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I. Introduction

Wood decay fungi are obligate aerobes, deriving
nutrients from the biological ‘combustion’ of
wood, using molecular oxygen as terminal elec-
tron acceptor (Kirk and Farrell 1987; Blanchette
1991). Non-specific extracellular enzymes are
generally viewed as key components in
lignin depolymerization. The major enzymes
implicated in lignin degradation are lignin per-
oxidase (LiP), manganese peroxidase (MnP), and

laccase. All three can act with low molecular
weight mediators to bring about oxidation of
lignin and various xenobiotics (Cullen 2002).

Saprotrophic Agaricomycotina, particu-
larly ligninolytic ‘white-rot fungi’ have been
extensively studied for their ability to degrade
a wide range of organopollutants such as poly-
cyclic aromatic hydrocarbons (PAHs), pharma-
ceuticals, pentachlorophenol (PCP), pesticides,
and explosives. The unique extracellular sys-
tems of the white-rot fungi have been repeat-
edly invoked to explain the extraordinary
oxidation potential of these microbes, but the
precise mechanisms remain elusive. In addition
to secreted enzyme systems, intracellular meta-
bolic processes are responsible for further
transformation, degradation, and, often, miner-
alization of compounds. Cytochrome P450s
have been implicated in several instances, and
a hallmark of most Agaricomycotina is a large
number of P450 encoding genes.

The nature and extent of white-rot genetic
diversity have been more fully appreciated in
recent years, with the rapid increase in genome
sequencing and analysis. Among the white-rot
species known to degrade recalcitrant PAHs,
sequences of Phanerochete chrysosporium (Mar-
tinez et al. 2004), Pleurotus ostreatus (http://
genome.jgi.doe.gov/PleosPC15_2/PleosPC15_2.
info.html) (Fig. 5.1), Ceriporiopsis subvermis-
pora (Fernandez-Fueyo et al. 2012), Trametes
versicolor, and Dichomitus squalens (Floudas
et al. 2012) are now publicly available. This
review provides a critical analysis of recent
advances on the genetics and physiology of
wood decay fungi as they relate to organopol-
lutant degradation, and we place particular
emphasis on the model experimental systems
P. chrysosporium and P. ostreatus. This is not
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intended to be a comprehensive treatment of
the voluminous physiological literature in this
area. Interested readers are referred to earlier
reviews (Kirk and Farrell 1987; Eriksson et al.
1990; Cullen and Kersten 2004).

II. Biochemistry of Lignin and
Organopollutant Degradation

A. Lignin Peroxidase

Lignin peroxidase (LiP) will cleave Ca–Cb
bonds of lignin model compounds and par-
tially depolymerize methylated lignin in vitro
(Glenn et al. 1983; Tien and Kirk 1983, 1984;
Gold et al. 1984). A variety of oxidations, all
dependent on H2O2, have been demonstrated
(Harvey et al. 1985; Kersten et al. 1985; Shoe-
maker et al. 1985; Hammel et al. 1986b). In
short, LiP oxidizes aromatic substrates by a
single electron, and the resulting aryl cation
radicals undergo spontaneous degradation,
yielding many different products dependent
on substrate structure. The complex reactions
and the role(s) of peroxidases in ligninolysis
have been reviewed (Higuchi 1990; Hammel
and Cullen 2008).

Given their low specificity and high oxidation
potential, it is perhaps not surprising the LiPs oxidize
a remarkable array of organopollutants (reviewed in
Refs. Higson 1991; Hammel 1995a, b; Pointing 2001;
Cullen 2002). Among these are the PAHs, pollutants
from both geochemical and anthropogenic sources.
PAHs consist of three or more benzene rings fused in
a linear, angular, or cluster arrangement. As their
molecular weight increases, water solubility and bio-
degradability decrease and genotoxicity increases.
The biodegradation and bioremediation of these com-
pounds have attracted much attention in recent dec-
ades. (reviewed in Refs. Peng et al. 2008; Gan et al. 2009;
Haritash and Kaushik 2009; Lu et al. 2011)

Phanerochaete chrysosporium has been the
most intensively studied white-rot fungus for
its extraordinary ability to oxidize and/or min-
eralize a broad range of PAHs. For example,
P. chrysosporium degraded at least 22 PAHs,
including all of the most abundant PAH compo-
nents present in anthracene oil, and underwent
70–100 % disappearance during 27 days of incu-
bation with nutrient nitrogen-limited cultures
(Bumpus 1989). The mechanism(s) of degrada-
tion of PAHs is/are diverse, and can include
those that are unique to ligninolytic fungi or
exist in othermicroorganisms. Benzo (a) pyrene,
anthracene, and pyrene have ionization poten-
tials below 7.6 eV, and serve as substrates for
LiP (Hammel et al. 1986a; Hammel 1995a). In

Fig. 5.1. A fruiting body of Pleurotus ostreatus, the
oyster mushroom, a commercially important edible
white-rot filamentous basidiomycete cultivated on lig-
nocellulosic waste. This is a model fungus for the study

of biochemical and molecular mechanisms involved in
biodegradation of lignin and recalcitrant and toxic
anthropogenic aromatic compounds. The dikaryon
stage is required for the formation of the fruiting bodies
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addition to PAHs, purified LiPs will transform
chlorinated phenols (Hammel and Tardone
1988; Mileski et al. 1988; Valli and Gold 1991;
Reddy and Gold 2000), tetrahydrofurans
(Vazquez-Duhalt et al. 1994), dioxins (Hammel
et al. 1986a; Valli et al. 1992b,), methoxyben-
zenes (Kersten et al. 1985), and various chloro-
and nitro-methoxybenzenes (Valli and Gold
1991; Valli et al. 1992a, b; Teunissen et al. 1998).

B. Manganese Peroxidase

Like LiPs, manganese peroxidases (MnPs)
exhibit a typical peroxidase catalytic cycle,
but with Mn(II) as the substrate. The Mn(II)
is chelated by bidentate organic acid chelators
such as glycolate or oxalate. Chelation is
thought to stabilize Mn(III) and allow its diffu-
sion at some distance from the enzyme (Glenn
et al. 1986; Paszczynski et al. 1986). MnPs lack
sufficient oxidative potential to cleave the
major non-phenolic units of lignin, but can
oxidize phenolic structures. The resulting phe-
noxy radicals undergo a variety of reactions
including polymer cleavage within certain
units, e.g., between Ca and aromatic rings
(Wariishi et al. 1991; Tuor et al. 1992). MnPs
purified from P. chrysosporium, Nematoloma
frowardi, and Phlebia radiata have been
shown to oxidize pentachlorophenol and
2,4,6-trinitrotoluene (TNT) in a Mn-dependent
manner (Scheibner and Hofrichter 1998; Van
Aken et al. 1999; Reddy and Gold 2000),
whereas decolorization of azo dye by Pleurotus
eryngii and Bjerkandera adusta MnP isozymes
is Mn-independent (Heinfling et al. 1998a).

Phanerochete chrysosporium cultures will efficiently
degrade the PAHs phenanthrene and fluorine, an obser-
vation difficult to explain because neither serves as a LiP
or MnP substrate (George and Neufield 1989; Hammel
et al. 1992; Vazquez-Duhalt et al. 1994; Bogan et al.
1996c). Alternative mechanisms must be operative.
Among these, peroxidation of unsaturated lipids has
been shown to generate transient lipoxyradical intermedi-
ates that oxidize non-phenolic lignin model compounds.
MnP/lipid peroxidation depolymerizes phenolic- and
phenol-blocked (methylated) synthetic lignins (Bao et al.

1994), as well as b-O-4 linkages of lignin model com-
pounds (Bao et al. 1994; Kapich et al. 1999). The system
has also been shown to oxidize fluorine (Bogan et al.
1996a) and phenanthrene (Moen and Hammel 1994).

Certain peroxidases oxidize Mn(II) as well
as non-phenolic substrates (e.g., veratryl alco-
hol) in the absence of manganese (Mester and
Field 1998; Camarero et al. 1999). Designated
‘versatile peroxidases’ (VPs), these enzymes
typically feature Mn-binding residues as
well as a conserved Trp involved in the electron
transfer that enables oxidation of non-phenolic
compounds. Recent work suggested a role
for VP in the transformation of azo dyes
(Salame et al. 2010, 2012) and carbamazepine
(Golan-Rozen et al. 2011) (see below).

Less well-studied peroxidases, but poten-
tially involved in degradation of lignin and orga-
nopollutants, are the heme thiolate peroxidases
(HTPs) and the dye decolorization peroxidases
(DyPs) (Hofrichter et al. 2010; Lundell et al.
2010). The HTPs include chloroperoxidases
and peroxygenases which catalyze a wide range
of reactions, including oxidations of various ali-
phatic and aromatic compounds (Ullrich and
Hofrichter 2005; Gutierrez et al. 2011). DyPs
and putative DYP-encoding genes have been
identified in various fungi, and recent studies
have attributed high redox potentials for the
enzyme from the white-rot fungus Auricularia
auricula-judae (Liers et al. 2010).

