typical peroxidase substrates, are also 
oxidized. Structural and biochemical characterization of DyP-like peroxidases 
from bacteria is also reported (Brown et al. 2012; Zubieta et al. 2007). In the case 
of Amycolatopsis, the DyP2 appears multifunctional, showing high peroxidase 
activity, manganese peroxidase activity, and also a mode of oxidase activity with 
4-methoxymandelic acid (Brown et al. 2012). Liers et al. (2013) have recently 
compared activities of fungal DyP with heme peroxidases, and considering the 



complex catalytic properties of the DyPs, the physiological roles are most likely 
diverse. 

The number of DyP-encoding genes varies significantly among Agaricomycetes. 
Certain efficient lignin degraders such as P. chrysosporium and C. subvermispora 
have none, while 1 I genes are predicted in the A. delicata genome (Table 13.1). Of 
eight white rot cultures subjected to LC-MS/MS analysis, four contained the 
corresponding peptides. Five brown rot fungi have no DyP genes. Only one 
brown rot fungus, P. placenta, is predicted to have DyP genes, but the 
corresponding proteins were not detected in aspen-containing medium (Vanden 
Wymelenberg et al. 2011). Significant protein levels occur in ground wood culture 
filtrates of T. versicolor, D. squalens, A. delicata, and P. strigozonata where a 
single DyP constituted 2.2 %, 1.3 %, 0.1 %, and 0.08 %, respectively, of the total 
spectra (Floudas et al. 2012). 

13.3.2 Extracellular Peroxide Generation 

It is readily apparent that extracellular peroxide is a key player in lignocellulose 
biotransformation in view of the importance of peroxide-dependent peroxidases 
secreted by fungi (previous section). Even prior to the discovery of these 
peroxidases, a correlation was observed between peroxide production and the 
physiology of ligninolysis by P. chrysosporium (Faison and Kirk 1983; Forney 
et al. 1982; Keyser et al. 1978). There appears to be several possible mechanisms 
for peroxide production, including by MnP with fungal metabolites oxalate and 
glyoxylate; peroxide is evidently generated as a consequence of reactions of oxygen 
with carbon-centered radical substrate intermediates (Kuan and Tien 1993; Urzúa 
et al. 1998). Oxidases that catalyze reduction of oxygen to peroxide, and where 
evidence indicates an extracellular role in supporting peroxidase activities, are 
briefly summarized here. 

13.3.2.1 Copper Radical Oxidases 

Glyoxal oxidase (GLX) was first reported in cultures of P. chrysosporium where its 
activity was correlated with substrates glyoxal and methylglyoxal in culture, and 
with LiP activity (Kersten and Kirk 1987). Importantly, the activity of GLX was 
activated by interaction with LiP (Kersten 1990). Sequence comparisons and 
spectroscopic comparisons indicate that GLX has a similar active site to that of 
the copper radical oxidase (CRO) galactose oxidase (Kersten and Cullen 1993; 
Whittaker et al. 1996, 1999). Copper radical oxidases have two one-electron 
acceptors: a copper (II) metal at the center of the active site and a Cys-Tyr radical 
forming a metallo-radical complex (Whittaker 2005). Alignment of galactose 
oxidase with GLX indicates that the catalytic domain of GLX supplies copper 
ligands Tyr135 Tyr377 and His378 while Cys70 is cross-linked with Tyr135 to 
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form an internal radical cofactor of the sevenfold ß-barrel domain (also described as 
a super-barrel or ß-flower). The C-terminal domain supplies His471 copper ligand 
on a loop through the center of the catalytic barrel. Analysis of the 
P. chrysosporium genome indicates multiple CROs where predicted mature protein 
sequences diverge substantially from one another, but the residues coordinating 
copper and constituting the radical redox site are conserved (Vanden Wymelenberg 
et al. 2006a). 

