Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Ceriporiopsis subvermispora and Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode lac cases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcription analysis showed substantial up-regulation of several desaturase and MnP genes in wood-converting medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn². Apart from oxidative lignin degradation, we also examined cellulytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulosytic capability relative to P. chrysosporium.

This article is a PNAS Direct Submission.

Data deposition: The annotated genome is available on an interactive web portal, http://jgi.doe.gov/Ceriporiopsis and at DNA Data Bank in Japan/European Molecular Biology Laboratory (DDBJ/EMBL/GenBank project accession no. AE000000000). The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE34636).

1To whom correspondence should be addressed. E-mail: dcullen@wisc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119912109/-DCSupplemental.

Editoried by Richard A. Dixon, The Samuel Roberts Noble Foundation, Ardmore, OK, and approved February 22, 2012 (received for review December 6, 2011)
White rot fungi, such as the oyster mushroom
Pleurotus ostreatus (14). First discovered in
land ecosystems is plant biomass, composed primarily of
cellulose, hemicellulose, and lignin. Many microorganisms are
capable of using cellulose and hemicellulose as carbon and
ergy sources, but a much smaller group of filamentous fungi in
the phylum Basidiomycota has also evolved with the unique
ability to efficiently depolymerize and mineralize lignin, the most
recalcitrant component of plant cell walls. Collectively known as
white rot fungi, they remove lignin to gain access to cell wall
carbohydrates for carbon and energy sources. These wood-decay
fungi are common inhabitants of fallen trees and forest litter. As
such, white rot fungi play a pivotal role in the carbon cycle. Their
unique metabolic capabilities are of considerable recent interest
in bioenergy-related processes (1).

White rot basidiomycetes differ in their gross morphological
patterns of decay (ref. 2 and refs. therein). Phanerochaete chrys-
osome (EC 1.11.1.14) and manganese peroxidase (EC 1.11.1.13) have been intensively studied (3). Reactions catalyzed by
LiP include Cα-Cβ cleavage of propyl side chains in lignin and lignin
molecules, hydroxylation of benzylic methylene groups, oxidation of
benzyl alcohols to the corresponding aldehydes or ketones, phenol
oxidation, and aromatic ring cleavage in nonphenolic lignin model
compounds. In addition to P. chrysosporium, multiple ligninolytic
peroxidase isozymes and their corresponding genes have been
identified in several efficient lignin-degrading fungi (4). In some
white rot fungi, such as the oyster mushroom Pleurotus ostreatus and
related species, Ceriporiopsis subvermispora, have the ability to remove
lignin in advance of cellulose. The mechanistic basis of this
selectivity is unknown.

The roles of P. chrysosporium lignin peroxidase [LiP; Enzyme
Commission (EC) 1.11.1.14] and manganese peroxidase (EC 1.11.1.13) have been intensively studied (3). Reactions catalyzed by
LiP include Cα-Cβ cleavage of propyl side chains in lignin and lignin
molecules, hydroxylation of benzylic methylene groups, oxidation of
benzyl alcohols to the corresponding aldehydes or ketones, phenol
oxidation, and aromatic ring cleavage in nonphenolic lignin model
compounds. In addition to P. chrysosporium, multiple ligninolytic
peroxidase isozymes and their corresponding genes have been
identified in several efficient lignin-degrading fungi (4). In some
white rot fungi, such as the oyster mushroom Pleurotus ostreatus and
related species, LiP is absent, but a third ligninolytic peroxidase type
that combines LiP and MnP catalytic properties, versatile peroxi-
dase (VP; EC 1.11.1.16), has been characterized (4, 5) and identi-

fied by genome analysis (6). Repeated and systematic attempts have
failed to identify LiP (or VP) activity in C. subvermispora cultures,
but substantial evidence implicates MnP in ligninolysis (e.g., refs 7,
8). First discovered in P. chrysosporium, this enzyme oxida-
dizes Mn²⁺ to Mn³⁺, using H₂O₂ as an oxidant (9, 10). MnP cannot
directly cleave the dominant nonphenolic structures within lignin,
but it has been suggested that oxidation may be mediated by lipid
peroxidation mechanisms that are promoted by Mn³⁺ (3).

