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Abstract In spite of the significant potential of 
cellulose nanocrystals as functional nanoparticles for 
numerous applications, a fundamental understanding 
of the mechanical properties of defect-free, crystalline 
cellulose is still lacking. In this paper, the elasticity 
matrix for cellulose Iß with hydrogen bonding network 
A was calculated using ab initio density functional 
theory with a semi-empirical correction for van der 
Waals interactions. The computed Young’s modulus 
is found to be 206 GPa along [001] (c-axis), 98 GPa 
along [010] (b-axis), and 19 GPa along [100] (a-axis). 
Full compliance matrices are reported for 1.0, 1.5 and 
2.0 % applied strains Color contour surfaces that show 
variations of the Young’s modulus and average 
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Poisson’s ratio with crystallographic direction 
revealed the extreme anisotropies of these important 
mechanical properties. The sensitivity of the elastic 
parameters to misalignments in the crystal were 
examined with 2D polar plots within selected planes 
containing specific bonding characteristics; these are 
used to explain the substantial variability in the 
reported experimental Young’s moduli values. Results 
for the lattice directions [001], [010] and [100] are 
within the range of reported experimental and other 
numerical values. 
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Introduction 

Mechanical properties of cellulose nanocrystals 
(CNCs) are difficult to experimentally characterize 
owing largely to extreme anisotropy and uncertainties 
about the structure of these materials. For example, 
reported experimental values for the Young modulus 
of cellulose Iß show a wide variation that is hard to 
explain considering the defect-free crystalline struc­
ture typically observed in CNCs (Sakurada et al. 1962, 
1964; Matsuo et al. 1990; Roberts et al. 1994; Nishino 
et al. 1995; Ishikawa et al. 1997; Diddens et al. 2008; 
Wagner et al. 2011; Pakzad et al. 2012; Lahiji et al. 
2010). Unfortunately, there is no standardization of the 
coordinate system and nomenclature used to measure 
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Fig. 1 a Atomic force microscope topography image of a 
tunicate CNC showing its rod-like shape (on a mica substrate) 
(Wager et al. 2011). The blue cross near the bottom of the 
figure denotes a location for AFM tip indentation. b Schematic 
of a CNC particle during AFM indentation for illustration 
purposes. Here, the cellulose chains are represented by straight 
ribbons, and the crystallographic directions indicated as a, b and 
c. The inset shows details of the layered cellulose structure 
where red spheres denote oxygen ions, gray spheres represent 
carbon ions and white spheres represent hydrogen ions. The red 
dotted lines indicate the repeating unit cell. (Color figure online) 

the elastic moduli making quantitative comparisons of 
the elastic behavior between experiments and theory 
rather difficult. Most authors agree on defining both an 
axial or longitudinal Young modulus, EA, which is 
aligned with the longitudinal axis of the cellulose Iß 

unit cell, and an additional Young modulus, perpen­
dicular to the longitudinal axis, usually reported as the 
transverse modulus, ET. Early studies using X-ray 
diffraction (Sakurada et al. 1962, 1964; Matsuo et al. 
1990; Nishino et al. 1995; Ishikawa et al. 1997) 
measured values of EA ranging from 90 to 138 GPa. 
Recently, Diddens et al. (2008) reported values of 
EA = 220 ± 50 GPa and ET = 15 ± 1 GPa using 
inelastic X-ray scattering (IXS). Diddens et al. (2008) 
claimed that IXS was not affected by the amorphous 
zones occurring in natural cellulose, and the elastic 
behavior was mostly related to the highly crystalline 
regions. Alternatively, larger uncertainties have been 
reported from atomic force microscopy (AFM) 

measurements of cellulose Iß elastic properties. For 
example, Lahiji et al. (2010) and Wagner et al. (2011) 
reported ET = 8.1 GPa with a 95 % confidence, which 
translates into an interval ranging from 2.7 to 20 GPa. 

A typical AFM indentation test of a CNC particle on 
a hard substrate is shown in Fig. la. As described by 
Lahiji et al. (2010), this test is used to measure ET 

Figure l b  shows schematics of the direction of the load 
with respect to the expected crystallographic directions 
(a, band c) .  Relating these experimental measurements 
to a specific crystallographic orientation is challenging 
since it is difficult to estimate the alignment of the CNC 
with respect to the substrate (Lahiji et al. 2010). 
Moreover, with no additional information on the 
direction assigned to ET, it may not be possible to 
properly interpret the experimental data and, therefore, 
any attempt to compare experiments with computa­
tional predictions is difficult. Uncertainties about the 
shape of the CNC after sample preparation and the 
determination of the crystallographic planes during the 
experiments contribute to this important challenge. 