C. Laccase

Laccases catalyze the 1-electron oxidation of
phenolics, aromatic amines, and other
electron-rich substrates. Their oxidation of the
phenolic units in lignin generates phenoxy radi-
cals, which can lead to aryl-Ca cleavage (Kawai
et al. 1988). Non-phenolic lignin-related sub-
strates are oxidized in the presence of certain
auxiliary substrates such as ABTS (2,2’-azino-
bis-3-ethylthiazoline-6-sulfonate) (Bourbonnais
et al. 1997, 1998; Collins et al. 1999). For exam-
ples, in the presence of synthetic mediators,
organophosphorous insecticides are degraded
by P. ostreatus laccase (Amitai et al. 1998), and
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high ionization potential PAHs are oxidized by
Coriolopsis gallica and T. versicolor laccases
(Johannes et al. 1996; Pickard et al. 1999). Cul-
tures of the white-rot fungi Pycnoporus cinna-
barinus and Trametes versicolor produce small
molecular weight compounds thought to act
as natural intermediaries for oxidation of
non-phenolic lignin substructures (Eggert et al.
1996) and PAHs (Johannes and Majcherczyk
2000). Most white-rot fungi produce multiple
laccase isozymes (Fukushima and Kirk 1995;
Salas et al. 1995; Perie et al. 1998) but some,
notably P. chrysosporium, produce none. Lac-
cases and their applications have been reviewed
(Giardina et al. 2010).

Both peroxidases and laccases can degrade
pentachlorophenol (PCP), a restricted-use
wood preservative. The first step in the oxida-
tion of such chlorophenols, the formation of
para-quinones and release of a chlorine atom,
can be carried out by several white-rot fungi.
When P. chrysosporium LiP and MnP genes
were expressed in Amylomyces rouxii, a zygo-
mycete producing only phenoloxidases, the
transformant exhibited increased activity
(95 % depletion) in comparison to the wild
type grown without the inducer tyrosine (45 %
removal) (Montiel-Gonzalez et al. 2009).

Another mechanism for PCP detoxification could be
humification of these xenobiotics via polymerization
into soil organic matter. Polymerization of PCP and
ferulic acid by manganese peroxidase, lignin peroxi-
dase, and laccase converted a significant portion of
the PCP into soil-bound transformation products that
are not extractable with organic solvents (Ruttimann-
Johnson and Lamar 1996). Using labeled PCP, highest
binding to the humic substances was obtained with
P. ostreatus, followed by Irpex lacteus, T. versicolor,
and Bjerkandera adusta. The highest mineralization
rate of 8.8 % was demonstrated for T. versicolor. Reme-
diation of PCP-contaminated soils with ligninolytic
fungi has been the focus of several studies, and inocu-
lum formulation has been a central objective. (Lamar
and Dietrich 1990; Lamar et al. 1990a, b, 1994; Lestan
and Lamar 1996; Ford et al. 2007a, b)

In addition to PCP, peroxidases and lac-
cases will degrade a wide range of aromatic
dyes that can pose severe environmental pro-
blems. Their highly variable and complex
chemical structures also make them difficult
to remove by using conventional wastewater
treatment systems. The most frequently used

color-removal technologies are physical
(adsorption, filtration, and flotation), chemical
(coagulation, oxidation, reduction, and elec-
trolysis), and biological (aerobic and anaero-
bic). Thus, color removal is one of the most
difficult requirements to be faced by the textile
finishing, dye manufacturing, pulp, and paper
industries. These industries are major water
consumers and are, therefore, a source of con-
siderable pollution. Azo dyes, the largest class
of synthetic dyes, are characterized by the pres-
ence of one or more azo bonds (-N ¼ N-) in
association with one or more aromatic systems,
which may also carry sulfonic acid groups
(Singh and Arora 2011).

Numerous wood-rotting fungi, including P. chrysospor-
ium, Coriolus versicolor, Irpex lacteus, P. ostreatus, and
Ganoderma applanatum, are able to degrade a wide
range of synthetic dyes (Wesenberg et al. 2003; Kaushik
and Malik 2009). Many of the decolorization studies
indicate that wood degrading fungi have a potential to
be developed further into industrial wastewater treat-
ment technology. (Stolz 2001)

Dye degradation and decolorization are of
particular relevance to this chapter as a result of
the dual role they play in the study of lignino-
lytic fungi and their oxidative systems. On the
one hand, dyes are targets for degradation and
bioremediation as toxic pollutants, as described
above. On the other hand, they have been used
as model compounds to elucidate catalytic
mechanisms of ligninolytic enzymes. Evidence
suggests that lignin-degrading enzymes, MnP,
VP, LiP, and laccases are directly involved not
only in the degradation of lignin, their natural
lignocellulosic substrates, but also in the degra-
dation of dyes (Heinfling et al. 1998a, b).

Polymeric dye decolorization and ligninolytic activity
of P. chrysosporium were correlated by comparing the
effect of various physiological parameters, mutations,
and inhibitors on both processes. Dye decolorization,
like ligninolytic activity, appears to be a secondary
metabolic process. It was repressed by nitrogen and
only occurred after the nitrogen in the cultures had
been consumed. Dye decolorization paralleled lignin
degradation temporally. Thus it was concluded that
some dyes are a good model to represent the ligninoly-
tic system. (Glenn and Gold 1983)

Pleurotus eryngii VP-active sites were
demonstrated by measuring oxidizing activity
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towards high-redox-potential aromatic com-
pounds and dyes such as Reactive Black 5
(RB5) (Camarero et al. 2005). This was later
verified by site-directed mutagenesis, again
using RB5 oxidation to show the importance of
Trp164 in the reaction (Ruiz-Duenas et al. 2008).

Laccases are also important in dye decolori-
zation (Giardina et al. 2010). Studies of anthra-
quinone and azo dye degradation by purified
laccase from Lentinus sp., together with molecu-
lar docking of Acid Blue 80, RBBR, and Acid Red
37 onto the enzyme, confirmed the amino acid
residues involved in dye oxidation (Hsu et al.
2012). The potential of Trametes trogii purified
laccase for the decolorization of different types
of recalcitrant dyes without the addition of
redox mediators has been shown (Grassi et al.
2011), and randommutagenesis has been shown
to improve performance of a P. ostreatus laccase
(Miele et al. 2010).

D. Peroxide Generation

Several systems have been suggested as sources
of extracellular H2O2 necessary for peroxidase
activity. Considerable evidence implicates
GLOX, a radical-copper oxidase (Whittaker
et al. 1996) produced by P. chrysosporium
(Kersten and Kirk 1987). GLOX utilizes a wide
range of small aldehydes such as glyoxal and
methylglyoxal (extracellular metabolites of
P. chrysosporium), and transfers the electrons
to O2, generating H2O2. Glycolaldehyde,
another substrate, is produced by the action of
LiP on b-O-4 lignin substructures. This sug-
gests a physiological connection between
GLOX and LiP, and this is further supported
by the reversible inactivation of GLOX in the
absence of a peroxidase system (Kersten 1990).
GLOX is reactivated, however, by reconstitut-
ing the complete peroxidase system, including
both LiP and substrate. Thus, the supply of
H2O2 by GLOX responds to the demand of the
peroxidases, thereby providing an extracellular
regulatory mechanism controlling the coupled
enzyme systems. GLOX activity has been

detected in several lignin-degrading fungi
when grown on oak sawdust (Orth et al. 1993).

Detailed comparative studies with galactose oxidase of
Dactylium dendroides have defined GLOX as a copper
radical oxidase (Kersten and Cullen 1993; Whittaker
et al. 1999; Whittaker 2002). Site-specific mutagenesis
have confirmed essential residues including an internal
Cys-Tyr radical forming a metalloradical complex and
copper ligands Tyr135 Tyr377 and His378. (reviewed by
Whittaker 2002)

Six additional copper radical oxidase genes
were identified by BLAST searches of the
P. chrysosporium genome. Residues coordinat-
ing copper and forming the radical redox site
are conserved (Martinez et al. 2004; Vanden
Wymelenberg et al. 2006b). Designated cro1
through cro6, three of these genes (cro3-5) are
predicted to encode repeats of an N-terminal
WSC domains, which may be involved in car-
bohydrate binding (IPR002889; http://www.ebi.
ac.uk/interpro/IEntry?ac¼IPR002889). Cro6 is
most closely related to glx (47 % amino acid
identity), but contains a ~200 amino acid
N-terminal region absent from the other copper
radical oxidases. The predicted cro2 protein is
only 28 % identical to GLOX but, in contrast to
GLOX, the enzyme oxidized a glycolaldehyde
dimer, but not methylglyoxal (Vanden Wyme-
lenberg et al. 2006b).

