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ABSTRACT

In the present paper we focus on demonstrating the use
of design optimization for the constitutive characterization of
anisotropic material systems such as polymer matrix compos-
ites, with or without damage. All approaches are based on the
availability of experimental data originating from mechatronic
material testing systems that can expose specimens to multidi-
mensional loading paths and can automate the acquisition of
data representing the excitation and response behavior of the
specimens involved. Material characterization is achieved by
minimizing the difference between experimentally measured and
analytically computed system responses as described by strain
fields and surface strain energy densities. A one dimensional
model is presented first to elucidate the design optimization for
the general non-linear constitutive response. Small and large
strain formulations based on strain energy density decomposi-
tions are developed and utilized for determining the constitutive
behavior of composite materials. Examples based on both syn-

thetic and actual data demonstrate the successful application of
design optimization for constitutive characterization.

INTRODUCTION
Design optimization as a topic of research relative to en-

gineering applications and product development has been pop-
ular within the context of optimal shape determination but not
as popular within the context of material characterization. In an
attempt to fill this gap, the main objective of the present paper
is to describe design optimization efforts in the less popular ap-
plication area of the data-driven constitutive characterization of
anisotropic material systems.

Composite materials are clearly the most widely used
anisotropic materials for various application areas [1, 2]. Their
constitutive characterization has been an important topic of in-
terest for structural design, material certification and qualifica-
tion practitioners. Such characterization has been traditionally
achieved through conventional uniaxial tests and used for deter-
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FIGURE 1: NRL66.3: Most recent 6-DoF mechatronically auto-
mated system for the multi-axial testing of composite materials

mining elastic properties. Typically, extraction of these proper-
ties, involve uniaxial tests conducted with specimens mounted
on uniaxial testing machines, where the major orthotropic axis
of any given specimen is angled relative to the loading direction.
In addition, specimens are designed such that a homogeneous
state of strain is developed over a well defined area, which is
for the purpose of measuring kinematic quantities [3, 4]. Con-
sequently, the use of uniaxial testing machines imposes require-
ments of using multiple specimens, griping fixtures and multiple
experiments. The requirement of a homogeneous state of strain
frequently imposes restrictions on the sizes and shapes of spec-
imens to be tested. It follows that these requirements result in
increased cost and time, and consequently to inefficient charac-
terization processes.

To address these issues and to extend characterization to
non-linear regimes, multi-degree of freedom automated mecha-
tronic testing machines, which are capable of loading specimens
multiaxially in conjunction with energy-based inverse character-
ization methodologies, were introduced at the Naval Research
Laboratory (NRL) [5–7]. This introduction was the first of its

kind and has continued through the present [8–10]. The most re-
cent prototype of these machines, which is currently under veri-
fication, is shown in Fig. 1.

The energy-based approach associated with mechatronic
testing, although it enables multiaxial loading and inhomoge-
neous states of strain, still requires multiple specimens. It is
significant to state however, that these specimens are tested in a
automated manner with high throughput of specimens per hour,
which have reached values of 30 specimens per hour.

The recent development of flexible full-field displacement
and strain measurements methods has afforded the opportunity
of alternative characterization methodologies [11–14]. Full-field
optical techniques, such as Moire and Speckle Interferometry,
Digital Image Correlation (DIC), and Meshless Random Grid
Method (MRGM), which measure displacement and strain fields
during mechanical tests, have been used mostly for elastic char-
acterization of various materials [14–17]. The resulting measure-
ments are used for identification of constitutive model constants,
via the solution of an appropriately formed inverse problem, with
the help of various computational techniques.

Arguably, the most popular methodology is the mixed nu-
merical/experimental method that identifies the material’s elas-
tic constants by minimizing an objective function formed by
the difference between the full-experimental measurements and
the corresponding analytical model predictions via an optimiza-
tion method [5–10, 14, 17–19]. However, the repetitive finite
element analysis (FEA) required for each iteration of the op-
timization process, makes the computation considerably costly
[20]. Alternatively, the so-called virtual field method was de-
veloped [20–22] to identify material parameters by finding vir-
tual fields and inversely solving for parameters by substitution of
full-field/surface measurements. That is to say, the virtual field
method effectively characterizes materials without finite element
analysis, provided that appropriate virtual fields are derivable.