More recent analysis of Agaricomycete genomes has revealed widespread dis­
tribution of GLX and related copper radical oxidases (Table 13.1). GLX homologs 
are lacking from brown rot fungi, C. cinereus and L. bicolor, but present in most 
lignin-degrading fungi, Notable exceptions include C. subvermispora, a selective 
and highly efficient lignin degrader. Possibly, the related copper radical oxidases 
cro2, cro3, and cro6 compensate by oxidizing an array of metabolites unique to 
C. subvermispora decay. Along these lines, elevated transcript levels of the 
C. subvermispora cro2 gene were observed in wood-containing medium, and 
peptides corresponding to CRO5 were detected in medium using microcrystalline 
cellulose as sole carbon source (Fernandez-Fueyo et al. 20 12). Earlier reports 
showed that the substrate preference of P. chrysosporium CRO2 differed sharply 
from GLX (Vanden Wymelenberg et al. 2006a). 

13.3.2.2 GMCOxidoreductases 

Another oxidase produced by P. chrysosporium and a select number of other white 
and brown rot fungi is pyranose 2-oxidase (P2O), which oxidizes glucose at C-2 to 
produce D-arabino-hexos-2-ulose (glucosone) with reduction of oxygen to perox­
ide (Baute and Baute 1984; de Koker et al. 2004; Dietrich and Crooks 2009; 
Giffhorn 2000). The protein is a large homotetrameric flavoprotein with a subunit 
size of' about 70·kDa (Hallberg et al. 2004). It is a member of the glucose-methanol­
choline oxidoreductase family (Albrecht and Lengauer 2003), a superfamily of 
proteins including Drosophila melanogaster glucose dehydrogenase, Aspergillus 
niger glucose oxidase, Hansenula polymorpha methanol oxidase, and Escherichia 
coli choline dehydrogenase (Cavener 1992). The periplasinic and extracellular 
distribution of pyranose 2-oxidase in wood decayed by P. chrysosporium is consis­
tent with that of MnP, suggesting a role in extracellular peroxide generation (Daniel 
et al. 1994). An alternative role for pyranose 2-oxidase is the synthesis of the 
antibiotic cortalcerone (Koths el al. 1992), but many fungi that have pyranose 2­
oxidase do not have aldo-2-ulose dehydratase required for cortalcerone synthesis 
(Baute and Baute 1984). Quinones are alternate electron acceptors in place of 
oxygen, and therefore, the oxidase may have a role in redox cycling during 
lignocellulose degradation (Pisanelli et al. 2009). P2O-encoding genes are 
predicted in the genomes of brown rot fungi G. trabeum and S. lacrymans as well 



as the white rot fungi A. delicata, P. strigosozonata, T. versicolor, and 
P. chrysosporium. 

Another GMC oxidoreductase involved in peroxide generation is the extracellu­
lar monomeric aryl-alcohol oxidase (AAO) [recently reviewed by Hernández-
Ortega et al. (2012)]. AAO substrates may be both lignin-derived metabolites, as 
well as aromatic fungal metabolites synthesized de novo (de Jong et al. 1994; 
Gutiérrez et al. 1994). The aromatic alcohol substrates are oxidized to the 
corresponding aldehydes by AAOs, and these aldehydes reduced back to alcohols 
by intracellular aryl-alcohol dehydrogenases, thus establishing a redox cycle for the 
generation of extracellular peroxide using reducing equivalents derived from intra­
cellular metabolism. A possible role for AAO in preventing polymerization of 
lignin fragments by reduction of quinone and phenoxyradicals is also described 
(Marzullo et al. 1995). The AAO from P. eryngii has been heterologously expressed 
in E. coli (Ruiz-Dueñas et al. 2006) and crystal structure determined (Fernandez 
et al. 2009). The GMC oxidoreductase methanol oxidase is also proposed to have a 
role in peroxide production using methanol released from lignin methoxyls 
(Nishida and Eriksson 1987). Although a signal peptide is not evident from gene 
structure, the oxidase appears to have an extracellular role in wood decay with 
G. trabeum (Daniel et al. 2007). Putative methanol oxidase- and AAO-encoding 
genes have been identified in a wide range of white rot and brown rot fungi 
(Hernández-Ortega et al. 2012). In C. subvermispora and P. chrysosporium, the 
AAO genes show no transcript accumulation in medium containing ground wood 
relative to glucose-containing media (Fernandez-Fueyo et al. 2012; Vanden 
Wymelenberg et al. 2011). 

