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Preparation of human drug metabolites using fungal peroxygenases
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A B S T R A C T

The synthesis of hydroxylated and O- or N-dealkylated human drug metabolites (HDMs) via selective

monooxygenation remains a challenging task for synthetic organic chemists. Here we report that

aromatic peroxygenases (APOs; EC 1.11.2.1) secreted by the agaric fungi Agrocybe aegerita and

Coprinellus radians catalyzed the H2O2-dependent selective monooxygenation of diverse drugs, including

acetanilide, dextrorphan, ibuprofen, naproxen, phenacetin, sildenafil and tolbutamide. Reactions

included the hydroxylation of aromatic rings and aliphatic side chains, as well as O- and N-dealkylations

and exhibited different regioselectivities depending on the particular APO used. At best, desired HDMs

were obtained in yields greater than 80% and with isomeric purities up to 99%. Oxidations of

tolbutamide, acetanilide and carbamazepine in the presence of H2
18O2 resulted in almost complete

incorporation of 18O into the corresponding products, thus establishing that these reactions are

peroxygenations. The deethylation of phenacetin-d1 showed an observed intramolecular deuterium

isotope effect [(kH/kD)obs] of 3.1 � 0.2, which is consistent with the existence of a cytochrome P450-like

intermediate in the reaction cycle of APOs. Our results indicate that fungal peroxygenases may be useful

biocatalytic tools to prepare pharmacologically relevant drug metabolites.

� 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Human drug metabolites (HDMs) are valuable chemicals
needed for the development of safe and effective pharmaceuticals.
They are frequently used as substrates and authentic standards in
studies of drug bioavailability, pharmacodynamics and pharma-
cokinetics [1–3]. In vivo, the C–H bonds of pharmaceuticals are
predominantly oxygenated by liver cytochrome P450-monoox-
ygenases (P450s) to yield more polar HDMs that are excreted
directly or as conjugates [4]. This directed incorporation of an
oxygen atom into a complex organic structure is one of the most
challenging reactions in synthetic organic chemistry [5] and thus
low yields and the need for laborious removal of byproducts have
prevented the cost-effective preparation of HDMs by purely
chemical methods [6].

Another approach is the in vitro preparation of HDMs with
enzymes. The obvious route is to use isolated human P450s, but
these complex multiprotein systems are membrane-bound,
poorly stable, cofactor-dependent, and generally exhibit low
* Corresponding author. Tel.: +49 3583612723; fax: +49 3583612734.
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reaction rates [7,8]. More promising results have been reported
for laboratory-evolved bacterial P450s, which are capable of
catalyzing the H2O2-dependent hydroxylation of pharmaceuti-
cals via the ‘‘peroxide shunt’’ pathway [9]. Recent studies,
however, have demonstrated that this approach needs further
optimization [10]. Alternatively, modified hemoproteins such
as microperoxidases might be used to catalyze hydroxylations
by a P450-like oxygen transfer mechanism, but so far these
catalysts do not exhibit the necessary performance and
selectivity [11–16].

Here we have adopted a recently developed approach, using
aromatic peroxygenases (APOs)1 from the agaric basidiomycetes
Agrocybe aegerita (AaeAPO) and Coprinellus radians (CraAPO) to
produce diverse HDMs. These stable, secreted enzymes oxidize a
wide range of substrates and are promising oxidoreductases for
biotechnological applications [6,17–23].
1 In previous publications, the enzymes were also referred to as haloperoxidase-

peroxygenases, mushroom/fungal peroxygenases, AaP (Agrocybe aegerita peroxi-

dase/peroxygenase) or CrP (Coprinellus radians peroxygenase) [5,18,20,22]. In

February 2011, they were classified in the Enzyme Nomenclature under EC 1.11.2.1

(unspecific peroxygenase).