Also possibly important in peroxide gener-
ation are the glucose–methanol–choline oxi-
dases (GMCs) which include aryl alcohol
oxidase (AAO), methanol oxidase, and various
sugar oxidases (reviewed in Ref. (Hernandez-
Ortega et al. 2012)). AAOs oxidize benzyl
alcohols to aldehydes, transferring the electrons
to O2, producing H2O2 (Muheim et al. 1990;
Asada et al. 1995). P. ostreatus secretes a mix-
ture of benzyl alcohols that are oxidized by
AAO (Sannia et al. 1991). The white-rot fungus
Bjerkandera adusta secretes chlorinated benzyl
alcohols that are substrates for AAO but not
LiP. Since both LiP and AAO are produced in
B. adusta cultures, such substrate preferences
may have important physiological roles in
ligninolysis.
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Methanol oxidase may play an important
role in generating H2O2 in both white-rot and
brown-rot fungi. The enzyme is highly
expressed and associated with hyphal cell
walls in the brown-rot fungus, Gloeophyllum
trabeum (Daniel et al. 2007). Brown-rot
demethylation of lignin may provide the sub-
strate, and the H2O2 produced is thought to
participate in generation of highly reactive
hydroxyl radical via a Fenton reaction, H2O2+
Fe2++H+!H2O+Fe3++�OH. This diffusible
radical will mediate the rapid depolymerization
of cellulose, a central feature of brown-rot
decay. High expression of methanol oxidase
has also been observed in the white-rot fungus
P. chrysosporium when grown on media con-
taining ground wood as sole carbon source
(Vanden Wymelenberg et al. 2010).

Pyranose 2-oxidase oxidizes various
monosaccharides at C-2, with transfer of elec-
trons to O2 to produce H2O2. This GMC enzyme
has been identified in various fungi, including
P. chrysosporium, T. versicolor, Oudemansiella
mucida, and Agaricus bisporus (Daniel et al.
1994; Artolozaga et al. 1997), and the catalytic
mechanism has received considerable attention
in recent times (Tan et al. 2010; Sucharitakul
et al. 2011; Tan et al. 2011; Wongnate et al.
2011). P. chrysosporium mycelium also exhibits
glucose 1-oxidase activity (Kelley and Reddy
1986, 1988), but this enzyme appears to be less
common than pyranose 2-oxidase (reviewed by
Ander and Marzullo 1997).

Cellobiose dehydrogenase (CDH) is widely
distributed among fungi, but its precise role in
ligninolysis and/or organopollutant degrada-
tion, if any, remains uncertain (Henriksson
et al. 2000; Zamocky et al. 2006). The enzyme
contains a dehydrogenase domain and a heme
prosthetic group (Hallberg et al. 2000). CDH
oxidizes cellodextrins, mannodextrins, and lac-
tose, and suitable electron acceptors include
quinones, phenoxyradicals, and Fe3+. Interest-
ingly, recent studies have shown that CDH
will enhance cellulose depolymerization by
members of the glycoside hydrolase family 61
(Harris et al. 2010; Langston et al. 2011). Previ-
ously considered to be cellulases, the latter

‘hydrolases’ have been recently classified as
copper-dependent monooxygenases (Quinlan
et al. 2011; Westereng et al. 2011).

E. Other Oxidoreductases

In addition to the extracellular peroxidases and
laccases, transformation and/or complete min-
eralization of organopollutants involve addi-
tional extracellular and intracellular processes.
Examples include glycosyl conjugation of tri-
closan by T. versicolor cultures (Hundt et al.
2000), and O-methylation of PCP and triclosan
by P. chrysosporium (Lamar et al. 1990a) and
P. cinnabarinus (Hundt et al. 2000) cultures,
respectively.

The role of cytochrome P450s in organo-
pollutant degradation remains largely unex-
plored, but some progress has been made. The
metabolic steps in PAH degradation have
occurred in both N-limited and N-sufficient
culture media, and are similar to those in non-
ligninolytic fungi, such as Cunninghamella ele-
gans (Casillas et al. 1996) and N-sufficient
cultures of P. chrysosporium. Apparently,
P. ostreatus acts on PAHs like nonligninolytic
fungi, but is also able to mineralize PAHs
(Bezalel et al. 1996a, b). Since P. ostreatus does
not contain lignin peroxidase, and since PAH
metabolism did not correlate with laccase or
MnP activities, it is possible that a cytochrome
P450 monooxygenase is responsible for the ini-
tial step in the attack. The ligninolytic system of
P. ostreatusmay be involved in the later steps of
metabolism, such as ring cleavage, which leads
to CO2 evolution. These conclusions were based
on metabolite analyses, physiological and bio-
chemical studies (Bezalel et al. 1997).

Additional investigations suggest that P. chrysosporium
degradation of 2,4,6-trichlorophenol (Reddy et al. 1998)
and PCP (Hammel and Tardone 1988; Mileski et al.
1988; Reddy and Gold 1999, 2000) involve oxidative
dechlorination by extracellular peroxidases, followed
by intracellular reductive dechlorination and hydroxyl-
ation reactions. White-rot cytochrome P450s reactions
also include monooxygenase bioconversions of phen-
anthrene by P. ostreatus (Syed et al. 2010), benzo(a)
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pyrene by Pleurotus pulmonarius (Masapahy et al.
1999) and by P. chrysosporium (Syed et al. 2011a),
4-methyldibenzothiophene by T. versicolor (Ichinose
et al. 1999), and endosulfan and carbamazepine (CBZ)
by P. chrysosporium. (Kullman and Matsumura 1996;
Golan-Rozen et al. 2011)

Fungi are active in biodegradation of a
wide array of pharmaceuticals and hormones.
Analyses of the degradation pathways and
metabolites formation was recently reviewed
(Cruz-Morato et al. 2012). As mentioned
above, cytochrome P450s and MnPs have been
implicated in the transformation and metabo-
lism of CBZ, a drug used in large quantities
worldwide for the treatment of epilepsy, and
increasingly used for various psychiatric treat-
ments (Leclercq et al. 2009). Studies in Europe
and North America have shown that CBZ and
CBZ metabolites are among the most frequently
detected pharmaceuticals in wastewater efflu-
ents, river water, and drinking water (Heberer
2002; Miao et al. 2005; Benotti et al. 2009). CBZ
is an environmentally recalcitrant compound
extremely stable in water and soil (Lienert
et al. 2007), mainly as a result of its remarkably
high stability towards bacterial degradation.
Thus, because of its very slow degradation, it
has been proposed as a tracer for anthropogenic
activity and contamination originated from
municipal waste water (Gasser et al. 2010).

Nevertheless, CBZ modification by different white-rot
fungi has been reported (Kang et al. 2008). For example,
the white-rot fungi T. versicolor and G. lucidum elimi-
nated 57 % and 46 % respectively of CBZ after 7 incu-
bation days (Marco-Urrea et al. 2009). Similar removal
efficiency of CBZ was observed by T. versicolor in a
solid-phase bioreactor containing sewage sludge and
mycelium (Rodriguez-Rodriguez et al. 2010). P. ostrea-
tus strains F6, N001 (dikaryons), and PC9 (monokar-
yon) degraded CBZ to levels ranging from 48 % to 99 %
of the initial concentration. With strain PC9, CBZ con-
centration was reduced from 10 mg l�1 to 20 mg l�1

within 17 days of incubation (Golan-Rozen et al. 2011).
To evaluate the potential use of P. ostreatus to remedi-
ate contaminated water, CBZ removal was studied at its
environmental relevant concentration (~1 mg l�1,
4.6 nM). When optimal conditions were obtained,
CBZ concentration decreased by 97.9 % to 0.093 nM
(22 ppt) within 8 days. Unlike the accumulation of the
metabolite 10,11EPCBZ observed at high CBZ concen-
tration, in this experiment 10,11EPCBZ disappeared,
gradually reaching a minimal concentration of
0.1 nM. These results suggested that at environmentally

relevant concentrations P. ostreatus can not only trans-
form CBZ to 10,11EPCBZ, but may also continue its
metabolism. (Golan-Rozen et al. 2011)

Several enzymatic mechanisms have been
suggested to be involved in the oxidation of
CBZ. When a cytochrome P450 inhibitor was
added to the growth medium, CBZ elimination
by T. versicolor was inhibited by more than half,
indicating the possible involvement of cyto-
chrome P450 in the biodegradation process
(Montiel-Gonzalez et al. 2009). When P. ostrea-
tuswas grown inmedia supporting high levels of
both cytochrome P450 and manganese peroxi-
dase (MnP), 99 % of the added CBZ was elimi-
nated from the solution (Golan-Rozen et al.
2011). High removal of CBZ was also obtained
when either MnP or CYP450 was active. When
both CYP450 and MnP were inactivated, only
10–30 % of the added CBZ was removed.