In the present study, we quantify the anisotropy of the 
Young’s modulus and Poisson’s ratio of monoclinic 
cellulose Iß using ab initio first principles density 
functional theory (DFT) (Kohn and Sham 1965) with a 
semi-empirical correction for van der Waals interactions 
(Buzkoetal.2010).TheleastsquaresfittingmethodofLe 
Page and Saxe (2002) is used to compute all unique 
components of the elastic stiffness and compliance 
matrices using the VASP code (Kresse and Hafner 
1994; Kresse and Furthmuller 1996a, b; Hafner 2008) as 
the DFT computational engine. This information enables 
analysis of the variations of the Young’s modulus and 
Poisson’s ratio with crystallographic orientation. These 
variations are displayed as surfaces which are color 
contours showing crystallographic dependence of these 
properties.Polar plots, which show the Young’s modulus 
and Poisson’s ratio variation with angular orientation in a 
given plane within the cellulose Iß crystal structure, are 
used to: (1) explain the substantial variability in the 
literature experimental data of the Young’s modulus for 
cellulose, and (2) understand the Poisson’s effect in 
selected planes. 

Background 

Cellulose [[C6H10O5]n, n = 10,000-15,000, where 
n depends upon the cellulose source material (Azizi 
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Samir et al. 2005)] is an organic compound that can be

described as a linear chain of glucose rings with a flat

ribbon-like conformation. Each chain is formed by

one-hundred to over ten-thousand b (1 ? 4) linked D-

glucose units; van der Waals (vdW) and intermolec-

ular hydrogen bonds promote parallel stacking of

multiple cellulose chains within the crystal (Nishiy-

ama et al. 2008; Wada et al. 2008) forming the

characteristic layered structure along the a crystallo-

graphic direction (see Fig. 2a).

The most basic classification method divides crys-

talline cellulose types into 4 basic polymorphs that are

identified as I, II, III or IV, each one having its own

subtype (Moon et al. 2011). Cellulose I, also called

native cellulose, has a mix of two polymorphs, viz.,

cellulose Ia, which has a triclinic P1 (#1) structure, and

Ib, which has a monoclinic P21 (#4) structure, that

coexist in various proportions depending on the source

of the CNC (Nishiyama et al. 2002, 2003). The Ia
structure is the dominant polymorph in most algae and

bacteria, whereas Ib is the dominant polymorph for

higher plant cell wall cellulose and in tunicates

(Parthasarathi et al. 2011; Moon et al. 2011). A further

classification of cellulose I can be based on the

Fig. 2 Expanded views of the P21 unit cell structure of the

cellulose Ib network A showing the characteristic layered

conformation (Zuluaga et al. 2013b). Experimental (room

temperature) lattice parameters a, b, c, from Nishiyama et al.

(2002) are shown. Red spheres denote oxygen ions, gray spheres

represent carbon ions and white spheres represent hydrogen

ions. Dotted blue lines denote the unit cell. a View along the c-

axis (perpendicular to the page). Layers of Ib are stacked along

the a-axis. b View along the a-axis direction. Atomic

coordinates were obtained after applying symmetry operations

to the original structure reported by Nishiyama et al. (2002).

Intra- and intermolecular hydrogen bonds are depicted in green

and orange respectively, according to the hydrogen bond

network A pattern reported in Refs. Nishiyama et al. (2008)

and Šturcová et al. (2004). The symbol // in this figure means

‘‘parallel to.’’ For example, a//[001]//1 means that the crystal-

lographic direction a, with Miller indices [001], is parallel to the

Cartesian axis 1. (Color figure online)
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hydrogen bond network patterns, A and B, proposed 
by Nishiyama et al. (2002). The relative occupancies 
of the two networks are different according to the 
polymorph: network A occupies ~ 70-80% of all the 
chain positions in Iß, but only ~55 % in Ia (Nishiy­
ama et al. 2003, 2008). This study focuses on cellulose 
Iß with network A since it is the most commonly 
occurring polymorph in higher plant cell wall cellu­
lose and in tunicates. 

The crystal structure and the hydrogen bond system 
in cellulose Iß have been characterized by Nishiyama 
et al. (2002, 2003), Langan et al. (2005), Nishiyama 
et al. (2008, 2010). Here, we adopt the atomic 
coordinates for the cellulose Iß network A reported 
by Nishiyama et al. (2002). To account for the atomic 
positions inside the unit cell, we take advantage of the 
symmetry and antisymmetry operations provided by 
the crystallographic space group, commonly accepted 
to be monoclinic P21 (Sugiyama et al. 1991). Each 
crystallographic cell contains two molecular chains 
with a total of 42 ions per chain (84 ions per 
crystallographic cell). Note that the formula unit 
(f.u.) for this structure is C6O5H10; there are two f.u.'s 
in the primitive cell and four in the crystallographic 
cell. Figure 2 depicts the crystalline structure reported 
by Nishiyama et al. (2002) after the symmetry 
operations are applied to the atomic coordinates. The 
represented structure was constructed using the Crys­
talline cellulose—atomistic toolkit (Zuluaga et al. 
2013b). Intra- andinter-molecular hydrogen bonds are 
depicted in Fig. 2b following the hydrogen bond 
network A pattern reported in (Nishiyama et al. 2008; 