http://dx.doi.org/10.1016/j.bcp.2011.06.020
mailto:kinne@ihi-zittau.de
http://www.sciencedirect.com/science/journal/00062952
http://dx.doi.org/10.1016/j.bcp.2011.06.020
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2. Materials and methods

2.1. Reactants

Metoprolol, oseltamivir phosphate, 4-hydroxytolbutamide, 40-
hydroxydiclofenac, 5-hydroxydiclofenac, 3-hydroxyacetamino-
phen, omeprazole and sildenafil were obtained from Chemos GmbH
(Regenstauf, Germany). 3-Hydroxycarbamazepine, 1-hydroxyibu-
profen, 2-hydroxyibuprofen, 1-oxoibuprofen and N-desmethylsil-
denafil were purchased from Toronto Research Chemicals, Inc.
(Toronto, Canada), a-hydroxymetoprolol, glycinexylidide and
monoethylglycinexylidide from TLC PharmaChem., Inc. (Vaughan,
Canada). 17a-Ethinylestradiol, (R)-naproxen, 4-hydroxyproprano-
lol, 5-hydroxypropranolol, (S)-N-desisopropylpropranolol and O-
desmethylmetoprolol were obtained from Fluka (St. Gallen,
Switzerland), Shanghai FWD Chemicals, Ltd. (Shanghai, China),
Biomol GmbH (Hamburg, Germany), SPIbio, Bertin Group (Montigny
Le Bretonneux, France), ABX Advanced Biochemical Compounds
(Radeberg, Germany) and Sandoo Pharmaceuticals & Chemicals Co.,
Ltd. (Zhejiang, China), respectively. H2

18O2 (90 atom%, 2% wt/vol)
was a product of Icon Isotopes (New York, USA). All other chemicals
were purchased from Sigma-Aldrich (Schnelldorf, Germany).

Phenacetin-d1 (N-(4-[1-2H]ethoxyphenyl)acetamide) was pre-
pared from acetaminophen (N-(4-hydroxyphenyl)acetamide) and
ethyl iodide-d1 as described previously for phenacetin-d3 [24]. The
reaction product of the synthesis (phenacetin-d1) was identified by
comparison of retention time, UV absorption spectra, and mass
spectra relative to authentic phenacetin [25]. Mass spectrum (m/z,
%): 180 (100, �H), 138 (62, �C2H2O), 110 (12, �C4DH6O), 109 (96,
�C3DH2O2), 108 (100, �C3DH6ON), 80 (16) and 43 (18).

The extracellular peroxygenase of A. aegerita (AaeAPO; isoform
II, 45 kDa) was produced and purified as described previously [26].
The enzyme preparation was homogeneous by sodium dodecyl
polyacrylamide gel electrophoresis (SDS-PAGE) and exhibited an
A418/A280 ratio of 1.75. The specific activity of the AaeAPO
preparation was 117 U mg�1, where 1 U represents the oxidation
of 1 mmol of 3,4-dimethoxybenzyl alcohol (veratryl alcohol) to 3,4-
dimethoxybenzaldehyde (veratraldehyde) in 1 min at 23 8C [26].
The Coprinellus radians peroxygenase (CraAPO) was produced and
purified as described previously [27]. It was homogeneous by SDS-
PAGE, exhibited an A419/A280 ratio of 1.04 and had a specific activity
of 25.8 U mg�1 in the above assay.

2.2. Product identification

Typical reaction mixtures (0.2–1.0 ml) contained purified
peroxygenase (1.0–2.0 U ml�1 = 0.4–0.8 mM), substrate to be
oxidized (0.5–2.0 mM), potassium phosphate buffer (50 mM, pH
7.0) and ascorbic acid (4.0–6.0 mM, to inhibit further oxidation of
any phenolic products that were released [6,17]). The reactions
were started by the addition of limiting H2O2 (2.0–4.0 mM) and
stirred at room temperature. They were stopped by addition of
sodium azide (1 mM) or trichloroacetic acid (TCA) (5%) after 3 min.
In some cases, H2O2 was added continuously with a syringe pump
and the reactions were stopped after 4–6 h, when chromatograph-
ic analyses showed that product formation was complete.