A potentially important oxidoreductase, cellobiose dehydrogenase (CDH), 
oxidizes cellodextrins, mannodextrins, and lactose. In addition to the dehydroge­
nase, the mature protein contains a heme prosthetic group and a cellulose-binding 
module (Hallberg et al. 2000). Electron acceptors include quinones, 
phenoxyradicals, and Fe3+, and involvement in hydroxyl radical generation has 
been proposed. CDH genes are widely distributed (Table 13.1) as are “glycoside 
hydrolase” family 61 (GH61) genes. Recently shown to act as copper-dependent 
monooxygenases (Quinlan et al. 2011; Westereng et al. 2011), the GH61s can act 
together with CDHs to boost cellulose depolymerization (Harris et al. 2010; 
Langston et al. 2011). The precise roles(s) and interaction(s) between these genes 
remain to be clarified. 

While the abovementioned oxidoreductases can be functionally categorized on 
the basis of sequence conservation, many variants defy simple classification. For 
example, peptides corresponding to S. hirsutum protein model #118344 (http:// 
genome.jgi.doe.gov/Stehil/Stehil.home.html) constitute 5.3 % of the total spectra 
observed in wood-containing medium. The protein features a secretion signal and 
InterPro domains that point toward a GMC oxidoreductase, but little additional 
information allows a firm definition. 



322 

13.3.3 Laccases 

P. Kersten and D. Cullen 

Laccases are diverse in origin (plants, fungi, and bacteria) and properties [see 
review (Thurston 1994)]. Brief description of fungal laccase is presented here to 
highlight the essential properties distinguishing it from the enzymes in the forego­
ing sections. Laccase (systematic name benzenediol:oxygen oxidoreductase; EC 
1.10.3.2) catalyzes the four-electron reduction of oxygen to water with the electrons 
derived by four one-electron oxidations of substrate (typically phenols or aryl 
amines). The four-electron reduction is achieved with four copper ions at three 
enzyme sites: the T1 site contains a type I copper in tight coordination with 
cysteine which gives laccase its blue color, the T2 site has a type 2 copper with 
characteristic EPR signal, and the T3 site has a pair of strongly coupled EPR-silent 
type 3 coppers (Bertrand et al. 2002). The T1 site mediates oxidations with transfer 
of electrons to the T2/T3 trinuclear center where electrons are transferred to 
oxygen. The capacity for single-electron oxidations by laccase from T. versicolor, 
in comparison with LiP and Class III HRP, was demonstrated with 1,2,4,5­
tetramethoxybenzene producing the corresponding cation radical as immediate 
product (Kersten et al. 1990). Although the laccase oxidized this methoxybenzene 
congener, it did not have the same capacity as the peroxidases to oxidize 
methoxybenzenes of higher potential. Laccase oxidation of phenols generates 
intermediates which may undergo further enzyme-catalyzed oxidation (e.g., 
generating quinones) or the unstable intermediates may undergo nonenzymatic 
reactions such as polymerizations (Thurston 1994). Laccase genes are widely 
distributed among fungi (Table 13.1) but not essential for ligninolysis as 
demonstrated by the lack of the enzyme in P. chrysosporium (Martinez 
et al. 2004). Differential expression among paralogs is commonly observed (see, 
e.g., Castanera et al. 2012; Floudas et al. 2012), although the role of genetic 
mul tip licity is poorly understood, Excluding P. chrysosporium, considerable evi­
dence suggests that laccase may have a role in lignin modification or plant litter 
decay (Bourbonnais et al. 1997; Kellner et al. 2007). 