In addition to peroxidases, laccases (EC 1.10.3.2) have been
implicated in lignin degradation. Several have been characterized
from C. subvermispora cultures (11), whereas no genes encoding
laccase, in the strict sense, are present in the P. chrysosporium
genome (12). The mechanism by which laccases might degrade lignin
remains unclear, as the enzyme lacks sufficient oxidation potential
to cleave nonphenolic linkages within the polymer. However, var-
ious mediators have been proposed (13).

Other components commonly ascribed to ligninolytic systems
include extracellular enzymes capable of generating hydrogen
peroxide. Glucose–methanol–choline oxidoreductases such as
aryl-alcohol oxidase, methanol oxidase and pyrano oxidase,
together with copper radical oxidases such as glyoxal oxidase,
have been characterized in P. chrysosporium (14), but none of
these activities have been reported in C. subvermispora cultures.

Conceivably, selective lignin degradation patterns may involve
modulation of the hydrolytic enzymes commonly associated with
cellulose and hemicellulose degradation. These systems are well
characterized in P. chrysosporium, whereas little is known about
C. subvermispora glycoside hydrolases (GHs) (15).

To further our understanding of selective ligninolysis, we report
here initial analysis of the C. subvermispora genome. Comparison
with the genome, transcriptome, and secretome of P. chrysosporium
reveal substantial differences among the genes that are likely to be
involved in lignocellulose degradation, providing insight into
diversification of the white rot mechanism.

Results

General Features of C. subvermispora Genome. The 39-Mb haploid
genome of C. subvermispora monokaryotic strain B (16) (SI Appendix,
Fig. S1) is predicted to encode 12,125 proteins (SI Appendix
provides detailed annotation and submission information). For com-
parison, the latest release of the related polyphore white rot fungus
P. chrysosporium features 35.1 Mb of nonredundant sequence and
10,048 gene models (12, 17). The overall relatedness of these poly-
phore fungi was clearly evident from the syntenic regions between
their largest scaffolds and large number of similar (BLAST E-values <10⁻³)
protein sequences, i.e., 74% (n = 9,007) of C. subvermispora models
aligned with P. chrysosporium and 82% (n = 8,258) of
P. chrysosporium models aligned with C. subvermispora. Most (n =
5,443) of these pairs were also reciprocal “best hits” and are thus
likely to represent orthologues. Significant expansions compared with
P. chrysosporium and/or other sequenced Agaricomycetes were
observed in transporters, various oxidoreductases including peroxi-
dases, cytochrome p450s, and other gene families discussed here.

Fig. 1. Phylogenetic analysis of selected peroxidases from C. subvermispora
and P. chrysosporium. The analysis was performed in RAxML Blackbox under
the model GTR+GAMMA, using the substitution matrix WAG with 100 rapid
bootstrap replicates. The ascomycete sequences of class II peroxidases were
used to root the tree (http://phylobench.vital-it.ch/raxml-bbb) (32). Ball-milled
aspen versus glucose transcript ratios (BMA/Glu) are indicated, and complete
data are available under Gene Expression Omnibus accession nos. GSE1473 and
GSE34636 for P. chrysosporium and C. subvermispora, respectively.
 Peroxidases. Twenty-six *C. subvermispora* gene models are predicted to encode heme peroxidases. Fifteen were classified as probable ligninolytic peroxidases, which included 13 MnPs, a VP, and a LiP. These classifications were based on homology modeling (18) with particular attention to conserved Mn$^{2+}$ oxidation and catalytic tryptophan sites (19, 20). Those classified as MnPs include seven typical “long” MnPs specific for Mn$^{2+}$ and a “short” MnP also able to oxidize phenols and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) in the absence of Mn$^{2+}$, as previously reported in the *P. ostreatus* genome (6). The remaining five could be classified as “extra long” MnPs in view of their long C-termini, as reported for the first time in *Dichomitus squalens* MnPs (21). Only four full-length MnP-encoding genes were previously identified in *C. subvermispora* (GenBank accession nos. AAB03480, AA92247, AA061784, and AF161585). Additional class II peroxidases have long been suspected (22, 23), but no LiP/VP-like transcripts or activities have been identified. Thus, the repertoire of *C. subvermispora* peroxidases differs from *P. chrysosporium*, which features 10 LiP and five MnP genes (Fig. 1). Extending comparative analysis to 90 basidiomycete peroxidases (SI Appendix, Fig. S3) suggested that the *C. subvermispora* VP and LiP represent divergent proteins, an observation consistent with their catalytic properties (as detailed later).