Reaction products of interest were obtained, generally with
baseline resolution, by high performance liquid chromatography
(HPLC) using an Agilent Series 1200 instrument equipped with a
diode array detector (DAD) and an electrospray ionization mass
spectrometer (MS) (Agilent Technologies Deutschland GmbH,
Böblingen, Germany). Unless otherwise stated, reverse phase
(RP) chromatography of reaction mixtures was performed on a
Luna C18 column (2 mm diameter by 150 mm length, 5 mm
particle size, Phenomenex (Aschaffenburg, Germany), which was
eluted at 0.35 ml min�1 and 40 8C with aqueous 0.01% vol/vol
ammonium formate (pH 3.5)/acetonitrile, 95:5 for 5 min, followed
by a 25-min linear gradient to 100% acetonitrile. For the
experiments with acetaminophen, acetanilide and diclofenac, a
Synergi 4 m Fusion RP-80A column (4.6 mm diameter by 150 mm
length, 4 mm particle size, Phenomenex) was used. The column
was eluted at 40 8C and a flow rate of 1 ml min�1 with a mixture of
aqueous phosphoric acid solution (15 mM, pH 3) and acetonitrile,
95:5, for 5 min, followed by a 20-min linear gradient to 100%
acetonitrile. For metoprolol, a Gemini-Nx 3 m 110A C18 reverse
phase column (2 mm diameter by 150 mm length, 3 mm particle
size, Phenomenex) was used. The column was eluted at 45 8C and a
flow rate of 0.3 ml min�1 with a mixture of aqueous 0.2% vol/vol
ammonium (pH 10.5) and acetonitrile, 95:5, for 1 min, followed by
a 20-min linear gradient to 80% acetonitrile, followed by 21-min
linear gradient to 100% acetonitrile. Chiral separation was done
using the HPLC apparatus above, but using a Whelk-O 5/100
Kromasil column (4.6 mm diameter by 250 mm length, Regis
Technologies (Morton Grove, USA). The isocratic mobile phase
consisted of 80% vol/vol methanol and 20% of 15 mM phosphate
buffer. The columns were operated at 40 8C and 1 ml min�1 for
30 min. Retention times for products are given in Supplemental
Table 1.

Aliphatic aldehydes were analyzed as their 2,4-dinitrophenyl-
hydrazones after addition of 0.2 volume of 0.1% 2,4-dinitrophe-
nylhydrazine solution in 0.6 N HCl to each reaction mixture. The
derivatized products were analyzed using the same HPLC
apparatus as above, but the Luna C18 column was eluted with
aqueous 0.1% vol/vol ammonium formate (pH 3.5)/acetonitrile,
70:30 for 5 min, followed by a 20-min linear gradient to 100%
acetonitrile. Stoichiometrical experiments on sildenafil N-demeth-
ylation were conducted in stirred reactions (0.20 ml) that
contained 2 U ml�1 (0.144 mM) peroxygenase, potassium phos-
phate buffer (50 mM, pH 7.0) and the substrate (0.25 mM). The
reactions were initiated with 0.0023–0.037 mM H2O2.Mass
spectroscopic determinations were made in positive or negative
ESI mode (electrospray ionization) in a mass range from 70 to 500,
step size 0.1, drying gas temperature 350 8C, capillary voltage
4000 V for positive mode and 5500 V for negative mode. The
reaction products were identified relative to authentic standards,
based on their retention times, UV absorption spectra, and mass
spectral [M+H]+ or [M�H]� ions.Quantifications of reactants and
products were obtained by HPLC as described above, using a linear
external standard curve (R > 0.98) of the respective compound.
The parameters were calculated as follows: total conversion
[(Sc � Ss)/Sc) � 100%; yield: (P/Sc) � 100%; regioselectivity: (P/
(Sc � Ss)] � 100% (Sc is the substrate concentration of the control,
Ss is the substrate concentration after reaction with the enzyme
and P is the product concentration).