Our focus in the present work is to describe recent efforts
concerning design optimization methodologies for constitutive
material characterization. Our approaches are based mostly on
energy conservation arguments, and they can be classified ac-
cording to computational cost in relation to the iterative use of
FEA or not. It is important to clarify that digitally acquired im-
ages are processed by software [23] that implements the MRGM
[14, 24–28] and is used to extract the full-field displacement and
strain field measurements as well as the boundary displacements
required for material characterization. Reaction forces and re-
dundant boundary displacement data are acquired from displace-
ment and force sensors integrated with NRL’s multiaxial loader
called NRL66.3 [29]. In an effort to address the computational
cost of the FEA-in-the-loop approaches, the authors have initi-
ated a dissipated and total strain energy density determination
approach that has recently been extended to a framework that is
derived from the total potential energy and the energy conserva-
tion, which can be applied directly with full field strain measure-
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ment for characterization [30–35].
Two techniques, built upon this framework, have been pro-

posed to identify elastic constants and to develop non-parametric
constitutive models of anisotropic materials.

The first identification technique estimates the elastic con-
stants for every set of measurements by equating the variation of
the external work, derived from the boundary displacement/force
measurements, with that of the induced strain energy, derived
from the full-field strain measurements, and stochastically cor-
recting the estimation using Kalman filter [35]. This technique
has been proven to identify the elastic constants of anisotropic
materials even under the presence of considerable noise in the
measurements.

The second technique develops non-parametric representa-
tions of constitutive models using artificial neural networks [36].
When we first explored this approach in the early nineties [37],
it was established that the computational performance of the
approach, as it was implemented on the Aspirin/MIGRAINES
neural net simulator framework [38], was not practical for the
amounts of data generated by NRL’s multidimensional testing
machines. Subsequently, we have applied it on many other ma-
terial characterization applications [39–43]. We have established
how improvements in the evolving computational technologies
have impacted positively the feasibility of more demanding ap-
plications. In that both ANN implementations and full field mea-
surement techniques have matured, we have decided to apply
ANN technologies for material characterization [32]. The er-
ror between the energy quantities is used to develop the neural
network constitutive model, unlike the conventional techniques
where stress data are required for the modeling [44–47]. This
technique allows the nonlinear constitutive relations to be mod-
eled comprehensively without the limitations imposed by the
parametric expressions of the conventional material models. Ac-
cordingly, this technique has been applied to model the damage
behavior of composite materials [48, 49].

In order to maintain reasonable scope this paper considers
only methodologies that require FEA-in-the-loop because of the
simplicity of their implementation and exhaustive capability to
determine the material parameters. The consideration of other
methodologies is more appropriate for future comparative stud-
ies.

In the section that follows we present the case of deter-
mining the properties of the one-dimensional non-linear system.
This is done mainly for instructive purposes, which bare rele-
vance to subtleties of subsequent formulations presented. Next,
we present a small strain formulation (SSF) of the general strain
energy density approach followed by a finite strain formulation
(FSF), which is for the case of linear and non-linear constitu-
tive behavior of composite materials with or without damage.
The paper continuous with a numerical application of design
optimization implementations based on these two formulations,
which are in turn based on both synthetic and actual data. Finally

conclusions are presented.

THE CASE OF ONE DIMENSIONAL MATERIAL SYS-
TEM

To introduce design optimization for material characteriza-
tion in a fashion of increasing complexity we consider first a one-
dimensional system that possesses both linear recoverable and
non-linear irrecoverable responses. The template approach that
we will employ first for this simple case and then for more re-
alistic cases is that of defining a Strain Energy Density function
(SED) that governs the material behavior and indirectly contains
the actual constitutive behavior.

U1D =UR
1D(C,ε)+U I

1D(C,βi;ε) =

=

[
1
2

Cε
2
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1D
+

[
D(βi;ε)
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2
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where UR
1D(C,ε),U I

1D(C,βi;ε) are the recoverable (elastic) SED
and the irrecoverable (inelastic or dissipated) SED, respectively.
The quantities C,βi,D(C,βi;ε)are the stiffness constant (modu-
lus of elasticity), the constants participating in the dissipated en-
ergy coefficient function, and the dissipated energy density co-
efficient function, itself, respectively. Equation 1 implies that
the irrecoverable or dissipated strain energy density (DSED)
has been constructed to be a multiplicative decomposition with
weighting D(βi;ε) for the recoverable SED according to:

U I
1D(C,βi;ε) = D(βi;ε)UR

1D(C,ε) (2)

The functional form of D(βi;ε) should be one that ensures en-
ergy dissipation in a manner that yields a softening of nonlin-
ear stress-strain constitutive response. There are many forms
that have this property, based on transcendental functions, which
have been used in the past [50]. Here we employ a functional
form that can be expanded in a Taylor series. This functional
form provides for a polynomial representation that is necessary
condition for algebraic reducibility and is therefore convenient
for the application of transformations. This form of the DSED,
which is initially negligible and then monotonically increasing,
can be represented by the following physically consistent choice
of D(βi;ε):

D(βi;ε) = D(m,ε f ;ε) = 1− e
− 1

me

(
ε

ε f

)m

(3)

where β1 = m,β2 = ε f are the two material parameters control-
ling the dissipative nature of the material behavior. The exponent
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FIGURE 2: Difference of 1- and 2-term approximations of nor-
malized irrecoverable or dissipated energy density as a function
of strain relative to the exact model

m controls the level of non-linearity involved in the model and
ε f expresses the level of failure strain. The series expansion of
D̄(m,ε f ;ε) defined by Eq. 3 yields

D̄(m,ε f ;ε) =
n

∑
k=1

(−1)k

k!

(
1

me

)k(
ε

ε f

)mk

. (4)

Given Eq. 4 and 1, it follows that Eq. 2 may be expressed by

U I
1D(C,βi;ε) =

1
2

C
n

∑
k=1

(−1)k

k!

(
1

me

)k(
ε

ε f

)mk

ε
2 (5)

A plot of the function defined by Eq. 5, normalized by the
Elastic constant C, is presented in Fig. 2 for m = 4 and ε f =
0.0008. Referring to Fig. 2 it can be seen that for more than two
terms the series expression gives essentially identical results to
those of the exact evaluation of DSED. It is interesting to note
that the single term expression is also in good agreement with
the exact form. Therefore, we can truncate all but the first term
in Eq. 5 to obtain:

U I
1D(C,βi;ε) =−1

2
C
(

1
me

)(
ε

ε f

)m

ε
2 (6)

It follows then that, Eq. 1 can be expressed

U1D =UR
1D(C,ε)+U I

1D(C,βi;ε) =

=
1
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2− 1

2
C
(

1
me

)(
ε

ε f

)m

ε
2 (7)

(a) Distribution of elastic, dissipated (or irrecoverable) and total SEDs for one
dimensional case

(b) Stress distributions as a function of strain

FIGURE 3: SED and corresponding stress distribution

For the case of generalized hyperelasticity as special case of
which is elasticity, the corresponding constitutive law will be
given by

σ1D =
∂ [UR

1D(C,ε)+U I
1D(C,βi;ε)]

∂ε
=

= σ
R
1D(C,ε)+σ

I
1D(C,βi;ε) =

=Cε−C
(

2+m
2me

)(
εm+1

εm
f

) (8)

The resulting constitutive law contains the linear elastic part,
as expected, but modified by a non-linear inelastic term. An in-
dicative variation of total SED and its components (recoverable
and irrecoverable SEDs), as described by Eq. 7 are shown in Fig.
3(a). Figure 3(b) shows the corresponding stress distribution de-
fined by the constitutive law expressed by Eq. 8.
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In the present formulation, the material parameters to be
identified, or estimated based on experimental data, are the
stiffness parameter and the two dissipated energy parameters
C,m,ε f .

The results of applying design optimization for determining
these material parameters for 20 data points created synthetically
by the material model defined Eq. 7 or 8 are shown in Table 1
for various methods.

These results indicate that Nelder-Mead and Differential
evolution Methods are able to determine the properties exactly,
while Simulated Annealing takes much longer and achieves less
accurate parameter determinations.

COMPOSITE MATERIAL SYSTEM

For the general case of a composite material system we con-
sider that a modified anisotropic hyperelastic strain energy den-
sity function can be constructed to encapsulate both the elastic
and the inelastic responses of the material. However, certain
classes of composite materials reach failure after small strains
and some under large strains. For this reason we give two ex-
amples, one involving a small (infinitesimal) strain formulation
(SSF) and another involving an finite (large) strain formulation
(FSF).