By using a previously developed *Escherichia coli* expression system including in vitro activation (24, 25), the *C. subvermispora* putative LiP (Cesuv118677) and VP (Cesuv99382) were evaluated for their oxidation of three representative substrates, namely Mn$^{2+}$, the redox-potential veratryl alcohol (VA), and Reactive Black 5 (RB5) (Table 1). The corresponding steady-state kinetic constants were compared with those of *Pleurotus eryngii* VP (isozyme VPL; AF007244), a *P. chrysosporium* LiP (isozyme H8; GenBank accession no. Y00262), and a conventional *C. subvermispora* MnP (Cesuv117436; Fig. 1) also produced in *E. coli*. The putative *C. subvermispora* LiP (protein model Cesuv118677) was unable to oxidize Mn$^{2+}$, as expected given the absence of a canonical manganese oxidation site in its structural model (SI Appendix, Fig. S2). A conventional *C. subvermispora* MnP protein (Cesuv117436), also predicted based on structure, and the VP from *P. eryngii* showed Mn$^{2+}$ oxidation. Surprisingly, the *C. subvermispora* protein designated Cesuv99382, which we tentatively classified as a VP, was not able to oxidize Mn$^{2+}$, irrespective of the presence of a putative manganese oxidation site in its structural model (SI Appendix, Fig. S2). The catalytic behaviors of Cesuv99382 and Cesuv118677 are very similar. Both enzymes oxidize VA, the typical LiP (and VP) substrate, and also RB5, a characteristic substrate of VP (that LiP is unable to oxidize in the absence of mediators), with similar K_m, k_{cat}, and k_{cat}/K_m values (Table 1).

Peroxidase expression patterns differed significantly between *C. subvermispora* and *P. chrysosporium*. In medium containing ball-milled *Populus grandidentata* (aspen) as sole carbon source, transcript levels of two *C. subvermispora* MnPs were significantly up-regulated relative to glucose medium. Liquid chromatography/tandem MS (LC-MS/MS) analysis of culture filtrates identified peptides corresponding to three *C. subvermispora* MnP genes (Fig. 1). In identical media, none of the *P. chrysosporium* MnP genes were up-regulated, but significant accumulation of two LiP gene transcripts was observed relative to glucose (Fig. 1). No peroxidases were identified by LC-MS/MS analysis of *P. chrysosporium* culture filtrates.

Multicopper Oxidases. Nine multicopper (MCO)-encoding *C. subvermispora* genes may be relevant to lignin degradation. Multiple alignments emphasizing signature regions (26, 27) revealed the presence of seven laccases, in the strictest sense, one of which was previously known (28). This observation is in distinct contrast to the *P. chrysosporium* genome, which contains no laccases (12) (Fig. 2). Consistent with a role in lignocellulose modification, transcript levels corresponding to *C. subvermispora* laccase were significantly up-regulated (more than threefold; $P < 0.01$) in media containing ball-milled *P. grandidentata* wood (aspen) relative to glucose medium (Fig. 2).

In addition to the laccases, *C. subvermispora* MCO-encoding genes included a canonical ferroxidase (Fct3). Involved in high-affinity iron uptake, the Fct3 genes of *C. subvermispora* (Cesuv67172) and *Postia placenta* (Pospl129808) show significant up-regulation on aspen-containing medium, whereas the *P. chrysosporium* orthologue (Pchr26890) is sharply down-regulated under identical conditions (Fig. 2). This strongly suggests that iron homeostasis is achieved by different mechanisms in these fungi.