2.3. Enzyme kinetics

The kinetics of propranolol hydroxylation as well as metoprolol
and phenacetin O-dealkylation were analyzed in stirred microscale
reactions (0.10 ml, 23 8C) that contained 0.40 mM peroxygenase
(AaeAPO), potassium phosphate buffer (50 mM, pH 7.0), ascorbic
acid (4 mM) and 0.010–5.000 mM substrate. The reactions were
initiated with 2.0 mM H2O2. Reactions with propranolol or
phenacetin were stopped with 0.010 ml of 50% TCA solution after
5 s, and reactions with metoprolol were stopped with 0.2 volume
of 0.1% 2,4-dinitrophenylhydrazine solution in 0.6 N HCl after 10 s.
The resulting products were quantified by HPLC as described above
using external standard curves prepared with authentic standards.

The kinetics of acetanilide hydroxylation were analyzed in
stirred reactions (0.5 ml, 23 8C) that contained 0.08 mM AaeAPO,
potassium phosphate buffer (50 mM, pH 7.0), ascorbic acid (4 mM)
and 0.010–5.000 mM substrate. The reactions were initiated with
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2.0 mM H2O2 and stopped with 0.050 ml of sodium azide solution
(1 mM) after 5 s. The initial velocity of acetaminophen formation
was then determined from the increase in absorbance at 290 nm
(e = 1100 M�1 cm�1) using a Cary 50 UV/visible spectrophotome-
ter. The kinetic parameters were determined by nonlinear
regression using the Michaelis–Menten model in the ANEMONA
program [28].

2.4. 18O-labeling experiments

The reaction mixtures (0.20 ml, stirred at room temperature)
contained 2 U ml�1 (0.08 mM) of AaeAPO, potassium phosphate
buffer (50 mM, pH 7.0) and 0.5 mM substrate (tolbutamide,
acetanilide, or carbamazepine). Reactions with tolbutamide or
acetanilide were initiated with a single addition of 2.0 mM (final
concentration) H2

18O2. For reactions with carbamazepine, the
same quantity of H2

18O2 was added continuously with a syringe
pump over 6 h. A portion of each completed reaction was then
analyzed by HPLC/MS as described in Section 2.2. For each m/z
value, the average total ion count within the metabolite (4-
hydroxytolbutamide, acetaminophen and 3-hydroxycarbamaze-
pine) peak was used after background correction to generate the
ion count used for mass abundance calculations [18].

2.5. Determination of intramolecular isotope effect

The reaction mixture (0.2 ml) contained purified AaeAPO
(2 U ml�1, 0.08 mM), potassium phosphate buffer (50 mM, pH
7.0), phenacetin-d1 and ascorbic acid (4.0 mM). The reaction was
started by the addition of H2O2 (2.0 mM) and stirred at room
temperature. The reaction was stopped by the addition of 10%
sodium azide (10 mM) after 10 s. The reaction products were
analyzed as described above. For each m/z value, the average total
ion count within the acetaminophen peak was used after
background correction to generate the ion count used for mass
abundance calculations.

3. Results

The peroxygenases from Agrocybe aegerita (AaeAPO) and
Coprinellus radians (CraAPO) oxidized diverse pharmaceuticals
(I–XX, Fig. 1), showing different selectivity in some cases. The
products, most of which we obtained with baseline resolution by
HPLC, were monooxygenated or dealkylated compounds that
correspond in most cases to previously identified HDMs (Table 1).
Below, we have classified the major reactions according to the
chemical moiety that was oxidized on the targeted drug. In many
cases, a single oxidation predominated but, as noted in Table 1,
more than one of these reactions sometimes occurred on a single
substrate. A complete overview of all reactants investigated,
confirmed products and hypothetical products for which we lacked
authentic standards (drawn in brackets), is presented in Supple-
mentary Table 2.