In-vitro reaction between CBZ and crude lignin peroxi-
dase produced by the fungus P. chrysosporium in the
presence of H2O2 and veratryl alcohol resulted in only
5–9 % elimination. Repeated treatment with laccase
from T. versicolor and 1-hydroxybenzotriazole (used
as a redox mediator) resulted in the elimination of
20 % of the CBZ after 24 h (Hata et al. 2010). Increased
removal of CBZ (about 80 %) was only observed when a
lignin-derived quinone was added to the growth
medium of T. versicolor together with ferrous oxalate
to form a Fenton-like reaction (Marco-Urrea et al.
2010). This reaction facilitates the formation of
hydroxyl radicals, which oxidize the CBZ molecule fas-
ter than the enzymatic reactions.

III. Comparative Genome Analysis

Knowledge of the genomes of wood decay fungi
is rapidly advancing, in large part because of
the support of the U.S. Department of Energy’s
Joint Genome Institute. An interactive Myco-
Cosm web portal (http://genome.jgi.doe.gov/
programs/fungi/index.jsf) integrates all pub-
licly accessible fungal genomes, including
those featured in this review (Grigoriev et al.
2012). Throughout the following passages, we
provide protein model identification numbers
that allow searches of the JGI genome portal,
and thereby link to detailed protein pages,
alternative models, annotation, and compari-
sons to other databases.
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A. Gene Structure, Phylogeny,
and Expression

1. Peroxidases

Based on overall sequence conservation, a Trp
active site, and the absence of Mn-binding
residues, the LiP genes identified to date are
confined to lignin-degrading fungi, with ten
genes present in the genomes of P. chrysospor-
ium and T. versicolor. However, of the ten
white-rot genomes analyzed and published as
of July 2012, most do not have LiP genes but
feature two to sixteen MnP genes. P. chrysospor-
ium and T. versicolor contain five and thirteen
MnP genes respectively (Ohm et al. 2010;
Fernandez-Fueyo et al. 2012; Floudas et al.
2012; Olson et al. 2012). Genome analysis has
also identified at least four, two, and three VP
genes in P. ostreatus, T. versicolor, and D. squa-
lens respectively. Of the eight published brown-
rot genomes, none contain genes encoding LiP,
MnP, or VP (Martinez et al. 2009; Eastwood
et al. 2011; Floudas et al. 2012).

Early studies had also identified P. chrysosporium MnP
genes, mnp1, mnp2, and mnp3 (Pease et al. 1989; Prib-
now et al. 1989; Orth et al. 1994; Alic et al. 1997). The
draft genome revealed two new MnP genes (Martinez
et al. 2004), one of which, mnp4, was unexpectedly
localized to a region 5 kb upstream of mnp1. A cyto-
chrome P450 gene lies within the mnp4-mnp1 inter-
genic region. The mnp5 predicted protein corresponds
to the N-terminal amino acid sequence of a MnP long
ago purified from P. chrysosporium-colonized wood
pulp (Datta et al. 1991). Most intron positions are con-
served within the MnP (Larrondo et al. 2005) and LiP
(Stewart and Cullen 1999) gene families.

Deviations from these simple classifica-
tions have been noted. Certain MnPs vary in
length and have been classified accordingly
(Ruiz-Duenas et al. 2011; Fernandez-Fueyo
et al. 2012). On the basis of homology modeling
and the conservation of specific residues essen-
tial for catalysis, C. subvermispora protein
models #118677 and #99382 were initially clas-
sified as LiP and VP genes respectively. Consis-
tent with these designations, the corresponding
proteins were capable of oxidizing nonphenolic
model compounds and synthetic lignin. How-
ever, the putative VP was unable to oxidize Mn

as predicted. Moreover, both enzymes exhib-
ited catalytic properties intermediate between
conventional LiPs and MnP (Fernandez-Fueyo
et al. 2012).

Clustering of P. chrysosporium genes,
especially those encoding LiPs and MnPs, is a
well-known phenomenon. Prior to genome
sequencing, the ten P. chrysosporium LiP genes
had been designated lipA through lipJ (Gaskell
et al. 1994), and eight of these LiP genes were
mapped within 3 % recombination (Gaskell et al.
1994; Stewart and Cullen 1999). The genome
sequence confirmed the genetic multiplicity
and verified the overall organization, with the
eight LiP genes located within 100 Kb on scaffold
19. Genes designated lipD and lipF were loca-
lized to scaffolds 11 and 9 respectively.

Beyond P. chrysosporium, genome sequence analysis
has revealed clustering of LiP and MnP genes in most
white-rot fungi. Typically, this involves simple tandem
arrangements and occasionally a third or fourth gene
more distantly positioned. For examples, T. versicolor
LiP genes encoding protein models #133326, #134250,
and #52333 are located on scaffold 12, and models
#43576, #43578, #114944, and #112835 lie on scaffold
2. In both instances, the genes are located within a
~15 kb region. T. versicolor MnP genes encoding pro-
teins #51455, #74179, and #51457 are tightly clustered
within 7 Kb on scaffold 10. The VP-encoding genes of
T. versicolor are located on scaffold 2, but very distant
from LiP genes. No remarkable linkage is observed
among the nine, thirteen and five MnP genes of
D. squalens, C. subvermispora, and P. ostreatus respec-
tively. As in the case of T. versiolor, the D. squalens and
P. ostreatus VPs show no significant linkage to each
other or to the MnP genes. In contrast, the abovemen-
tioned intermediary LiP–MnP genes of C. subvermis-
pora lie within 9 Kb on scaffold 20.

The regulation of LiP gene expression, par-
ticularly in P. chrysosporium, has received
considerable attention. Culture conditions sub-
stantially influence lip transcript levels (Holz-
baur and Tien 1988; Stewart et al. 1992; Reiser
et al. 1993; Janse et al. 1998; Vallim et al. 1998;
Stewart and Cullen 1999; Belinky et al. 2003;
Vanden Wymelenberg et al. 2009; Hiscox et al.
2010; Sakamoto et al. 2010). LiP genes within
clusters may be differentially regulated but, to
date, no clear relationship between organiza-
tion and regulation has been reported (Stewart
et al. 1992; Stewart and Cullen 1999; Macdonald
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et al. 2011). In P. chrysosporium soil cultures,
LiP transcript patterns shift depending upon
the pollutant, e.g., anthracene versus PCP
(Lamar et al. 1995; Bogan et al. 1996b).

In recent years, LC-MS/MS and high
throughput transcript analyses have provided
insight into the expression of specific LiP genes.
Extracellular proteins corresponding to lipCwere
identified only in nitrogen-limited medium,
whereas the lipD and lipE products were more
abundant in carbon-limited cultures (Vanden
Wymelenberg et al. 2006a, 2009). These results
were consistent with transcript levels measured
by Northern blots (Holzbaur and Tien 1988), by
quantitative RT-PCR (qRT-PCR) (Stewart and
Cullen 1999) and, more recently, by whole-
genome expression microarrays (Vanden
Wymelenberg et al. 2009). None of the P. chry-
sosporium LiP genes exhibited elevated transcript
levels inmedium containingmicrocrystalline cel-
lulose (Avicel, Fluka Chemical) relative to
glucose-grown cultures, but peptides corres-
ponding to lipD were detected in the cellulose
medium (Vanden Wymelenberg et al. 2005). In
submergedmedium containing ball-milled aspen
(BMA) as sole carbon source, transcripts of lipA
and lipH accumulated relative to glucose
medium, but no extracellular peroxidase was
detected by LC-MS/MS (Vanden Wymelenberg
et al. 2010). On the other hand, significant tran-
script levels of lipD, lipE and lipB were measured
in similar experiments using red oak (Sato et al.
2009). More perplexing, lipD and lipE transcript
levels were lowest among all LiP genes in colo-
nized aspen wood chips (Janse et al. 1998). Tran-
scriptome studies of Phanerochaete carnosa
suggest that wood species substantially influence
LiP transcript levels (Macdonald et al. 2011; Mac-
donald and Master 2012; MacDonald et al. 2012).