Other Enzymes Potentially Involved in Extracellular Redox Processes. Peroxide and free radical generation are considered key components of ligninolysis, and analysis of the *C. subvermispora* genome, transcriptome, and secretome revealed a diverse array of relevant genes. These included four copper radical oxidases, cellobiose dehydrogenase, various other glucose–methyl alcohol oxidoreductases, and several putative transporters. Possibly related to selectivity of ligninolysis, expression patterns exhibited by certain genes, e.g., methanol oxidase, differed significantly between *P. chrysosporium* and *C. subvermispora*. (SI Appendix and SI Appendix, Table S1, include detailed listings of all annotated genes, transcript levels, and LC-MS/MS identification of extracellular proteins.) Of particular relevance to lignin degradation by MnP, we observed a significant expansion of the genes putatively involved in fatty acid metabolism (Table 2). Relative to the single gene in *P. chrysosporium* (encoding Pchr125220) the Δ-12 fatty acid desaturase gene family was particularly expanded (five paralogues) in *C. subvermispora*. The *P. chrysosporium* and *C. subvermispora* genomes

Table 1. Steady-state kinetic constants of three peroxidases from *C. subvermispora* genome vs. *P. chrysosporium* LiP and *P. eryngii* VP.

<table>
<thead>
<tr>
<th>Constant</th>
<th>C. subvermispora</th>
<th>P. chrysosporium</th>
<th>P. eryngii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$^{2+}$</td>
<td>99382 (VP)</td>
<td>118677 (LiP)</td>
<td>117436 (MnP)</td>
</tr>
<tr>
<td>K_m, μM</td>
<td>ND b</td>
<td>ND</td>
<td>58.5 ± 8.5</td>
</tr>
<tr>
<td>k_{cat}, s$^{-1}$</td>
<td>0</td>
<td>0</td>
<td>331 ± 20</td>
</tr>
<tr>
<td>k_{cat}/K_m, m$^{-1}$s$^{-1}$</td>
<td>0</td>
<td>0</td>
<td>5,600 ± 500</td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td></td>
<td>1,520 ± 70</td>
</tr>
<tr>
<td>RB5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_m, μM</td>
<td>3,120 ± 526</td>
<td>1,620 ± 290</td>
<td>ND</td>
</tr>
<tr>
<td>k_{cat}, s$^{-1}$</td>
<td>8.6 ± 0.7</td>
<td>8.7 ± 0.6</td>
<td>0</td>
</tr>
<tr>
<td>k_{cat}/K_m, m$^{-1}$s$^{-1}$</td>
<td>2.8 ± 0.3</td>
<td>5.4 ± 0.7</td>
<td>0</td>
</tr>
</tbody>
</table>

Reactions were at 25 °C in 0.1 M tartrate (pH 3 for VA, pH 3.5 for RB5, and pH 5 for Mn$^{2+}$). ND, not determined because of lack of activity. Means and 95% SEM are provided.

Fernandez-Fueyo et al.
genes were previously designated Pcfad2 and Csfad2 (29, 30), respectively. Transcript levels of *P. chrysosporium* Pcfad2 were significantly reduced (0.25-fold; *P < 0.01) in media with aspen relative to glucose, whereas a *C. subvermispora* Δ-12 fatty acid desaturase (Cesuv124119) was up-regulated (2.9-fold; *P < 0.01). With regard to Δ-9 fatty acid desaturases, only two *P. chrysosporium* genes were detected and, as in the case of Δ-12 fatty acid synthetases, both were down-regulated more than twofold (*P < 0.01). Modest transcript accumulation (1.48-fold; *P = 0.03) was observed for one of the four *C. subvermispora* Δ-9 fatty acid desaturases (Cesuv117066) in aspen wood media relative to glucose media. Increased numbers of MnP and lipid metabolism genes, viewed together with their expression patterns, are consistent with an important role for peroxyl radical attack on nonphenolic substructures of lignin.