3.1. Aromatic hydroxylation

Both APOs catalyzed the hydroxylation of aromatic rings, in
some cases with high regioselectivity. For example, AaeAPO
preferentially oxidized propranolol (I) to 5-OH-propranolol [17],
acetanilide (VI) to acetaminophen (paracetamol; Fig. 2), carba-
mazepine (III) to 3-OH-carbamazepine and diclofenac (IV) to 40-
OH-diclofenac [17]. CraAPO catalyzed the same reactions but with
lower regioselectivity. Both enzymes also oxidized tamoxifen (V)
to produce low yields of 4-OH-tamoxifen and other products,
which we were unable to resolve sufficiently by HPLC to permit
quantifications.
Using AaeAPO and two of the above substrates, we investigated
the source of the oxygen introduced during hydroxylation. When
the oxidation of acetanilide (II) was conducted with H2

18O2 in
place of H2O2, mass spectral analysis of the resulting acetamino-
phen showed that the principal [M�H]� ion had shifted from its
natural abundance m/z of 150 to m/z 152. Likewise, the
hydroxylation of 3-hydroxycarbamazepine under these conditions
resulted in a shift of the [M+H]+ ion from its natural abundance m/z
of 253 to m/z 255. Accordingly, H2O2 was the source of the
introduced oxygen in both reactions.

Also using AaeAPO, we determined apparent kinetic constants
for two of these aromatic hydroxylations. For propranolol, the Km

was 442 mM and the kcat was 59 s�1; for acetanilide, the constants
were 1,310 mM and 1,925 s�1.

3.2. Aliphatic hydroxylation

Both peroxygenases catalyzed the hydroxylation of aliphatic
side chains. Thus, ibuprofen (IV) was predominantly oxidized to 2-
hydroxyibuprofen, with the CraAPO-catalyzed reaction exhibiting
a higher yield and regioselectivity. Similarly, tolbutamide (VII) was
oxidized to 4-hydroxytolbutamide (Table 1). A mass spectral
experiment with tolbutamide and H2

18O2 as the substrates showed
that the resulting 4-hydroxytolbutamide exhibited a principal
[M�H]� ion with an m/z of 289 rather than 287, again showing that
H2O2 was the source of the introduced oxygen (Fig. 3).

3.3. O-Dealkylation

Both APOs cleaved alkyl aryl ether linkages in various drugs to
yield phenols [18]. Thus, metoprolol (VIII) was selectively
demethylated to O-desmethylmetoprolol, naproxen (IX) to O-
desmethylnaproxen and dextromethorphan (X) to dextrorphan.
Yields and regioselectivities were generally greater with AaeAPO.
The above phenolic reaction products all tended to undergo further
oxidation to quinones and/or coupling products because APOs
exhibit general peroxidase activity that generates phenoxyl
radicals from phenols [5,6,17,18], but this undesired reaction
was partially inhibitable via addition of the radical scavenger
ascorbate to the reactions. DNPH derivatization of the reaction
mixtures showed that the methyl group was released as
formaldehyde in each case. A kinetics analysis done with AaeAPO
and one of the substrates, metoprolol, showed that the reaction
exhibited an apparent Km for it of 2,330 mM and an apparent kcat of
96 s�1.

Analogously to the demethylations discussed above, phenace-
tin (XI) was de-ethylated to give acetaminophen and acetaldehyde
(Table 1). Since phenacetin has a symmetrical site at its a-carbon, it
is a suitable substrate to determine whether a catalyzed
etherolytic reaction exhibits an intramolecular deuterium isotope
effect. LC/MS analysis of DNPH-derivatized reactions showed that
the AaeAPO-catalyzed cleavage of N-(4-[1-2H]ethoxyphenyl)ace-
tamide (phenacetin-d1) resulted in a preponderance of [2H]acetal-
dehyde 2,4-dinitrophenylhydrazone (m/z 224, [M�H]�) over
natural abundance acetaldehyde 2,4-dinitrophenylhydrazone
(m/z 223, [M�H]�) (Fig. 4). The observed mean intramolecular
deuterium isotope effect [(kH/kD)obs] from three experiments was
3.1 � 0.2. The apparent Km of AaeAPO for phenacetin was 998 mM and
the apparent kcat was 33 s�1.