et al. 2004). Cellulose chains are organized 
in hydrogen bonded planes (in the b-c plane) that are 
stacked together and held in position primarily by 
weak vdW interactions. Out-of-plane intermolecular 
hydrogen bonds, connecting cellulose chains in dif­
ferent planes, have also been reported (Matthews et al. 
2012). Lattice parameters and crystallographic direc­
tions are superimposed in Fig. 2a, b for reference 
purposes. To facilitate our predictions of the anisot­
ropy of the Young's modulus and Poisson's ratio of 
monoclinic cellulose Iß, we define a Cartesian system 
of coordinates 1 , 2  and 3. Direction 1 is chosen to be 
parallel to a ([001]), and direction 3 is parallel to 
c ([001]). For the monoclinic P21 structure, b is not 
orthogonal to a. Therefore, direction 2 is chosen such 
that it is orthogonal to directions 1 and 3 as shown in 
Fig. 2a, b. 

The lattice parameters for cellulose have been 
measured by several authors (Langan et al. 2005; 
Nishiyama et al. 2002, 2003, 2008, 1010; Sakurada 
et al. 1962, 1964; Matsuo et al. 1990; Sugiyama et al. 
1991; Finkenstadt and Millane 1998) using different 
experimental techniques and crystal sources. For the 
cellulose Iß network A structure, Nishiyama et al. 
(2002) reported a = 7.784 Å, b = 8.201 Å, 
c = 10.380 Å, a = 90°, ß = 90°, = 96.55°, with 
a 658.3 Å3 volume at 293 K. Most of the measured 
lattice parameters exhibit variations around 1 % over a 
wide range of temperatures and crystalline sources, 
except for the lattice parameter a. As cellulose Iß is 
cooled or heated, the lattice remains remarkably 
constant in the directions within the hydrogen bonded 
planes containing the chains (i.e. b and c);  the same is 
not true along the a axis direction where the contrac­
tions or expansions are controlled primarily by weak 
vdW interactions and interplanar hydrogen bonding 
(Wada et al. 2008; Langan et al. 2005). Nishiyama 
et al. (2008) reported a change from 7.64 to 7.76 Å in 
the a lattice parameter when the temperature was 
raised from 15 to 295 K. Langan et al. (2005) reported 
a value of 7.83 Å for the same parameter at 298 K. 
Although hydrogen bond interactions are present 
along the stacking direction (a-axis), they apparently 
do not prevent thermal expansion at temperatures up to 
the transition to a high-temperature phase at ~ 200 °C 
(Wada 2002; Bergenstråhle et al. 2007). This thermal 
sensitivity of the lattice parameter a should be kept in 
mind when comparing 0 K ab initio calculations with 
experimental values acquired at temperatures above 
0 K. The temperature variation of the cellulose Ip 
structure is outside the scope of the current study, but it 
is reported elsewhere (Dri et al. 2013). Experimental 
lattice parameter and cell volume values, as well as 
ab initio simulation results, are summarized in 
Table 1. 

Elastic stiffness matrix Cij and compliance matrix 
Sij for crystalline cellulose Iß 

Materials that exhibit directional independence of 
their mechanical properties are referred to as isotropic. 
They have the advantage that their elastic response is 
characterized by only two parameters: the Young 
modulus (E)  and the Poisson's ratio (v ). In addition, 
the stress–strain tensile behavior will be completely 

Springer 





2708 Cellulose (2013) 202703-2718 

Fig. 3 a Schematic representation of the cellulose Iß mono-
clinic (P21) unit cell aligned with the Cartesian coordinate 
system used in this study (red solid lines). A rectangular prism 
cell (black dashed lines) is used to help visualize the 
orthogonally between the a-c and b-c. axes, highlighting the 
non-orthogonal relationship between a and b. b Relationship 
between the strain and stress vectors via Sij (Jones 1975) 

= for the P21 cellulose Iß unit cell. Eii is the Young’s 
modulus in the i-direction, Gij is the shear modulus in the i­
j plane, vij is the Poisson’s ratio which quantifies the contraction 
in the j-direction due to uniaxial loading in the i-direction, 
are the coefficients of mutual influence of the first kind which 
characterize normal strain in the k-direction due to shear stress 
in the i-j plane, and µij,kl are Chentsov’s coefficients which 
characterize shear strain in the k-lplane due to shear stress in the 
i-jplane. (Colorfigure online) 

by the c-axis. The presence of a symmetry plane has a 
direct consequence over the Cij and Sij in that it 
reduces the number of components necessary to 
represent the system. This leaves only 13 independent 
constants in each of Cij and Sij. Lastly, the matrix 
representation ofthe stress–strain relation must follow 
a coordinate system that allows a direct relationship 
between the matrix components and the cellulose Iß 

structure. Figure 3a shows a schematic representation 
of the main directions associated with the cellulose Iß 

unit cell and Sij associated with the Cartesian system of 
coordinates denoted by axes 1, 2 and 3. 