Small Strain Formulation For the SSF we introduce a SED
function that, in its most general form, can be represented as a
scaled Taylor expansion of the Helmholtz free energy of a de-
formable body, which is in terms of small strain invariants of the
form
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1
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where the invariants are defined by

I1 = tr(ε) = εii,

I2 =
1
2

tr(ε2) =
1
2

εi jεi j,

I3 =
1
2

tr(ε3) =
1
3

εi jε jkεki

(10)

The invariants are chosen to take advantage of a priori knowledge
that the SED as a scalar quantity, must be invariant under frame
reference translations and rotations. This follows in that the SED
should be objective (i.e. independent of the observer’s frame of
reference).

An additive decomposition of this expression in terms of a
recoverable and an irrecoverable SED can be expressed by

USSF =UR
SSF(S;εi j)+U I

SSF(D;εi j). (11)

Clearly, all the second order monomials of strain components
will be forming the recoverable part UR

SSF(S;εi j) and the higher
order monomials will be responsible for the irrecoverable part
U I

SSF(D;εi j). The resulting constitutive law is given by

σi j = ∂USSF/∂εi j = ∂ (UR
SSF(S;εi j)+U I

SSF(D;εi j))/∂εi j =

=
∂USSF

∂ I1

∂ I1

∂εi j
+

∂USSF

∂ I2

∂ I2

∂εi j
+

∂USSF

∂ I3

∂ I3

∂εi j
(12)

A general expression which provides a strain dependent version
of Eq. 11, is given by

USSF =UR
SSF(S;εi j)+U I

SSF(D;εi j) =

=
1
2

si jklεi jεkl +di jkl(εi j)εi jεkl
(13)

where si jkl are the components of the elastic stiffness ten-
sor (Hooke’s tensor) and di jkl(εi j) are strain-dependent damage
functions, which fully define irrecoverable or dissipated strain
energy density given by enforcing the dissipative nature of en-
ergy density. The quantity di jkl(εi j) can be defined in a manner
analogous to that employed for the 1D system described above
and is given by

di jkl(εi j) = si jkl(1− e
(−

εi j
qi j

)
pi j /(epi j)

) (14)
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TABLE 1: Design optimization results for a non-linear 1D material system

Method. Objective Function C [GPa] m ε f

Target values 0.00 130.00 4. 0.0008

Nelder Mead -0.0000116825 130.00 4. 0.0008

Differential Evolution -0.00000429153 130.00 4. 0.0008

Simulated Annealing 134234 131.21 3.1 0.000856

As in the 1D case, we perform an equivalent series expan-
sion and subsequently drop all terms except the first, in that it
captures almost all of the dissipative behavior. Accordingly,

di jkl(εi j) = si jkl

n

∑
m=1

(−1)m
(

1
epi j

)m ε
mpi j
i j

m!q
mpi j
i j

=

= si jkl(−
(

1
epi j

)
ε

pi j
i j

q
pi j
i j

+

(
1

epi j

)2 ε
2pi j
i j

2q
2pi j
i j

−·· ·+)'

'−si jkl

(
1

epi j

)
ε

pi j
i j

q
pi j
i j

(15)

Thus the irrecoverable part of the energy in Eq. 11 becomes:

U I
SSF(D;εi j) =U I

SSF(si jkl , pi j,qi j;εi j) =

=−si jkl
1

e(2+ pi j)pi jq
pi j
i j

ε
1+pi j
i j εkl

(16)

Next, substituting Eq. 14 into Eq. 11 yields

USSF =UR
SSF(S;εi j)+U I

SSF(D;εi j) =

=
1
2

si jklεi jεkl− si jkl
1

e(2+ pi j)pi jq
pi j
i j

ε
1+pi j
i j εkl

(17)

Applying Eq. 10 on Eq. 15, and employing Voight [3] notation
for the case of a general orthotropic material, yields the constitu-
tive relation


σxx
σyy
σzz
σxz
σyz
σxy

=


˘sxx sxy sxz 0 0 0

sxy ˘syy syz 0 0 0
sxz syz ˘szz 0 0 0
0 0 0 ˘sxz 0 0
0 0 0 0 ˘syz 0
0 0 0 0 0 ˘sxy




εxx
εyy
εzz
εxz
εyz
εxy

 (18)

where:

s̆i j = si j
(
1− d̄i j

)
(19)

and

d̄i j =
1

epi jq
pi j
i j

ε
1+pi j
i j (20)

All terms that are not shown in expression 18 are zero due to
the orthotropic symmetry requirements. Therefore, the material
parameters are the 9 elastic si j constants and 6×2 = 12 damage
constants pi j,qi j for a total of 21 parameters. Clearly, when the
quantities d̄i j do not depend on the strains and they are constants,
Eq. 16 reduces to most of the continuous damage theories given
by various investigators in the past [47,51–53]. For a transversely
isotropic material the number of material parameters drops to
5+10=15 for a 3D state of strain and to 4+8=12 for a plane stress
state.