3.4. N-Dealkylation

The APOs catalyzed the oxidative N-dealkylation of several
drugs that contain secondary or tertiary amine groups. For
example, AaeAPO regioselectively N-dealkylated sildenafil (XII)
at the tertiary N in its N-methyl piperazine ring to give N-
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Fig. 1. Chemical structures of pharmaceuticals tested as peroxygenase substrates.
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desmethylsildenafil and formaldehyde in high yield. By contrast,
CraAPO was ineffective in this oxidation (Table 1). A quantitative
analysis of AaeAPO-catalyzed sildenafil oxidation in the presence
of the limiting H2O2 showed that one equivalent of N-desmethyl-
sildenafil was formed per equivalent of oxidant supplied (Table 2).
Among the other N-dealkylations listed in Table 1 are the
conversion of lidocaine (XIII) to monoethylglycinexylidide and
glycinexylidide and of 4-dimethylaminoantipyrine (XIV) to 4-
aminoantipyrine.

3.5. Ester cleavage

Ester cleavage by a peroxygenase can be regarded as a special
case of O-dealkylation. Thus, CraAPO selectively cleaved oselta-



Table 1
Products identified by mass spectroscopy after oxidation of pharmaceuticals by AaeAPO and CraAPO in the presence of H2O2. The m/z value for the major observed diagnostic

ion, consumed substrate (SC), the yield (Y) and the regioselectivity (RS) of the product is shown in each case.

Substrate Reaction product Discussed as HDM

in Ref no.

m/z AaeAPO (%) CraAPO (%)

SC Y RS SC Y RS

I 23 11

5-OH-Propranolol [9,29] [M+H]+ 276 21 91 6 53

4-OH-Propranolol [9,29,46] [M+H]+ 276 – 2 13

N-Desisopropyl-propranolol [9,29] [M+H]+ 218 Traces 3 22

II 89 20

Acetaminophen [47–49] [M�H]� 150 80 90 13 65

3-OH-Acetaminophen [47] [M�H]� 166 5 5 1 2

IIIb 22 15

3-OH-Carbamazepine [50] [M+H]+ 253 13 61 6 40

IV 78 15

40-OH-Diclofenac [51,52] [M+H]+ 312 68 87 5 30

V 25

4-OH-Tamoxifen [53–55] [M+H]+ 388 n.d. n.d.

N-Desmethyltamoxifen [53,54] [M+H]+ 358 n.d. n.d.

Endoxifen [53,54] [M+H]+ 374 n.d. n.d.