As in the case of LiP-encoding genes,media
composition, especially manganese concentra-
tion, has a dramatic effect on MnP regulation
(Bonnarme and Jeffries 1990; Brown et al. 1990,
1991; Pease and Tien 1992; Lobos et al. 1994).
Most studies have focused on transcriptional
control, but recent results using C. subvermis-
pora suggest that Mn concentration may also
influence MnP secretion (Mancilla et al. 2010).
Mechanisms of transcriptional regulation
remain uncertain, but much attention has

focused on promoters and the putative role of
metal response elements (MREs) (Godfrey et al.
1990, 1994; Alic and Gold 1991; Brown et al.
1993; Alic et al. 1997). Gettemy et al. (1998)
reported that P. chrysosporium mnp1 and
mnp2 were substantially upregulated in
response to Mn2+ concentration, and later dele-
tion analysis identified an upstream Mn-
responsive element (Ma et al. 2004). In contrast,
dramatic upregulation of T. versicolor mnp2 by
Mn appears not to involve any MREs (Johans-
son et al. 2002). Transcripts of P. chrysosporium
mnp1 accumulate in carbon- or nitrogen-
starved defined medium relative to replete
medium, and the corresponding protein has
been identified by LC-MS/MS under such nutri-
ent limitation (Ravalason et al. 2008; Vanden
Wymelenberg et al. 2009). Upregulation of
mnp2 transcripts has been observed in cultures
that were nitrogen-starved but not carbon-
starved (Vanden Wymelenberg et al. 2009).

Complex patterns of P. chrysosporium MnP gene
expression have been observed in colonized wood and
soil. mnp4 is actively transcribed when P. chrysospor-
ium is grown on wood-containing soil samples
(Stuardo et al. 2004), and mnp1, mnp2, and mnp3 tran-
scripts are easily detected in colonized aspen wood
chips (Janse et al. 1998). Transcripts corresponding to
mnp1 were detected in red oak medium (Sato et al.
2009). In P. chrysosporium soil cultures, the depletion
of fluorine roughly correlates with transcript levels of
mnp1, mnp2 and mnp3 (Bogan et al. 1996c). Degrada-
tion of this high oxidation potential PAH is consistent
with a mechanism involving lipid peroxidation.

Simultaneous accumulation of transcripts
corresponding to C. subvermispora MnPs and
genes putatively involved in lipid biosynthesis
(Watanabe et al. 2010) also support a role for
lipid peroxidation (Fernandez-Fueyo et al.
2012). In line with this view, recent microarray
and mass spectrometry data (Fernandez-Fueyo
et al. 2012) revealed simultaneous upregulation
of genes encoding MnP genes as well as those
involved in lipid biosynthesis after 5 days
growth in medium containing BMA. Interest-
ingly, the C. subvermispora MnP genes exhibit-
ing significant accumulation of transcripts in
BMA relative to glucose (models #117436 and
#49863) or secreting detectable protein (models
#157986, #116608, #50297) were all classified as
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‘extra long’ MnPs (Fernandez-Fueyo et al.
2012). Two ‘short’ MnP proteins were detected
by LC-MS/MS in the extracellular filtrates of
T. versicolor (Floudas et al. 2012).

VP-encoding genes have not been identified
in the genomes of any brown-rot fungi, but 2–4
genes are present in P. ostreatus (Ruiz-Duenas
et al. 2011), C. subvermispora (Fernandez-Fueyo
et al. 2012), T. versicolor and D. squalens (Flou-
das et al. 2012) (Table 5.1). Global transcriptome
studies have not yet been reported for these
fungi, although it is clear that P. ostreatus VP
transcription is modulated by Mn (Cohen et al.
2001, 2002a, b), and recent genetic studies per-
suasively show its importance in dye decoloriza-
tion (below). The four P. ostreatus genes are not
tightly linked. The abovementioned ‘transi-
tional’ or ‘intermediary’ LiP-MnP genes of
C. subvermispora are closely linked on scaffold
20, but regulated expression and protein secre-

tion have not been observed in a shake flask
containing BMA suspensions (Fernandez-
Fueyo et al. 2012). The VP genes of T. versicolor
are unlinked, and peptides corresponding to
protein model #26239 have been detected in
BMA cultures. The three D. squalen VP genes
are unlinked and LC-MS/MS failed to detect the
proteins in the extracellular filtrates of the same
medium (Floudas et al. 2012).

Genes encoding putative heme-thiolate
peroxidases (HTPs) are widespread within the
genomes of white-rot and brown-rot fungi
(Table 5.1) although experimental affirmation
of their expression is limited. C. subvermispora,
D. squalens, and T. versicolor genomes feature
nine, four, and three HTP genes respectively,
but systematic studies of transcriptional regula-
tion have not been reported, and LC-MS/MS has
not detected any of the corresponding peptides
in media containing BMA (Fernandez-Fueyo

Table 5.1. Number of genes encoding oxidoreductases implicated in ligninolysis and degradation of various
organopollutants

White-rot fungi

Brown-rotaPhach Pleos Cersu Trave Dicsq

LiP 10 0 0 10 0 0
MnP 5 5b 13c 13 9 0
VP 0 4b 2 2c 3 0
HTP 3 3b 9 3 4 5.2 (2–6)
DYP 0 4b 0 2c 1c 0.3 (0–2)
Laccase 0 12d 7c 7c 11c 4.5 (3–6)c

GLOX 1 4 0 5c 5c 0
CRO1 1 1 0 1 1 0.8 (0–2)
CRO2 1 2 1 1c 1c 1.5 (0–4)c

CRO3-5 3 3 1 1c 1c 0.7 (0–1)c

CRO6 1 6 1 1 1 1
CDH 1 1 1 1c 1c 0.7 (0–2)c

GH61e 15c 29 9 18c 15c 4.5 (2–10)c

P450s 149 141f 222c 190 187 196

aThe average number and range of genes in six phylogenetically related brown-rot fungi included as point of comparison. Brown-
rot genomes analyzed were: Serpula lacrymans (Eastwood et al. 2011), Postia placenta (Martinez et al. 2009), Coniophora puteana,
Wolfiporia cocos, Gloeophyllum rabeum, and F. pinicola (Fernandez-Fueyo et al. 2012). White-rot abbreviations: Phach,

Phanerochaete chrysosporium (Martinez et al. 2004); Pleos, Pleurotus ostreatus (http://genome.jgi.doe.gov/PleosPC15_2/

PleosPC15_2.home.html); Cersu, Ceriporiopsis subvermispora (Fernandez-Fueyo et al. 2012); Trave, Trametes versicolor and
Dicsq, Dichomitus squalens (Floudas et al. 2012)
bSee reference (Ruiz-Duenas et al. 2011)
cNanoLC-MS/MS unambiguously identified at least one protein in media containing ground aspen as sole carbon source. See

Supplemental files in published accounts for C. subvermispora and P. chrysosporium (Fernandez-Fueyo et al. 2012), and for
T. versicolor, D. squalens, and the six brown-rot fungi mentioned above (Floudas et al. 2012)
dSee reference (Castanera et al. 2012)
eLytic polysaccharide monooxygenase
fEnumerated using Cytochrome P450 Database http://genome.jgi.doe.gov/PleosPC15_2/PleosPC15_2.home.html. All others

derived from published accounts
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et al. 2012; Floudas et al. 2012). Similarly,
no extracellular protein has been observed for
P. chrysosporium models #1710, #3274, and
#34295. Transcripts corresponding to #34295
are upregulated in Avicel medium relative to
glucose (Vanden Wymelenberg et al. 2009).
Interestingly, relative to glucose medium, tran-
scripts encoding #34295 accumulate in BMA
medium but not in ball-milled pine medium.
Possibly reflecting substrate-based differential
regulation, transcripts from #3274 show the
opposite pattern, i.e., upregulated in pine but
not aspen (Vanden Wymelenberg et al. 2011).
With the exception of tandemly arranged
T. versicolor genes encoding protein models
#154915 and #23785, none of the above men-
tioned HTP genes exhibit close linkage.

The dye-decolorizing peroxidases (DyPs)
are sporadically distributed among genomes
of wood decay fungi. With the exception of
Gloeophyllum trabeum no DyP genes have
been detected in brown-rot genomes. Among
white-rot fungi, HTP genes are absent from
P. chrysosporium and C. subvermispora whereas
P. ostreatus, T. versicolor, and D. squalens con-
tain four, two and one gene respectively. The
T. versicolor gene encoding protein #48874 and
#48870 lie within a ~15 kb region of scaffold 7.
LC-MS/MS analysis of filtrates from BMA
medium indicates that D. squalens protein
#150405 and T. versicolor #48870 are particu-
larly abundant, making up 1.3 % and 2.2 % of
the total spectra (Fernandez-Fueyo et al. 2012).