Figure 3b shows Sij in terms of the Young’s Modulus 
and Poisson’s ratio in each direction for the P21 cellulose 
Iß unit cell (also appropriate for any monoclinic space 
group) (Jones 1975). With this information, three-
dimensional surfaces can be constructed that are color 
contours of the Young’s Modulus and Poisson’s ratio. 
These contours follow variations of these properties 
with crystallographic direction. Additionally, 2D polar 
plots of the Young’s Modulus and Poisson’s ratio can be 
constructed which enable analysis of the variations of 
the Young’s Modulus and Poisson’s ratio with respect to 
a particular orientation angle within a given plane in the 
cellulose Iß unit cell. 

Several relevant directions are depicted in Fig. 3a. 
For instance, E11, E22, and E33, are the Young’s moduli 
with respect to the directions 1, 2 and 3, respectively. 
It is important to note that E11 and E33, are the Young’s 
moduli defined as the slope of the stress-strain curve 
produced in simple tension when the load is applied 
parallel to axes along a and c, respectively. Alterna­
tively, E22 is defined along a direction determined by 
the cross product between the a and c-axes (i.e. a­
c plane) (see Figs. 2 and 3a). In the a-b plane, two 
additional values of interest are defined, viz., E[110] 

and E[010], in which the subscripted indices represent 
the crystallographic direction defined by the Miller 
indices. Note that E[110] is along the axis that runs 
through the center chain in the unit cell (see Fig. 2a), 
whereas E[010] is aligned with the b-axis. The 
Poisson’s ratio is also reported using a similar 
nomenclature; for example, v12 is the Poisson’s ratio 
for the contraction in the 2-direction due to uniaxial 
loading in the I-direction. It is common to report an 
average value of the Poisson’s ratio using the two 
perpendicular directions with respect to the loading 
direction. Hence, only one index is needed. For the 
direction 1, this is defined as 

Computational methodology 

All calculations in this study were conducted with the 
Vienna Ab initio Simulation Package (VASP), a plane 
wave DFT code (Kresse and Hafner 1994; Kresse and 

Springer 



Cellulose (2013) 20:2703-2718 2709 

Furthmuller 1996a,b; Hafner 2008). The electron-ion 
interactions were described by the full potential 
projector augmented wave (PAW) method (Blöchl 
1994). Exchange-correlation was treated within the 
generalized gradient approximation of Perdew, Burke 
and Ernzerhof (GGA-PBE) (Perdew et al. 1996). 
Standard density functionals within the GGA or LDA 
cannot correctly describe vdW interactions resulting 
from dynamical correlations between fluctuating 
charge distributions (BuZko et al. 2010). This makes 
them intrinsically unsuitable for computing structural 
parameters of cellulose Iß. Using PBE functionals, 

et al. (2010, 2011) reported a value of a that is 
overestimated by ~15 % compared to experimental 
results at 15 K (Nishiyama et al. 2008). Li et al. (2011) 
found that cellulose fails to retain its crystalline 
structure when using PBE functionals (see Table 1 for 
more information). In order to circumvent this prob­
lem, a semi-empirical correction for the vdW interac­
tions [now incorporated as PBE-D and PBE-D2 in 
VASP (Kresse and Hafner 1994; Kresse and Furth­
muller 1996a, b)] was proposed by Grimme and 
coworkers (Grimme 2006; Antony and Grimme 2006). 
Using this dispersion-corrected DFT method (PBE-
D2), BuZko et al. (2010, 2011), Li et al. (2011) and 
Parthasarathi et al. (2011) showed that vdW and 
hydrogen bonding interactions play an equally impor­
tant role in defining the final shape of the cellulose Iß 

monoclinic (P21) structure and hence they cannot be 
neglected. Therefore, all calculations in this study are 
conducted using the dispersion corrected PBE-D2 in 
VASP et al. 2010, 2011). 

Structural parameters and mechanical property 
calculations were computed by simultaneously mini­
mizing all atomic forces and stress tensor components 
via a conjugate gradient method. The results presented 
in this work were obtained using a simulation cell 
corresponding to one crystallographic cell of cellulose 
Iß, following the structure reported by Nishiyama et al. 
(2002). Three successive full-cell optimizations were 
conducted (adapting basis vectors and computational 
grids to the cell parameters) to ensure convergence of 
cell energies and structural parameters. Total energies 
were calculated for the relaxed cellulose Iß structure 
by integrating over a Monkhorst–Pack mesh of k­
points in the Brillouin zone with the linear tetrahedron 
method with Blöchl corrections. The plane wave 
cutoff energy for all calculations was 500 eV. The 
total energy was converged to 10–7 eV/cell and the 

force components were relaxed to at least 10–4 eV/Å. 
For all calculations (i.e. structural and elastic proper­
ties), a 7 × 7 × 7 k-point mesh, corresponding to a k­
point spacing of 0.110 × 0.086 × 0.110 per Ang­
strom, was used. 