Finite Strain Formulation The FSF can be written in a double
additive decomposition manner. The first being the decomposi-
tion of the recoverable and irrecoverable SED, and the second
being the decomposition between the volumetric (or dilatational)
Wv and the distortional (or isochoric) Wd parts of the total SED.
This decomposition is expressed by:
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USSF =UR
SSF(αi;J,C̄)+U I

SSF(αi,βi;J,C̄) =

= [Wv(J)+Wd(C̄,A⊗A,B⊗B)]−
−[dvWv(J)+ddWd(C̄,A⊗A,B⊗B)]

(21)

where αi,βi are the elastic and inelastic material parameters of
the system, respectively. A rearrangement of these decompo-
sitions, such as the volumetric vs. distortional decomposition,
which appears on the highest expression level, leads to an ex-
pression introduced in [54], i.e.,

UFSF = (1−dv)Wv(J)+(1−dd)Wd(C̄,A⊗A,B⊗B), (22)

with the damage parameters dk ∈ [0,1],k ∈ [v,d] defined as

dk = d∞
ka

[
1− e

(
− ak(t)

ηka

)]
(23)

where ak (t) = max
s∈[0,t]

W o
k (s) is the maximum energy component

reached so far, and d∞
ka,ηka are two pairs of parameters control-

ling the energy dissipation characteristics of the two components
of SED. In this formulation, J = detF is the Deformation Gra-
dient, C̄ = FT F is the right Cauchy Green (Green deformation)
tensor, A,B are constitutive material directions in the undeformed
configuration, and A⊗A,B⊗B are microstructure structural ten-
sors expressing fiber directions. Each of the two components of
SED are defined as

Wv(J) =
1
d
(J−1)2Wd(C̄,A⊗A,B⊗B) =

=
3

∑
i=1

ai(Ī1−3)i +
3

∑
j=1

b j(Ī2−3) j +
6

∑
k=1

ck(Ī4−1)k+

+
6

∑
l=2

dl(Ī5−1)l +
6

∑
m=2

em(Ī6−1)m +
6

∑
n=2

fn(Ī7−1)n+

+
6

∑
o=2

go(Ī8− (A ·B)2)o

(24)

where the strain invariants are defined as follows:

Ī1 = trC̄, Ī2 =
1
2 (tr

2C̄− trC̄2)
Ī4 = A ·C̄B, Ī5 = A ·C̄2B
Ī6 = B ·C̄B, Ī7 = B ·C̄2B, Ī8 = (A ·B)A ·C̄B

(25)

The corresponding constitutive behavior is given by the second
Piola-Kirchhoff stress tensor according to [51]

S = 2
∂UFSF

∂C
(26)

or the usual Cauchy stress tensor according to

σFSF =
2
J

F · ∂UFSF

∂C
·FT . (27)

Under the FSF formulation the material characterization problem
involves determining the 36 coefficients (at most) of all mono-
mials when the sums in the expression of distortional SED are
expanded in Eq. 24, in addition to the compressibility constant d
and the 4 parameters used in Eq. 23. It follows that potentially
there can be a total of 41 material constants.

NUMERICAL RESULTS
For the purpose of demonstrating numerically the afore-

mentioned concepts, the material selected for generating the
necessary simulated experimental data is a typical laminate
constructed from an epoxy resin/fiber laminae system of type
AS4/3506-1. The elastic moduli of this material are listed in
Table 2 according to several sources [3, 55–57].