Development of efficient systems for pro-
duction of recombinant peroxidases has been
a key factor in furthering biochemical investiga-
tions improving enzyme properties and asses-
sing applications related to organopollutant
degradation. Until relatively recently, produc-
tion of active LiP in foreign hosts has been
challenging. Yields were low in Baculovirus
(Johnson and Li 1991; Johnson et al. 1992). Suc-
cessful expression has also been reported using
Pichia (Wang et al. 2004; Wang and Wen 2009)
and S. cerevisiae (Ryu et al. 2008a, b) and, in the
former reports, the catalytic ability using 2,4-
dichlorophenol (DCP) has been examined.
Although complicated by inclusion bodies, tech-
niques for recovering fully active enzyme from
E. coli have been developed (Doyle and Smith

1996; Nie et al. 1998), and the approach is now
well-established for LiP, VP, and MnP (Miki
et al. 2009; Ruiz-Duenas et al. 2009).

In addition to E. coli, P. chrysosporium MnP has been
successfully produced by A. oryzae (Stewart et al. 1996)
and A. niger (Conesa et al. 2000) transformants. Perox-
idases from C. subvermispora (Larrondo et al. 2001),
P. eryngii (Ruiz-Duenas et al. 1999), P. eryngii (Eibes
et al. 2009) and from Geotrichym candidum (Sugano
et al. 2000) have also been expressed in Aspergillus. In
one case (Cortes-Espinosa et al. 2011), a MnP-
expressing A. niger transformant exhibited enhanced
phenanthrene degradation in soil relative to the parent
strain.

Expression involving native promoters has
proven useful for production of peroxidases
for several white-rot fungi. For examples, sig-
nificant increases in VP expression were
achieved in P. ostreatus transformants relative
to the parental strain (Tsukihara et al. 2006,
2008). A similar strategy of homologous expres-
sion was previously reported for producing P.
chrysosporium MnP (Ma et al. 2003) and LiP
(Sollewijn Gelpke et al. 1999, 2002).

2. Laccases

Among the multicopper oxidases, multiple
genes encoding laccase sensu stricto (Hoegger
et al. 2006) are, with the exception of P. chry-
sosporium, a common feature of white-rot gen-
omes (Kojima et al. 1990; Saloheimo et al. 1991;
Coll et al. 1993; Yaver and Golightly 1996; Yaver
et al. 1996; Karahanian et al. 1998; Giardina
et al. 1999; Temp et al. 1999). Laccase multiplic-
ity is somewhat reduced in brown-rot fungi,
and none have been detected in Dacryopinax
sp. (Floudas et al. 2012). Prior to genome
sequence, relatively little information was avail-
able on the organization of laccases, but Tra-
metes villosa pulsed field gels suggested the
possible linkage of certain laccase genes
(Yaver and Golightly 1996). Seven laccase
genes were identified in the T. versicolor
genome, and close linkage was observed for
those encoding proteins #47314 and #37188.
Based on the percentage of total mass spectra
(2.8 %), the latter protein is the most abundant
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of 218 proteins identified in the extracellular
filtrate of BMA medium. D. squalens laccases
#67925, #169869 and #176907 were detected at
more modest levels in the same medium, and
no close linkage was observed among the 11
genes (Table 5.1). The seven genes of C. sub-
vermispora are distantly linked, and transcripts
corresponding to protein model #118801 were
significantly upregulated in BMA medium rela-
tive to glucose. The protein was detected by LC-
MS/MS analysis of BMA medium filtrates. The
P. ostreatus strain PC15 genome contains 12
laccase genes (Castanera et al. 2012) and, with
the exception of the adjacent models #1077328
and #1119530, all are distantly linked.

Laccase genes are often differentially regulated in
response to culture conditions, and the patterns of
regulation differ substantially between fungal species
(Wahleithmer et al. 1995; Yaver and Golightly 1996;
Yanai et al. 1996; Smith et al. 1998; Palmieri et al.
2000). Their regulation has been recently reviewed (Pis-
citelli et al. 2011b). Potential ACE response elements
have been identified in C. subvermispora and may be
responsible, in part, for copper induction of genes
encoding laccases and MnP. (Alvarez et al. 2009)

Several systems have proven useful for pro-
duction of recombinant laccases. For example,
P. ostreatus laccase is produced in Kluyvero-
myces lactis and S. cerevisiae (Piscitelli et al.
2011b), and the latter system led to improved
temperature and pH stability via mutagenesis
(Piscitelli et al. 2011a). Aspergillus systems have
been used to produce laccases from C. subver-
mispora (Larrondo et al. 2003), T. villosa (Yaver
et al. 1996), and Coprinus cinereus (Yaver et al.
1999). More recently, Pichia spp. expression
has been used to investigate the potential of
various white-rot laccases for dye decoloriza-
tion and PAH degradation (Guo et al. 2008; Lu
et al. 2009; Wong et al. 2012).

3. Peroxide-Generating Copper Radical
Oxidases

Discovered in P. chrysosporium (Kersten and
Kirk 1987; Kersten 1990), glyoxal oxidase
(GLX) is encoded by a single gene (Kersten

and Cullen 1993; Kersten et al. 1995). Support-
ing an important role in ligninolysis, GLX
homologs have been identified in the genomes
of most white-rot fungi, but not in the brown-
rotters (Fernandez-Fueyo et al. 2012; Floudas
et al. 2012) (Table 5.1). In line with a physio-
logical connection between peroxidases and
GLX, coordinate increases in their transcript
levels and/or protein secretion are observed
under nutrient starvation (Stewart et al. 1992;
Vanden Wymelenberg et al. 2006a, 2009), in
colonized wood (Janse et al. 1998; Sato et al.
2009), and in soil (Bogan et al. 1996b).

Little is known concerning the expression of GLX genes
from other white-rot fungi. Three of the five T. versicolor
genes are distantly linked on scaffold #3, of which pep-
tides corresponding to GLX protein model #118266 have
been identified by LC-MS/MS in BMA-containing
medium. In D. squalens, genes encoding GLX proteins
#104366 and #126455 are tandemly arranged on scaffold
10, but none of the five GLX proteins have been detected
in BMA medium. No linkage has been observed among
the five P. ostreatus GLX genes and, to date, nothing has
been published regarding their expression.

Beyond GLX, a total of six CRO genes have
been identified in the P. chrysosporium genome.
Interestingly, the WSC-containing genes cro3,
cro4, and cro5 lie within the LiP gene cluster on
scaffold 19 (Cullen and Kersten 2004). The clus-
tering of lip and cro genes seems consistent with
a physiological connection between peroxidases
and peroxide-generating oxidases. Relatively lit-
tle data is available on the expression of P. chry-
sosporium GLX genes, although transcripts of all
CRO genes have been measured over time in
colonized wood wafers (Vanden Wymelenberg
et al. 2006b), and the CRO2 protein has been
shown in medium containing ball-milled pine
(Vanden Wymelenberg et al. 2011).

Systems for heterologous expression of
CROs include Aspergillus nidulans and Pichia
pastoris. These have been used to confirm cata-
lytic residues (Kersten et al. 1995; Whittaker
et al. 1999) of GLX, and A. nidulans production
of P. chrysosporium cro2 revealed differences in
the substrate preferences of GLX and CRO2
(Vanden Wymelenberg et al. 2006b).

Y. Hadar and D. Cullen



This observation may explain how the
highly efficient and selective lignin degrader,
C. subvermispora, lacks a clear GLX homolog
(Fernandez-Fueyo et al. 2012) (Table 5.1). Pos-
sibly, functionally related CROs fulfill the same
role and/or are better suited for a spectrum of
small molecular weight substrates unique to the
ligninolytic system of C. subvermispora. Exper-
imental support for this hypothesis is limited,
but genome analysis has identified CROs in
various fungi (Table 5.1), including at least
three in the C. subvermispora genome. Further,
transcriptome analysis showed upregulation of
a cro2-like gene as well as several MnP genes in
C. subvermispora cultures containing BMA as
sole carbon source (Fernandez-Fueyo et al.
2012). Separate LC-MS/MS studies have identi-
fied cro2 andWSC-containing CRO genes (cro4,
cro5) in BMA culture filtrates of T. versicolor
and D. squalens (Floudas et al. 2012).