Table 2. Number, overall relatedness, and transcript levels of genes putatively involved in lipid metabolism

<table>
<thead>
<tr>
<th>Protein ID</th>
<th>Glc</th>
<th>BMA</th>
<th>B/G</th>
<th>P value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ-12 fatty acid desaturase (COG 3239)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124119</td>
<td>11.01</td>
<td>12.54</td>
<td>2.90*</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>58880</td>
<td>10.36</td>
<td>10.29</td>
<td>0.96</td>
<td>0.729</td>
<td></td>
</tr>
<tr>
<td>109952</td>
<td>10.58</td>
<td>10.23</td>
<td>0.78</td>
<td>0.0149</td>
<td></td>
</tr>
<tr>
<td>195708</td>
<td>10.67</td>
<td>10.11</td>
<td>0.68</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>112068</td>
<td>12.74</td>
<td>12.66</td>
<td>0.94</td>
<td>0.653</td>
<td>Cesuv1</td>
</tr>
<tr>
<td>Δ-9 fatty acid desaturase (COG 1398)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117066</td>
<td>11.78</td>
<td>12.35</td>
<td>1.48</td>
<td>0.0298</td>
<td>CsOle1 & PcOle1 (29)</td>
</tr>
<tr>
<td>87875</td>
<td>8.93</td>
<td>8.94</td>
<td>1.01</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>117063</td>
<td>8.95</td>
<td>8.91</td>
<td>0.97</td>
<td>0.527</td>
<td>5’ needs editing</td>
</tr>
<tr>
<td>121693</td>
<td>9.64</td>
<td>9.51</td>
<td>0.92</td>
<td>0.179</td>
<td></td>
</tr>
</tbody>
</table>

Carbohydrate Active Enzymes. Overall, the number of GHS encoded by the *C. subvermispora* genome is slightly lower than that of other plant cell wall degrading basidiomycetes whose genomes have been sequenced (Dataset S1 and SI Appendix, Table S1). The number of GHS in *C. subvermispora* (*n = 171*) is close to that in *P. chrysosporium* (*n = 177*), and noticeably different in total number and in family distribution compared with the phylogenetically related brown rot fungus *P. placenta* (*n = 145*; Fig. 3). Differences between *C. subvermispora* and *P. chrysosporium* are limited to a few families, but these distinctions might have consequences for degradation of plant cell wall polysaccharides. For example, *C. subvermispora* contained only three predicted proteins belonging to family GH7, an important group typically featuring “exo” cellobiohydrolases. In contrast, at least six GH7 protein models were identified in the *P. chrysosporium* genome. Family GH3, containing β-glucosidases involved in the hydrolysis of cellobiose, was represented by only six gene models in the *C. subvermispora* genome, unlike the 11 GH3 models found in *P. chrysosporium*. In addition, the *C. subvermispora* genome revealed only 16 cellulose binding modules (CBM1s), compared with 31 CBM1-containing protein models found in the *P. chrysosporium* genome.

In contrast to the oxidative systems, transcriptome and secretome analysis of GHS generally showed lower expression in *C. subvermispora* relative to *P. chrysosporium* (Table 3 and SI Appendix, Table S1). Transcripts corresponding to 30 *C. subvermispora* GH-encoding genes accumulated more than twofold (*P < 0.05) in aspen wood- vs. glucose-containing media. In contrast, 52 *P. chrysosporium* GH-encoding genes were up-regulated (more than twofold; *P < 0.05). MS unambiguously identified 60 and 121 proteins in filtrates from aspen wood media of *P. chrysosporium* and *C. subvermispora* cultures, respectively, among which 18 and three, respectively, corresponded to GHS.

Genes encoding likely cellulases showed only modest transcript levels in *C. subvermispora* (Table 3). *C. subvermispora* transcripts corresponding to single copies of a CBM1-containing cellobiohydrolase (GH7), a CBM1-containing endo-β-1,4-glucanase (GH3), and a GH12 endoglucanase, all canonical cellulases, were significantly up-regulated (more than twofold; *P < 0.01) in aspen wood relative to glucose media. Under identical conditions, accumulating *P. chrysosporium* transcripts included four GH7 cellobiohydrolases, two GH5 endo-β-1,4-glucanases, and two GH12 endoglucanases (Table 3).

The foregoing analysis is limited to expression patterns of genes with putative function inferred from sequence comparisons. However, many of the predicted proteins that show no significant sequence similarity to known proteins could be important in selective ligninolysis. Specifically, we identified 139 “hypothetical” *C. subvermispora* proteins whose sequences show...
no significant similarity to *P. chrysosporium* models but were otherwise highly expressed, i.e., transcript levels more than two SDs above the genome-wide mean (n = 12084, X = 10.56) or more than twofold transcript accumulation in aspen wood media vs. glucose or unambiguously identified via MS (at least two unique peptide sequences).