VI 87 98

2-OH-Ibuprofen [56,57] [M+H]+ 223 21 24 74 75

1-OH-Ibuprofen [57] [M+H]+ 223 7 8 –

1-Oxo-Ibuprofen n.a. [M+H]+ 221 Traces –

VIIa 25 20

4-OH-Tolbutamide [58] [M�H]� 287 15 60 13 62

VIIIa 82 73

O-Desmethylmetoprolol [59] [M+H]+ 254 17 20 4 5

a-OH-Metoprolol [59] [M+H]+ 284 2 2 1 1

IXb 60 10

O-Desmethylnaproxen [60,61] [M�H]� 215 57 95 9 85

X 17 15

Dextrorphan [62,63] [M+H]+ 258 16 95 8 53

XI 34 16

Acetaminophen [64,65] [M+H]+ 152 23 66 13 80

3-OH-Acetaminophen [64] [M+H]+ 168 2 5 –

XII 82 80

N-Desmethylsildenafil [66] [M+H]+ 461 82 99 4 5

XIII 60 45

Monoethylglycinexylidide [67] [M+H]+ 207 25 41 32 70

Glycinexylidide [67] [M+H]+ 179 18 30 5 11

XIV 68 38

4-Aminoantipyrine [68] [M+H]+ 204 16 23 19 48

XVb – 80

Oseltamivir carboxylate [69] [M+H]+ 285 – 71 88

a Mass spectral data indicate the formation of corresponding carbonyls as described previously [19] (see supplementary Material).
b A syringe pump was used for hydrogen peroxide supply. (n.d.) = not determined due to poor resolution; (�) = not detected; (n.a.) = not applicable.
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mivir (XV) to oseltamivir carboxylate and acetaldehyde in high
yield. Interestingly, oseltamivir was not converted by AaeAPO.

3.6. Additional observations

For some products of APO-catalyzed oxidations no authentic
standards were available. However, the mass shifts we observed
after these reactions (see supplementary material) indicate the
regioselective oxidation of ketoprofen (XVI), sulfadiazine (XVII),
gemfibrozil (XVIII), omeprazole (XIX) and chlorpromazine (XX).

We also noted some limitations on substrates for the APOs. No
product formation was observed from felbamate (XXI), 17a-
ethinylestradiol (XXII), or Reichstein substance S (XXIII). More-
over, we found that the APOs generally failed to discriminate
between chiral centers in the pharmaceutical substrates. For
example, chiral HPLC separation of the two O-desmethylnaproxen
entantiomers that resulted from naproxen oxidation showed that
neither one predominated in the end-product mixture (data not
shown).

4. Discussion

Our results show that two fungal peroxygenases (APOs)
catalyzed the hydroxylation or dealkylation of diverse pharma-
ceuticals, in some cases with high regioselectivity. Furthermore,
most of the oxidations matched those catalyzed by human liver
P450s, e.g. propranolol to 5-hydroxypropranolol (CYP2D6) [29],
tolbutamide to 4-hydroxytolbutamide (CYP2C9) [30], naproxen
to O-desmethylnaproxen (CYP1A2) [31], acetanilide to acet-
aminophen (CYP1A2) [31,32] and sildenafil to N-desmethylsil-
denafil (CYP3A4) [33]. The catalyzed reactions: aromatic
hydroxylation, aliphatic hydroxylation, O-dealkylation of ethers
and esters and N-dealkylation of amines, are all typical of P450s
[34,35]. Our data agree with previous work that suggests the
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Table 2
Stoichiometry of sildenafil (XII) oxidation by AaeAPO.

H2O2 added

(mM)

N-Desmethylsildenafil

produced (mM)

Ratio

N-desmethylsildenafil/H2O2

2.3 2.12 0.92

4.6 4.27 0.93

9.2 8.75 0.96

18.3 20.49 1.12

36.6 32.37 0.88

The initial sildenafil concentration was 250 mM.
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extracellular APOs share characteristics with intracellular P450s,
which also catalyze H2O2-dependent oxidations by a pathway
termed the peroxide shunt [36–38]. These peroxygenations are
thought to be initiated when the enzyme heme is oxidized by
H2O2 to give an iron species (oxo-ferryl iron, compound I) that
carries one of the peroxide oxygens, which subsequently
oxidizes a C–H bond in the substrate [39].

According to the above model, oxygen incorporation from H2O2

should be quantitative when the substrate is oxidized. Our data on
APO-catalyzed pharmaceutical oxidations agree with this picture
since 100% of the oxygen present in newly generated phenolic or
benzylic reaction products – e.g. in the phenol group of
acetaminophen or in the alcohol moiety of 4-hydroxytolbutamide
– was 18O-labeled when the experiment was conducted with
H2

18O2. Moreover, the stoichiometrical result we obtained using
sildenafil as the substrate – one equivalent of N-desmethylsilde-
nafil formed per equivalent of H2O2 supplied – agrees with the
two-electron oxidation expected from a peroxygenative mecha-
nism (Table 2).