Components of the stiffness matrix, Cij, were 
computed from the first derivatives of the stresses 
computed in VASP, rather than from the second 
derivatives of the total energy with respect to strain, 
using the Le Page and Saxe least squares method (Le 
Page and Saxe 2002). This method avoids the numer­
ical difficulties often encountered with evaluations of 
the latter and reduces the number of required VASP 
calculations. All Cij values were computed simulta­
neously rather than as independent sums. The Cij are 
sensitive to the k-point mesh, and this required a series 
of ancillary calculations to test k-point convergence of 
each of the 13 unique Cij for the monoclinic cellulose 
Iß structure. In addition, it was determined that the 
application of four successive strains, viz., 0.05, 1.0 
1.5, and 2.0 % was adequate to obtain <1.0 % 
statistical error in each Cij. The quality of the least 
squares fit, as gauged by the computed least squares 
residual, was <1.0 % for all calculations. The small 
residuals are consistent with negligible anharmonic 
effects in the computed Cij due to the applied strains. 
Note that the Le Page and Saxe method for computing 
elastic properties with DFT has been successfully used 
to compute elastic properties for a wide variety of 
materials, including hydrides (Hector et al. 2003,2007; 
Hector and Herbst 2004), batteries (Qi et al. 2010; 
Shang et al. 2012), ceramics (Qi and Hector 2004; Qi 
and Hector 2007), metals (Shang et al. 2009; Wróbel 
et al. 2012) and defects (Woodward et al. 2008). Once 
the stiffness matrix was computed, it was subsequently 
inverted to obtain the compliance matrix, Sij. As 
explained in the previous section, the Cij and the Sij 

depend on the definition of the coordinate system 
chosen for the simulations. We use rotation techniques, 
such as those detailed in Bower (201l), which allow us 
to convert the computed compliance matrix to any 
desired orientation. The basis change follows from 

For the particular case of rotation through an angle 
in a counterclockwise sense about the 1 ,  2 and 3 axes, 

respectively, the rotation matrix K reduces to 
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(3) 

where c = and s = Clearly, applying 
the three rotations successively can produce an 
arbitrary orientation change. This provides the basis 
to construct the 3D surface contour plots and polar 
plots of the angular variation of the Young’s Modulus 
and Poisson’s ratio. . 

Results and discussion 

Results from VASP calculations with the semi-empir­
ical correction for the vdW interactions were used to 
generate the surface contour plot of the Young’s 
modulus variation with crystallographic direction 
shown in Fig. 4a. This is based upon Eqs. (2) and (3) 
and the Sij computed from application of 1.0 % strain in 
the Le Page and Saxe method (Le Page and Saxe 2002). 
A post processing software package, the Anisotropy 
Calculator–3D Visualization Toolkit, was specifically 
developed to generate the surface contour plot of the 
Young’s modulus based on Sij and is now publically 
available (Zuluaga et al. 2013a). Each point on the 
surface represents the magnitude of Young’s modulus in 
the direction of a vector from the origin of the surface 
(i.e. at the intersection of the 1, 2 and 3 axes in the 
interior of the surface) to a given point on the surface. 
The shape of this surface is indicative of the anisotropy 

of cellulose Iß. For instance, the computed Young 
modulus surface for a linearly elastic isotropic material 
would be a perfect sphere with the same value in any 
direction. However, the cellulose Iß surface in Fig. 4a 
exhibits extreme variations in the Young’s modulus, as 
denoted by the accentuated contour lobe along the 3­
axis (i.e. along the cellulose chains) relative to the 
smaller lobes along the 1 and 2 directions. The largest 
values (red contours) are along the 3-axis, with the 
smallest values along the I-axis. The greatest value of 
the Young’s modulus is 206 GPa, which is comparable 
to that of steel (~207 GPa) (Leslie 1981). Figure 4b, c 
and d show side views of the same surface in Fig. 4a to 
put in evidence the differences in Young’s moduli for 
directions lying on the 1-2,1-3 and 2-3 planes in better 
perspective. 