4. Peroxide-Generating GMC Oxidoreductases

Genome analysis has greatly expanded knowl-
edge of the distribution and diversity of GMC
oxidases, particularly AAO-encoding genes.
Based largely on recently published genomes
(Fernandez-Fueyo et al. 2012; Floudas et al.
2012), Hernandez-Ortega et al. (2012) and co-
workers describe relationships among 40 genes
from various wood decay fungi. The AAO genes
were widely distributed among white-rot and
brown-rot taxa, although at least one white-rot
fungus, Auricularia delicata, and three brown-
rot fungi, Coniophora puteana, Wolfiporia coc-
cos, and Dacryopinax sp. have no detectable
AAO gene (Floudas et al. 2012). Transcript
levels in nutrient-starved medium, Avicel
medium, and BMA medium were modest
for C. subvermispora and P. chrysosporium
(Vanden Wymelenberg et al. 2009). One of the
three P. chrysosporium putative AAO proteins
(#135972) and two of the five C. subvermispora
proteins (#117387, #84544) were detected by
LC-MS/MS in glucose-replete media, but not
in BMA. On the other hand, AAO-derived pep-
tides were unambiguously identified in BMA
cultures of T. versicolor (#133945 and

#176148) and D. squalens (#160546 and
#171752) (Floudas et al. 2012). Little is known
regarding the expression of the P. ostreatus
AAO genes, but sequence comparisons with
other wood-decay fungi have been reported
(Hernandez-Ortega et al. 2012). With the
exception of the tandemly arranged D. squalens
genes encoding proteins #102587 and #153908,
close linkage has not been observed within the
AAO gene families.

Recent genome analysis of methanol oxi-
dase (MOX), another potentially important
GMC oxidase, shows a wide distribution
among white and brown-rot fungi. Among the
white-rot fungi considered here (Table 5.1),
D. squalens, T. versicolor, and P. ostreatus gen-
omes each contained at least four unlinked
genes. The P. ostreatus secretome has not yet
been reported, and none of the D. squalens and
T. versicolor MOX proteins were detected in by
LC-MS/MS in BMA medium (Floudas et al.
2012). In contrast, P. chrysosporium MOX pro-
tein #126879 was identified in BMA culture
filtrates, and the corresponding transcripts
were significantly upregulated relative to glu-
cose medium (Vanden Wymelenberg et al.
2010). Surprisingly, the same medium showed
decreased transcript levels of C. subvermispora
MOX #80773, and no LC-MS/MS evidence for
MOX in BMA medium (Fernandez-Fueyo
et al. 2012). The apparent absence of soluble
MOX protein in filtrates should be carefully
interpreted, as cell-wall associations seem likely
(Daniel et al. 2007).

Several studies implicate pyranose 2-oxidase
in lignin degradation. The corresponding gene
has been isolated from T. versicolor (Nishimura
et al. 1996), P. chrysosporium (de Koker et al.
2004), and G. trabeum (Dietrich and Crooks
2009), and obvious homologs are absent from
most of the recently sequenced genomes. In
P. chrysosporium, transcripts are upregulated
under ligninolytic conditions (de Koker et al.
2004; Vanden Wymelenberg et al. 2009, 2010),
and the extracellular protein has been
identified in culture filtrates carbon-starved cul-
tures (Vanden Wymelenberg et al. 2010) and in
BMA medium (Vanden Wymelenberg et al.
2011). The P. chrysosporium and G. trabeum
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pyranose 2-oxidases have been successfully
expressed in E. coli. (Dietrich and Crooks 2009;
Pisanelli et al. 2009).

Prior to the increase in genome data, genes
encoding CDH were cloned from several fungi,
including the white-rot fungi P. chrysosporium
(Raices et al. 1995; Li et al. 1996), T. versicolor
(Dumonceaux et al. 1998), and P. cinnabarinus
(Moukha et al. 1999) All white-rot genomes have
a single CDH gene. On the other hand, brown-
rot fungal genomes have none (P. placenta,
F. pinicola,W. cocos), one (Coniophora puteana,
G. trabeum), or two (S. lacrymans) copies of the
CDH gene. Sequences are highly conserved, and
share a common architecture with separate FAD,
heme, and cellulose-binding domains (CBD).

Northern blots had shown upregulation of cdh in
cellulose-containing media (Li et al. 1996; Moukha
et al. 1999), and competitive RT-PCR revealed tran-
scripts in P. chrysosporium colonized wood (Vallim
et al. 1998). Later microarray and LC-MS/MS investiga-
tions have shown that P. chrysosporium CDH tran-
scripts accumulated in media containing Avicel
relative to glucose as the sole carbon source (Vanden
Wymelenberg et al. 2009). Transcripts have also been
detected in red oak medium (Sato et al. 2009), and
upregulation observed in BMA medium relative to glu-
cose medium (Vanden Wymelenberg et al. 2010). The
CDH protein has been identified in various culture
filtrates, including those that are nutrient-starved
(Vanden Wymelenberg et al. 2009), contain microcrys-
talline cellulose, or contain complex lignocellulose
(Sato et al. 2009; Vanden Wymelenberg et al. 2011).
The wood species used as substrate alters expression,
with higher transcript and protein levels in mediums
containing ball-milled pine relative to ball-milled
aspen. (Vanden Wymelenberg et al. 2011)

Irrespective of the P. chrysosporium culture
conditions, CDH transcripts and secretion are
typically mirrored by expression of aldose 1-
epimerase (#138479) (Vanden Wymelenberg
et al. 2005; Sato et al. 2009; Vanden Wymelen-
berg et al. 2011). This coordinate expression
may indicate a physiological coupling via gen-
eration of the cellobiose b-anomer, the pre-
ferred CDH substrate (Higham et al. 1994).
Co-expression of CDH and genes encoding
members of the CAZy glycoside ‘hydrolase’
family GH61 has also been observed. Now clas-
sified as copper-dependent monooxygenases

(Quinlan et al. 2011; Westereng et al. 2011),
GH61s will boost cellulose depolymerization
by CDH (Harris et al. 2010; Langston et al.
2011). In addition to cellulose, xylan has been
shown to increase secretion of CDH and GH61
(Hori et al. 2011). Further supporting these
associations, of five recently sequenced wood
decay fungi (T. versicolor, D. squalens, Punctu-
laria strigoso-zonata, Stereum hirsutum, Con-
iophora puteana), all but P. strigoso-zonata
simultaneously secreted ALE and CDH in
BMA medium. Excluding the brown-rotter
C. puteana, at least one GH61 monooxygenase
was secreted by each of these same fungi (Flou-
das et al. 2012). The roles(s) and interaction(s)
between these genes, if any, remain unclear.

Several systems are available for heterolo-
gous expression. Homologous expression of
P. chrysosporium CDH was achieved by fusing
cdh with the promoter of the highly expressed
glyceraldehyde-3-phosphate dehydrogenase
gene (Li et al. 2000). Expression in Pichia spp.
has also been reported (Yoshida et al. 2001;
Zamocky et al. 2008; Bey et al. 2011), and
E. coli was used to isolate the flavin domain.

5. Cytochrome P450s

Prior to 2004, the involvement of cytochrome
450s in xenobiotic degradation by P. chrysos-
porium was well-established, but the extent of
genetic diversity was not fully appreciated until
the genome became available (reviewed by
(Syed and Yadav 2012)). Approximately 150
P. chrysosporium P450 genes were identified,
and close linkage and tandem arrangements
were observed (Martinez et al. 2004). Such
organizational tendencies were subsequently
shown among many of the 222 and 254 P450
genes of C. subvermispora (Fernandez-Fueyo
et al. 2012) and P. placenta (Martinez et al.
2009) respectively. Most recent analyses of
Agaricomycotina genomes reiterate the impres-
sive genetic diversity and complex organization
(Floudas et al. 2012). The distribution into
families and clans has shown no clear trends
related to phylogeny or to ecological role, i.e.,
brown-rot versus white-rot.
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Functional analyses of P450s, especially
those derived from P. chrysosporium, have
advanced significantly in recent years. Syed
and coworkers reported the identification and
functional characterization of P450 monooxy-
genases capable of oxidizing different ring-size
PAHs using a genome-to-function strategy
(Syed et al. 2010). A P450 microarray screen
(Doddapaneni and Yadav 2005), first identified
six P450 genes (Pc-pah1–Pc-pah6) induced by
PAHs of varying ring size. The cDNAs of the six
P450 monooxygenases were cloned and co-
expressed in Pichia pastoris along with a P450
reductase partner. Each of the six recombinant
P450 monooxygenases showed PAH-oxidizing
activity (Syed et al. 2010). In separate studies,
the P450 monooxygenase CYP5136A3 showed
common responsiveness and catalytic versatil-
ity towards endocrine-disrupting alkylphenols
and PAHs. The recombinant CYP5136A3 pos-
sessed oxidation activity towards alklyphenols
with varying alkyl side-chain length (C3–C9), in
addition to PAHs (3–4 ring size) (Syed et al.
2011b).

A P450 monooxygenase involved in
anthracene metabolism by P. chrysosporium
was identified by a combination of functional
screening and a microarray system (Chigu
et al. 2010). A wide variety of compounds
were screened, and resulted in characterization
of novel cytochrome P450 functions and dis-
covery of a versatile cytochrome P450
that exhibit broad substrate profiles. The
authors (Hirosue et al. 2011) suggested that
multifunctional properties of the versatile cyto-
chrome P450s would play crucial roles in diver-
sification of fungal metabolic systems involved
in xenobiotic degradation.