Also consistent with a P450-like mechanism is the intramolec-
ular deuterium isotope effect we observed for phenacetin-d1

oxidation by AaeAPO, in that our value of (kH/kD)obs around 3 is
close to the values of (kH/kD)obs near 2 that have been observed for
the P450-catalyzed O-dealkylation of this substrate. A value of 3 is
considerably smaller than the intrinsic isotope effect near 10
expected for a hydrogen abstraction mechanism, and may indicate
that phenacetin oxidation by APOs proceeds instead via electron
transfer, as proposed earlier for the P450-catalyzed reaction [40].
By contrast, the O-dealkylation of 1,4-dimethoxybenzene-d3 by
AaeAPO probably does proceed via hydrogen abstraction, because
it exhibits a much higher (kH/kD)obs near 12 [18,40].

The kinetics data we report here for AaeAPO action on a
variety of pharmaceuticals suggest that APOs may be useful
alternatives to P450s for the regioselective preparation of HDMs.
Although some P450s are known to bind pharmaceutical
substrates more strongly than APOs, exhibiting Km values between
1 and 70 mM, they generally exhibit relatively low kcat values in the
vicinity of 0.2 s�1 or less [40,41]. As a result, the catalytic
efficiencies [kcat/Km] of AaeAPO for pharmaceutical oxidations lie
in the same range as those of the P450s, as exemplified by our
values for propranolol hydroxylation (1.32 � 105 M�1 s�1), meto-
prolol O-dealkylation (4.1 � 104 M�1 s�1) and phenacetin O-deal-
kylation (3.3 � 104 M�1 s�1). The kcat/Km value we obtained for
acetanilide (1.5 � 106 M�1 s�1) is much higher than the corre-
sponding value found for the P450-catalyzed reaction [32].

APOs have some advantages over P450s, including currently
available laboratory-evolved P450s, where reaction yields are
concerned [17]. For example, the transformation of diclofenac to 4-
hydroxydiclofenac by mutants of P450cam (CYP101A1) resulted in
total conversions between 15 and 44% and yields around 10% [42].
By contrast, wild-type AaeAPO gave a total conversion of 78% and a
yield of 68% for this reaction. In addition, fungal APOs may be
better than P450s in practical applications for several other
reasons: (i) they utilize an inexpensive co-substrate, H2O2; (ii) they
do not require costly co-reactants such as pyridine nucleotides,
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flavin reductases, or ferredoxins; (iii) they are secreted enzymes
and thus can be cost-effectively produced; (iv) they are stable and
water-soluble due to their high degree of glycosylation [43,44].

There are also disadvantages associated with APO-catalyzed
oxidations. One is that the enzymes have relatively narrow
catalytic clefts (albeit considerably wider than those of other
heme peroxidases), that prevent access of markedly bulky
substrates to the active site [45]. The negative results we obtained
with felbamate, 17a-ethinylestradiol, and Reichstein substance S
may reflect this limitation. Another problem is the high general
peroxidase activity of APOs, which necessitates the inclusion of a
radical scavenger such as ascorbate in reactions when the desired
products are phenols. Ultimately, protein engineering of APOs may
address these limitations and the recent crystallization of an APO
provides the first information needed to begin this work [43,45]. In
the meantime, the most fruitful approach is likely to involve
empirical comparisons of APOs to determine their individual
substrate specificities. Recent phylogenic investigations have
shown that APOs are widespread in the fungal kingdom [44]
and some new representatives have already been isolated from
Coprinopsis verticillata, Marasmius rotula and other fungi [27]. The
above developments open the possibility that APOs may serve as a
‘‘monooxygenation toolbox’’ for the selective production of HDMs
and other fine chemicals.
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