Polar plots of the angular variation of the Young’s 
modulus within a given crystallographic plane of the 
monoclinic cellulose Iß crystal structure are shown in 
Figs. 5 and 6. These plots can be used to help provide 
insight into the variability in the reported experimental 
values (ranging from 90 to 220 GPa) of the Young’s 
modulus. Figure 5 shows the angular variation of the 
Young’s modulus along the 1-3 plane (as shown by the 
gay plane in the inset on the upper left of the figure). 
Three axes are considered direction 1 (which is the 
vertical axis), direction 3 (the horizontal axis) and the 
semi-circular line showing the angle with respect to the 
origin. These are the same axes defined in Figs. 2 and 
3a. The scale of the vertical axis denotes the magnitude 
of E11, whereas the scale of the horizontal axis denotes 
the magnitude of E33. The inset in the bottom semi­
circular part shows the orientation of the directions 1 
and3 with respect to the cellulose Iß unit cell. Here, is 
the angle between the 3'-direction, along which the 
load is applied, and the 3-direction (in the 1-3 plane). 
The plot is generated by computing Sij for different 
angles using Eqs. (2) and (3), and extracting the Young 
modulus value in the 3'-direction from the rotated 
compliance matrix. Components of the Sij, computed 
in the Cartesian coordinate system shown in Fig. 3a 
were obtained following the Le Page and Saxe method 
(Le Page and Saxe 2002) for three values of applied 
strains, viz. 1.0 1.5, and 2.0 %. A change of only 10° in 
the longitudinal alignment (c-axis) reduces the DFT­
predicted Young modulus from 206 to ~ 70 GPa. This 
considerable reduction is related to the deformation 
mechanism in which the cellulose Iß structure is under 
simple tension in each of the 1, 2, 3 directions. 
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Fig.4 a Surfaces showing contours of computed Young's 
modulus values for cellulose Iß based on an Sij from application 
of a 1 % strain in the Le Page and Saxe method (Le Page and 
Saxe 2002). Each point on the surface represents the magnitude 
of the Young's modulus in the direction of a vector from the 
origin of the surface to that point. The color contours help to 

identify the Young modulus variation of cellulose Iß and 
emphasizes its extreme anisotropy (note the significant elonga­
tion of the surface along axis 3). Side views of the same surface 
are shown for the b 1-2 plane, c 1-3 plane, d 2-3 plane. Note 
that axis 2 is not seen in these additional views. (Color figure 
online) 

Fig. 5 Angular variation of the longitudinal Young's modulus 
(EA ) within the 1-3 plane for applied strains of 1.0, 1.5, and 
2.0 %. The 2-axis (perpendicular to the page) is considered to be 
the rotation axis: the value of the longitudinal modulus for a 
given direction can be read directly from the figure by defining a 
straight line from the origin to the desired angle. It is important 

to notice how small misalignments between the cellulose Iß c­
axis and the 3-direction will produce an important reduction in 
the interpretation of EA during experimental characterization. 
The inset in the bottom semi-circular part shows the orientation 
of the 1 and 3 directions with respect to the cellulose Iß unit cell 

For instance, imposing a deformation perfectly found stretching of the covalent bonds between C and 
aligned with the c-direction involves a series of very O ions that form the cellulose chain (shown as the ball 
complex deformation mechanisms. Among them we and stick features Fig. 2), stretching of intra-
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Fig. 6 Angular variation of the ET at applied strains of 1.0, 1.5, 
and 2.0 %. The 3-axis (pointing perpendicular to the page) is 
considered to be the rotation axis; the value of ET for a given 
direction can be read directly from the figure by defining a 
straight. line from the origin to the desired angle. The 
intersection between the straight line and the curves for 
different strains provides the valure of ET. Three critical 

molecular hydrogen bonds (shown as green dashed 
lines in Fig. 2), angle bending, rotations and distor­
tions. This results in the highest value of the Young 
modulus (206 GPa) along the c-direction (the 3­
direction). In the a-direction (which corresponds to 
the 1-direction), hydrogen bonded planes are stacked 
together and held in position primarily by weak vdW 
interactions. Any deviation of the stretching direction 
in the 1–3 plane will produce a rapid decrease in the 
Young’s modulus due to sliding between adjacent 
planes. In the b-direction, the intermolecular hydrogen 
bonds (See Fig. 2b) provide additional reinforcement 
to keep the cellulose chains from sliding. As a 
consequence, the effects of misalignments on the 
resulting Young’s modulus in any direction lying on 
the 2–3 plane are less severe compared with those in 
the 1–3 plane. Note that deviations between the curves 
from the applied strains, viz 1.0, 1.5, and 2.0 % are 
very minimal, as it can be observed in Figs. 5 and 6. 

Upon comparing our DFT-computed results with 
experimental data (Table 2), E33 can be regarded as 

directions (11 to b, through the center chain and to b) are 
marked for reference using Miller indices; the direction parallel 
to the a-axis coincides with the vertical axis of the figure. The 
superposition of the three strain curves allow us to concluded 
that the crystal behaves linearly for strains up to 2 %. The inset 
in the bottom semi-circular part shows the orientation of the 1 
and 2 directions with respect to the cellulose Iß unit cell 