Table 3. Expression of *C. subvermispora* and *P. chrysosporium* cellulases

<table>
<thead>
<tr>
<th>C. subvermispora</th>
<th>P. chrysosporium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putative activity/family</td>
<td>LC-MS/MS (unique peptides)</td>
</tr>
<tr>
<td>Signal (log2)</td>
<td>ID no.</td>
</tr>
<tr>
<td>Cbh1/Gh7</td>
<td>136606</td>
</tr>
<tr>
<td>Cbh1/Gh7</td>
<td>89943</td>
</tr>
<tr>
<td>Cbh1/Gh7</td>
<td>109983</td>
</tr>
<tr>
<td>Cbh1/Gh7</td>
<td>—</td>
</tr>
<tr>
<td>Cbh1/Gh7</td>
<td>—</td>
</tr>
<tr>
<td>Cbh1/Gh7</td>
<td>—</td>
</tr>
<tr>
<td>Cbh2/Gh6</td>
<td>72777</td>
</tr>
<tr>
<td>Eg/Gh5</td>
<td>79557</td>
</tr>
<tr>
<td>Eg/Gh5</td>
<td>117046</td>
</tr>
<tr>
<td>Eg/Gh12</td>
<td>34428</td>
</tr>
</tbody>
</table>

| **BMA**, ball-milled aspen; FDR, false detection rate; Glc, glucose. |
| **As in Table 2, normalized microarray data are presented as log2 signal strength average of three fully replicated experiments. Significant accumulation (B/G ratio) of transcripts in BMA relative to glucose grown cultures was determined using the moderated t test and associated FDR. |
| **Number of unique peptides detected by LC-MS/MS after 5 d growth on BMA or glucose medium. Complete microarray and LC-MS/MS results are listed in SI Appendix, Table S1.** For detailed *P. chrysosporium* microarray and LC-MS/MS data, see refs. 33 and 31, respectively. |
| **Significant ratio and/or peptide score.** |

Discussion

C. subvermispora and *P. chrysosporium* are both members of the order Polyporales, but they differ sharply in their ability to selectively degrade lignin. The genetics and physiology of *P. chrysosporium* have been intensively studied for decades. Largely because of its efficient degradation of plant cell walls, including the recalcitrant lignin, *P. chrysosporium* was selected as the first sequenced basidiomycete (12). In contrast, *C. subvermispora* has received less attention, although its selective lignin degradation is well known (2). Overall, our comparisons of *C. subvermispora* and *P. chrysosporium* gene repertoires, together with expression patterns on a complex lignocellulose substrate, suggest divergent strategies of plant cell wall degradation and provide clues about mechanisms of selective delignification.

Generally accepted as important components of lignin degradation systems, class II peroxidases were skewed toward expansion of the number of MnPs and accompanied by a putative LiP (Cesuv118677) and a VP (Cesuv99382). To confirm these predictions, both peroxidases were obtained by *E. coli* expression, and their steady-state kinetic constants for oxidation of selected peroxidase substrates were compared with those of a typical MnP from the *C. subvermispora* genome (Cesuv17436), a well-characterized VP from *P. eryngii* (GenBank AF007244), and the well-studied *P. chrysosporium* LiP isozyme H5 (all expressed in *E. coli*). Cesuv118677 and Cesuv99382 are able to directly oxidize VA and RB5, a unique characteristic of VP, exhibiting similar catalytic efficiency values to those observed for typical VP. Moreover, both peroxidases are unable to oxidize MnO2, despite the presence in Cesuv99382 of a putative oxidation site for this cation. Thus, considering their sequences (Fig. 1 and SI Appendix) and catalytic activities (Table 1), these two peroxidases seem to represent an intermediate evolutionary state between LiP and VP.