B. Experimental Systems

Comparative analysis of the genomes of wood
decay fungi has provided considerable insight
into oxidative systems. Interpretations are rel-
atively clear in some cases, such as the impor-
tance of class II ligninolytic peroxidases (LiP,
MnP, VP) in white-rot, but not brown-rot,
decay. Likewise, the diminished repertoire of
cellulases in brown-rot relative to white-rot

genomes is consistent with a mechanism of
cellulose depolymerization involving hydroxyl
radicals. Nevertheless, the roles and interac-
tions of thousands of genes remain uncertain.

High throughput transcriptome and secre-
tome approaches rarely provide complete func-
tional understanding. Instead, the methods
allow the number of gene models to be filtered
to a more manageable subset that is worthy of
more detailed investigations. Whole genome
microarrays and RNAseq have been used exten-
sively to assess transcript levels and regulation,
principally under conditions favoring lignocel-
lulose degradation. Microarrays representing
P. chrysosporium P450 genes have identified
those induced by various organopollutants
(Doddapaneni and Yadav 2005). Proteome
analysis has involved mass spectrometry-
based identification of 2DE-separated proteins
(Abbas et al. 2004; Shimizu et al. 2005; Ravala-
son et al. 2008; Hori et al. 2011), of peptides
tagged for iTRAQ quantitation (Manavalan
et al. 2011), and of concentrated total extracel-
lular proteins (Vanden Wymelenberg et al.
2005, 2006a, 2009, 2010, 2011).

A disconcerting aspect of these studies has
been the imposing numbers of highly expressed
and/or regulated genes encoding proteins of
unknown function. Considering P. chrysospor-
ium grown under nutrient starvation or in Avi-
cel medium, 193 upregulated genes are
predicted to encode ‘hypothetical proteins’. Of
these, 54 were unambiguously detected in
extracellular filtrates by nanoLC-MS/MS
(Vanden Wymelenberg et al. 2009). A total of
55, 32, and 14 ‘unknown proteins’ were also
identified in cultures of P. chrysosporium,
P. placenta, and C. subvermispora respectively,
containing complex lignocellulose substrates.
Functional analysis of these hypothetical pro-
teins represents a daunting challenge.

1. Genetic Tools

A major obstacle to research has been the lack
of refined genetic tools for functional analysis
and, potentially, for strain improvement. In
the absence of monokaryons, genome
assembly and annotation can be substantially
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complicated by dikaryosis (Martinez et al.
2009), the typical nuclear conditions of agari-
comycetes (Fig. 5.2). Genetic transformation
for P. chrysosporium includes auxotroph com-
plementation (Alic et al. 1989, 1990, 1991; Alic
1990; Randall et al. 1991; Akileswaran et al.
1993; Zapanta et al. 1998) and by drug resis-
tance markers (Randall et al. 1989, 1991; Ran-
dall and Reddy 1992; Gessner and Raeder 1994).
Transformation efficiencies are low, and gene
targeting difficult (Alic et al. 1993). Still, repor-
ters for studying gene expression have been
described (Gettemy et al. 1997; Birch et al.
1998; Ma et al. 2001), homologous gene expres-
sion has proven useful, and RNA interference
has been used to suppress Mn-dependent
superoxide dismutase gene expression (Mati-
tyahu et al. 2008).

Beyond P. chrysosporium, P. ostreatus
offers transformation protocols (Yanai et al.
1996; Honda et al. 2000; Irie et al. 2001; Suna-
gawa and Magae 2002) as well as methodology
for physical (Larraya et al. 1999) and genetic

mapping (Eichlerova-Volakova and Homolka
1997; Eichlerova and Homolka 1999; Larraya
et al. 2000, 2002). Trametes versicolor has also
been transformed with drug resistance vectors
(Bartholomew et al. 2001; Kim et al. 2002), and
gene disruptions have been reported (Dumon-
ceaux et al. 2001). Recently, RNAi targeting of
P. ostreatus mnp3 was shown to suppress azo
dye decolorization (Salame et al. 2010, 2011).
RNAi provides a powerful tool, but suppression
is often incomplete and the results further con-
founded by ectopic integration events.

In contrast to yeasts and many ascomycetes,
filamentous basidiomycetes generally give low
frequencies of homologous recombination.
Recent advances have been made with C. ciner-
eus (Nakazawa et al. 2011) and Schizophyllum
commune (de Jong et al. 2010) strains in which
nonhomologous end joining has been impaired
by Ku knockouts. This approach substantially
enhances the efficiency of gene targeting, but
the species are inefficient lignin degraders.

Addressing this issue, a Dku80 strain has
been constructed in P. ostreatus (Salame et al.
2012). The recipient strain is similar to the par-
ent with respect to growth, ligninolytic potential,
and mating ability. Gene replacement showed
100 % homologous recombination, and the
transformants remained stable in the absence
of drug selection (Salame et al. 2012). By inacti-
vation of a VP (mnp4), the enzyme was proven
to be a major component of the ligninolytic
system under Mn limitation. Thus, the system
facilitates the efficient gene replacement in
P. ostreatus and complements RNAi approaches.

2. Biochemical Tools

Efficient heterologous expression systems have
been key to advancing our understanding of
gene function, especially those encoding low
levels of closely related proteins in the native
systems. In particular, E. coli production and
activation of peroxidases have been critical for
evaluating catalytic properties (Doyle and Smith
1996; Nie et al. 1998). Similarly, co-expression of
membrane-bound P450 monooxygenases with a
reductase partner in Pichia has been essential for
identifying P450s with activity against PAHs and

Fig. 5.2. Light microscopy of phloxine-stained Postia
placenta hyphae. Panel A: sequenced parental dikaryon
showing a clamp connection (arrow) that are commonly,
but not always, observed in dikaryons. Panel B: typical of
monokaryotic derivatives, no clamp connections are
observed in the single basidiospore progeny
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other compounds (Syed et al. 2010). Garcia-Ruiz
and co-workers demonstrated the usefulness of
S. cerevisiae for directed evolution of P. eryngii
VP, and achieved improvements in secretion and
activity. Additional rounds of evolution have
enhanced VP stability in terms of temperature-,
peroxide- and alkaline pH-tolerance (Garcia-
Ruiz et al. 2012). Also using S. cerevisiae as
host, directed evolution has improved a basidio-
mycete laccase. Enzyme stability related to tem-
perature, pH, and organic solvents has been
enhanced through a strategy that combines
directed evolution with rational approaches
(Mate et al. 2010).

IV. Current Research and Future
Prospects

The advances made in recent years in biochem-
istry, genomics, and genome function studies of
white-rot fungi provide a large amount of infor-
mation on the mechanisms of degradation of a
wide range of natural and xenobiotic aromatic
hazardous compounds.

However, the conversion of this vast theo-
retical knowledge into practical biotechnology is
limited. It is thus challenging to bridge this gap
by identifying and resolving bottlenecks. The
availability of increasing numbers of fungal gen-
omes is an important step forward, but at the
same time presents new challenges related to
gene modeling, annotation, and meaningful
phylogenetic comparisons. Functional analyses
of the hypothetical proteins remain a particu-
larly daunting task. Genetic approaches and
possibly biochemical analysis of purified protein
might be helpful, but the latter approach gener-
ally assumes that assays are available.

In addition to new discoveries related to the
pathways of xenobiotic degradation, it could be
important to identify new genes with traits that
can support growth and activity of the fungi
under environmental stress, and provide the
ability to compete with bacteria. This may
help moving from controlled sterile conditions
to natural environments. In this connection,
metatranscriptomics offer exciting new oppor-
tunities for identifying microbes and genes in

organopollutant-contaminated soils (Damon
et al. 2012; de Menezes et al. 2012).

Such investigations could lead to new strate-
gies for improving the fitness of bioremediation
strains via specialized inoculum preparation and/
or genetic alterations. The latter might be aug-
mented by altering expression of genes directly
involved in xenobiotic degradation, such as spe-
cific peroxidases and CyP genes. Further strain
improvements might focus on the expression of
genes indirectly influencing oxidative enzyme
systems. Examples include H2O2-generating
enzymes that could enhance peroxidase catalysis
or supply reactants for Fenton chemistry.

Genome analysis of wood-decay fungi con-
tributes to our fundamental understanding of
lignin degradation, a pivotal but incompletely
understood, element of the carbon cycle. Ulti-
mately, increasing genome resources will eluci-
date mechanisms of ligninolysis, and
simultaneously serve as a framework for devel-
opment of effective bioremediation and related
bioprocesses.
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