the axial Young’s modulus (EA ). However, the exper­
imental value of ET can be interpreted as any of the 
Young’s moduli in any of the directions lying in the 1– 
2 plane. Figure 6 is polar plot that shows the variation 
of the Young’s modulus with angular orientation 
within the 1–2 plane. Here, is the angle between the 
1'-direction, along which the load is applied, and the 1­
direction (in the 1–2 plane). The plot is generated by 
computing Sij for different angles using Eqs. (2) and 
(3) and extracting the Young modulus value in the 1'­
direction from the rotated Sij. Stretching in the b­
direction implies separating chains in the hydrogen 
bonded planes which explains why E[010] has the 
highest value for ET (98 GPa). Perpendicular to the b­
direction (marked as [010] in Fig. 6), non-bonded 
interactions have to be overcome to increase the 
distance between adjacent planes, producing a relative 
maximum (19 GPa) in the Young’s modulus. Another 
observation is that ET reaches its minimum (13 GPa) 
between the b-direction and the direction perpendic­
ular to the b-direction ( ~30° in the plot). This could 
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Table 3 Young’s moduli as a function of orientation for Table 4 Computed Poisson's ratio values, as a function of the 
applied strains of 1.0, 1.5, and 2.0 % from DFT calculations in orientation with respect to the Cartesian system of coordinates 
the present study 1-2-3, for different total strains 

Young's modulus Total strain Average Poisson's Total strain applied in the Le Average over 
ratio Page and Saxe method (Le Page strains 

1.0% 1.5% 2.0% and Saxe 2002) 

1.0% 1.5% 2.0% 

This table summarizes the results shown in Fig. 6. Young’s 
modulus are reported in GPa, computed at 0 K using DFT with 
van der Waals interactions (this work) 

compliance matrix obtained using Eqs. (2) and (3). 

Here the 1'-direction indicates the orientation of the 

load (which is the orientation that is being evaluated). 

Figure 7a shows one view of the computed 
surfaces. Figure 7b-d show views of the same surface 

in the 1-2, 1-3, and 2-3 planes, respectively. These This table summarizes the results shown in Fig. 8 

results clearly show the strong variations in with 

minimum values along the directions [100], [010] and 

[001]. As it can be observed in Fig. 7, the type of Figure 8 shows apolar plot of and using 

anisotropy in is different from that shown for the the c-axis as the rotation axis, in which variations of 

Young's Modulus (Fig. 4). The details on how these quantities are examined over the 1–2 plane 

varies in some selected planes will be discussed next (where is the angle between the 1'-direction, along 

(Table 4). which the load is applied, and the 1-direction in the 1– 


Fig. 7 Average Poisson's ratio surfaces for cellulose I ß 

computed using Eq. 1 basedon Sij for 1.0 % of total deformation 
in the Le Page and Saxe method (Le Page and Saxe 2002). Each 
point on the surface represents the magnitude of Poisson's ratio 
in the direction of a vector from the origin to that point. The 

color contours help to identify the Poisson’s ratio variation and 
emphasizes the extreme anisotropy of the system. Side views of 
the same surface are shown for the b 1–2 plane, c 1–3 plane, d 2– 
3 plane. Note that axis 2 is not seen from this view. (Color figure 
online) 
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Fig. 8 Poisson’s ratio as a function of the rotation angle for straight line from the origin to the desired angle. The 
1.0 % of total strain The inset in the upper-left corner depicts intersection between the straight line and the curves provide 
the surface of the average Poisson's ratio as shown in Fig, 7 and the values of v1,2, v1,3 and the average of them (V1) for that 
the selected plane in which the polar plot lies. The 3-axis direction. Three critical directions (// tu b, through the center 
(pointing perpendicular to the page) is considered to be the chain and to b) are marked for reference using Miller indices; 
rotation axis; the value of the Poisson’s ratio for a given the direction parallel to the a-axis coincides with the vertical 
direction can be read directly from the figure by defining a axis of the figure 

Fig. 9 Elastic compliance 
(S) and stiffness 
(C) matrices for cellulose Iß 

based upon the Nishiyama 
et al. (2002) initial structure 
with respect to the Cartesian 
system of coordinates 
shown in Fig. 3a. All 
components were computed 
using the Le Page and Saxe 
method with with the 
dispersion-corrected DFT 
method (PBE-D2) in VASP 
for three different total 
strains (1.0, 1.5, and 2.0 %). 
Values of S are given in [1/ 
GPa] × 1000, and those for 
C are in [GPa] 
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2 plane). In order to quantify lateral deformation, we 
define a local Cartesian system 1'–2' that rotates with 
respect to the 1 and 2 directions and remains in the 1–2 
plane. First, v1,2, provides the lateral deformation in 
the 2'-direction as uniaxial stress is applied along the 
1'-direction. It is important to remember that the 2'­
direction rotates perpendicular to the 1'-direction in 
the 1–2 plane in Fig. 8. The smallest value of 
v1,2, 0.1 is found when the 1'-direction is aligned 
with the direction marked as in the plot. This 
happens to be the direction perpendicular to the 
hydrogen bonded planes which contain the cellulose 
chains. This small value is expected since increasing 
the separation between hydrogen bonded planes, held 
together primarily by weak vdW interactions, has little 
effect over the arrangement of the cellulose chains 
inside the plane. The next local minimum is found to 
be in the [010]-direction where the opposite effect is 
observed. Trying to separate cellulose chains from 
each other has little effect over the arrangement of 
hydrogen bonded planes. The axial deformation of the 
system shows a different behavior. Here, measures 
the contraction in the 3-direction as uniaxial stress is 
applied in the 1'-direction (since the 1' and the 2' 
directions remain in the 1–2 plane, the 3'-direction 
coincides with the 3 direction). In Fig. 8, the 3­
direction coincides with the rotation axis (perpendic­
ular to the plane of the plot), meaning that this 
direction is always coincident with the cellulose chain 
regardless ofthe orientation angle. The small values of 