In addition to the distinct repertoire of class II peroxidases, selective ligninolysis of *C. subvermispora* may be related, in part, to the expansion and coexpression of the genes putatively involved in lipid metabolism. Substantial evidence implicates MnP involvement (7, 8) in lignin degradation, but this enzyme cannot directly cleave the dominant nonphenolic structures within lignin. Nevertheless, several studies support mechanisms involving peroxidation of lipids (3). The expansion of *C. subvermispora* desaturase and MnP gene families, together with their high ex-
pression levels relative to \textit{P. chrysosporium} (Table 2 and Fig. 1), are consistent with a role in lignin degradation.

Overall numbers and family distributions of GH-encoding genes were similar between \textit{C. subvermispora} and \textit{P. chrysosporium} (Fig. 3), but subtle differences in number and expression were noted. Among the cellulases, celllobiohydrolases (cel75) and endoglucanases (cel5s and cel12s) were particularly notable in their transcript and protein accumulation in \textit{P. chrysosporium} cultures (Table 3). In contrast, expression of the \textit{C. subvermispora} cellulolytic system was substantially lower than \textit{P. chrysosporium}, whereas the converse was observed for enzymes important in extracellular oxidative systems (Figs. 1 and 2, Table 2, and SI Appendix, Table S1).

These observations provide functional models that may explain the shift toward selective ligninolysis by \textit{C. subvermispora}. Definitive mechanisms remain uncertain, but our investigations identify a subset of potentially important genes, including those encoding hypothetical proteins. More detailed functional analysis is complicated by the insoluble nature of lignocellulose substrates and by the slow, asynchronous hyphal growth of lignin degrading fungi. Direct and persuasive proof of gene function would be aided by development of experimental tools such as gene disruption/suppression or enzyme-specific immunolocalization of secreted proteins.

Methods

Genome Sequencing, Assembly, and Annotation. A genome shotgun approach was used to sequence \textit{C. subvermispora} monokaryotic strain B (16) (US Department of Agriculture Forest Mycology Center, Madison, WI). Assembly and annotations are available through interactive visualization and analysis tools from the Joint Genome Institute genome portal (http://www.jgi.doe.gov/Ceriporiopsis) and at DNA Data Base in Japan/European Molecular Biology Laboratory/GenBank under project accession no. AEOV00000000. Details regarding the assembly, repetitive elements (Dataset S2), ESTs annotation, and specific gene sets are provided separately (SI Appendix, Figs. S1–S6).

MS. Soluble extracellular proteins were concentrated from \textit{C. subvermispora} cultures containing ball-milled aspen as previously described for \textit{P. chrysosporium} (31) This medium allows rapid growth on a lignocellulose substrate more relevant than glucose- or cellulose-containing media. However, the milling process pulverizes wood cell walls and the culture conditions may not replicate "natural" decay processes. Sample preparation and nano-LC-MS/MS analyses were performed as described in SI Appendix. Peptides were identified by using a Mascot search engine (Matrix Science) against protein sequences of 12,125 predicted gene models described earlier. Complete listings of carbohydrate active enzymes and oxidative enzymes, including peptide sequences and scores, are provided in SI Appendix, Table S1.

Expression Microarrays. NimbleGen arrays (Roche) were designed to assess expression of 12,084 genes during growth on ball-milled aspen (P. grandidentata) or on glucose as sole carbon sources. Methods are detailed in SI Appendix, and all data deposited under Gene Expression Omnibus accession no. GSE34636.

ACKNOWLEDGMENTS. We thank Sally Ralph (Forest Products Laboratory) for preparation of ball-milled wood. The major portions of this work were performed under US Department of Agriculture Cooperative State Research, Education, and Extension Service Grant 2007-35504-18257 (to D.C. and R.A.B.). The US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231. This work was supported by Spanish Projects BIO2008-01533 and BIO2011-26694, European Project Peroxidases as Bio-catalysts KBBE-2010-4-265397 (to F.J.-R. and A.T.M.), the Chilean National Fund for Scientific and Technological Development Grant 1095013 (to L.F.L.), and a “Ramon y Cajal” contract (to F.J.-R.-D.).
Correction

MICROBIOLOGY

The authors note that the author name Ryu Jae San should instead appear as Jae San Ryu. The corrected author line appears below. The online version has been corrected.