13.3.4 Hypothetical and Uncharacterized Proteins 

A persistent concern has been the incomplete understanding of predicted proteins 
lacking significant homology to those of known function (herein referred to as 
“hypothetical”), some of which are translated and secreted (herein referred to as 
“uncharacterized”). The dimensions of this issue are staggering. For example, 21 % 
of the 13,761 C. puteana protein models showed no significant similarity to NCBI 
NR database entries (Floudas et al. 2012). Mass spectrometry analysis of filtrates 
from aspen-containing media identified 269 separate proteins, and 49 of these were 
designated “uncharacterized” (Table 13.1). High expression levels, conserved 
domains, and/or structural features are sometimes observed for these 



uncharacterized proteins. Thus, C. puteana protein #125481 (http://genome.jgi.doe. 
gov/Conpul/Conpul.home.html) constitutes 1.9 % of total spectra and has a 
predicted secretion signal and an InterPro conserved domain of unknown function 
(DUF 1793). 

13.4 Challenges and Future Prospects 

The daunting number of hypothetical proteins and the lack of appropriate experi­
mental tools present significant obstacles to progress in this area. Transcript and 
secretome profiles provide clues, but detailed functional analysis requires biochem­
ical characterization of heterologously expressed proteins and/or targeted gene 
replacement/suppression. The latter goal has been particularly difficult to achieve 
because genetic transformation of filamentous basidiomycetes has typically 
involved low rates of homologous recombination. Recently, this obstacle has 
been overcome by isolating Ku knockouts that impair nonhomologous end joining 
in S. commune (de Jong et al. 2010), C. cinereus (Nakazawa et al. 2011), and 
P. ostreatus (Salame et al. 2012). Demonstrating the power of the approach, Salame 
et al. demonstrated the importance of P. pleurotus MnP4 by successfully 
inactivating the VP gene. Likely, this experimental approach will be applied to 
additional Agaricomycetes in the future. 

Availability of increasing numbers of genome sequences facilitates high-
throughput approaches for elucidating community structure and physiological 
processes in soils. In addition to the widely used ribosomal DNA and/or the internal 
transcribed spacer region (ITS) (Buee et al. 2009), the distribution of highly 
conserved genes such as those encoding laccases and cellobiohydrolases gauge 
fungal diversity in different soils and soil horizons (Baldrian et al. 2012; Luis 
et al. 2005). When combined with rRNA sequence, a more complete picture of 
microbial populations and active metabolism emerges. Degenerate primers 
amplified cDNAs corresponding to basidiomycete laccases, MnPs, and HtPs 
(Kellner et al. 2010), and more recent “metatranscriptomic” investigations have 
provided a more global view of transcript levels (Simon and Daniel 2011). 
Examples include the assessment of soil gene expression in response to phenan­
threne contamination (de Menezes et al. 2012) and the measurements of transcript 
and populations in various forest soils (Damon et al. 2012). Both investigations 
identified transcripts corresponding to Agaricomycete degradative enzymes, and 
the latter study also employed 18S rRNA sequencing to assign broad taxonomic 
affiliations (Damon et al. 2012). Metatranscriptome approaches can be enhanced or 
extended to functional analysis by expression of full-length genes in Saccharomy­
ces cerevisiae (Bailly et al. 2007; Damon et al. 2011; Kellner et al. 2011). 

Also promising are the prospects for direct detection of fungal proteins and 
enzyme activities in natural substrates and/or field soils. Immobilization of fluores­
cent substrates allows visualization of hydrolytic enzymes on decaying litter, 
leaves, and wood (Baldrian and Vetrovsky 2012). In addition to such localization, 

http://genome.jgi.doe
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metabolite identification could play a key role in defining the processes involved in 
decomposition. Thus, NMR and GC/MS of field-collected decayed wood provided 
evidence for Fenton-based brown rot (Martinez et al. 2011). Fenton chemistry was 
also implicated in laboratory studies of P. involutus cultured on soil extracts using 
FTIR and GC/MS coupled to enzyme activities and to mRNAseq (Rineau 
et al. 2012). Metaproteomics [reviewed by Hettich et al. (2012)] offer unparalleled 
opportunities for understanding microbial processes as demonstrated by recent 
mass spectrometry of soil (Keiblinger et al. 2012) and leaf litter samples (Schneider 
et al. 2012). Although challenging technical issues remain, these experimental 
approaches are beginning to shed light on the roles and interactions of fungi in 
forest soils. 
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