for all directions (ranging from 0 to 0.05) can be 
easily justified by the covalent bonds between carbon 
and oxygen ions that govern the mechanical response 
in the c-direction: these are largely unaffected by 
deformation in other directions. When the cellulose Iß 

is deformed along a direction that passes near the 
center chain (around 45° in the plot), practically no 
Poisson effect (no lateral expansion in the 3-direction) 
is observed in the axial direction (Fig. 8). 

The extreme anisotropies observed in cellulose Iß 

can be once again evidenced in the high variations of 
the Poisson's ratio. Depending on the selected direc­
tion, the Poisson's ratio will range from almost 0 to 
0.71. Comparison with previous publications (Matsuo 
et al. 1990; Eichhorn and Davies 2006; Nakamura et al. 
2004) shows results that are in good agreement with the 
values reported in this study. Finally, our computed Cij 

and Sij based on the Cartesian system shown in Fig. 2, 
are reported for each applied strain in Fig. 9. 

Conclusion 

The full elasticity tensor was computed for cellulose Iß 

network A using DFT with van der Waals interactions 
using a least squares fitting method with VASP as the 
computational engine. Our results show a good agree­
ment with previous experimental work, in particular, a 
remarkable agreement is found with the IXS experi­
ments conducted by Diddens et al. (2008). Three 
dimensional surfaces, which are color contours showing 
the crytstallogaphic dependence of the Young's mod­
ulus and Poisson's ratio, were computed to examine the 
extreme anisotropy of these important elastic properties. 
A clear correlation between the stiffness of the crystal 
and the different deformation mechanisms was noted. 
The largest Young’s modulus (206 GPa) was found to 
be aligned with the c-axiswere covalent bonds dominate 
the mechanical response of the crystal. Perpendicular to 
the cellulose chain axis, the b-direction shows the next 
greatest value for the Young modulus (98 GPa);this can 
be explained by the presence of the hydrogen bond 
network linking the cellulose chains. Finally, a value for 
the Young modulus of only 19 GPa was computed 
along the direction perpendicular to the previous two, 
where weak vdW interactions play a dominant role in 
the mechanical response of the material. Based on our 
0 K simulations with dispersion-corrected DFT in 
VASP, the transverse Young Modulus for crystalline 
cellulose can be defined in the range between 13 and 
98 GPa, in good agreement with reported experimental 
results (Diddens et al. 2008; Wagner et al. 2011; Pakzad 
et al. 2012; Lahiji et al. 2010) and other numerical 
simulations (Matsuo et al. 1990 Eichhorn and Davies 
2006 Wu et al. 2013). 

It should be mentioned that the predicted values of 
Young's modulus along the c -axis in this work is higher 
than the ~ 100-150GPa range usually reported in other 
numerical works (Matsuo et al. 1990; Tashiro and 
Kobayashi 1991; Eichhorn and Davies 2006; Wu et al. 
2013). While the origins of this discrepancy between 
previous molecular dynamics calculations and the 
present DFT results is not known, some additional 
comments on this issue are warranted. Molecular 
dynamics calculations are sensitive to the force field 
being used. These usually involve semi-empirical 
potentials for the bonding interactions between the 
elemental constituents. As such they do not explicitly 
account for electron exchange and correlation as DFT 
does. Alternatively, a potential contributing factor from 
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DFT may be the choice of the exchange-correlation 
functional, for which we chose the gradient-corrected 
formalism of Perdew, Burke and Ernzerhof (GGA-PBE) 
(Perdew et al. 1996). However, the GGA approach is 
known to predict mechanical properties that are closer to 
those reported in experimental works than those 
predicted by local density formalisms (Hector et al. 
2007). Moreover, future DFT studies of cellulose will 
focus on exploring HSE06 functionals (Heyd et al. 2003, 
2006), which allow exact exchange, rather than the 
approximations involved with other DFT functionals. 
These recent functionals mix the DFT and Hartree-Fock 
approaches and have been shown to give more accurate 
predictions of band gaps, for example, relative to the 
local density or gradient corrected approximations. The 
extent to which HSE06 functionals influence pre­
dicted mechanical properties for materials such as 
cellulose relative to a gradient corrected functional, 
such as that used herein, is currently unknown. 
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