Clearly, what is considered to be a set of material constants
varies widely as it really depends on the fiber volume fraction,
the fiber coating, the manufacturing process of the fiber, resin and
composite and the quality of the experimental procedure over-
all. As can be seen from the bottom of the entries of the table
where we added some statistical observations, % deviation ob-
served varies from 11.1 % to 78.2 %. It is therefore important
to identify the set of elastic material properties before and af-
ter a batch of new material is manufactured or before a material
system is used for design, material qualification or material cer-
tification. To demonstrate the usage of the SSF in conjunction
with design optimization we present here an example of using
real data form a multiaxially loaded specimen from a test con-
ducted by utilizing NRL66.3. The model characteristics of the
specimen used are presented in Fig. 4 where in Fig. 4(a) the
discretization model and potential boundary conditions are de-
picted, and in Fig. 4(b), a detail at the area of the left notch
shows a stacking of [+60,-60]16 with each lamina made out of
AS4/3506-1.

Two objective functions were constructed. Both utilized the
fact that through the REMDIS-3D software, developed by our
group, one can obtain full field measurements of the displace-
ment and strain fields over any deformable body [14, 23–28].
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TABLE 2: Engineering properties of AS4/3506-1 laminae

Ref. E11 [GPa] E22 [GPa] E33[GPa] ν12 ν23 ν13 G12[GPa] G23[GPa] G13[GPa]

[3] 147.0 10.3 10.3 0.27 0.28 0.27 7.0 4.04 7.0

[55] 142.0 9.8 9.8 0.30 0.34 0.30 6.0 3.77 6.0

[56] 135.0 9.0 9.0 0.28 0.28 6.9 6.9

[57] 138.0 9.7 9.7 0.30 0.49 0.30 5.24 3.24 5.24

[58] 139.3 11.1 11.1 0.30 0.40 0.30 6.0 3.964 6.0

[59] 150.0 8.0 8.0 0.30 0.30 5.0 5.0

[60] 147.0 10.3 10.3 0.27 0.27 6.89 6.89

[61] 142.0 10.3 10.3 0.27 0.27 7.2 7.2

Min 135.0 8.0 8.0 0.27 0.28 0.27 5.0 3.24 5.0

Avg. 142.5 9.8 9.8 0.29 0.30 0.29 6.279 3.753 6.279

Max. 150.0 11.1 11.1 0.30 0.49 0.30 7.2 4.039 7.2

Deviation [%] 11.1 38.8 38.8 11.1 78.2 11.1 44.0 24.7 44.0

Avg. Cons. 142.5 9.81 9.81 0.29 0.30 0.29 6.279 3.769 6.279

Thus, our experimental measurements for the formation of the
objective functions were chosen to be the strains at the nodal
points of the discretization shown Fig. 4(a). The first objective
function chosen was based entirely on strains and is given by

Jε =
N

∑
k=1

(
2

∑
i=1

2

∑
j=i

([
ε

exp
i j

]
k
−
[
ε

f em
i j

]
k

))2

, (28)

the second objective function is given in terms of surface strain
energy density according to

JU ≈
∮

∂Ω

(
Uexp−U f em)2

dS≈

≈
∮

∂Ω

(
2

∑
i=1

2

∑
j=i

2

∑
m=1

2

∑
n=m

(
si jmnε

exp
i j ε

exp
mn − si jmnε

f em
i j ε

f em
mn

))2

dS

(29)

where
[
ε

exp
i j

]
k
,
[
ε

f em
i j

]
k

are the experimentally determined and
the FEM produced components of strain are at node k. The quan-
tities Uexp,U f em are the surface strain energy densities formu-
lated by using the experimental strains and the FEM produced

TABLE 3: Engineering properties of AS4/3506-1 laminae

Ref E11[GPa] E22 [GPa] ν12 ν23 G12[GPa]

Daniels [3] 147.0 10.3 0.27 0.28 7.0

Present 125.0 10.8 0.27 0.32 7.96

strains respectively. An implementation of both objective func-
tions was applied by utilizing an implementation of the DIRECT
global optimizer [62], which is available within Matlab [63], and
a custom developed Monte-Carlo optimizer, also implemented in
Matlab. The loading conditions applied for the moveable edge of
the specimen were ux = 0[m],uy = 0.0005[m],uz = 0.001[m],rx =
0[rad],ry = 0[rad],rz = 0[rad]. In Fig.5 we can see the experi-
mentally acquired distribution of εyy (left) and the corresponding
distribution produced from FEM analysis for the five identified
unique elastic constants, which are shown in Table 3, in compar-
ison to those of [3].

For the case of the FSF a two stage optimization was per-
formed. In the first stage we determined the values of the coef-
ficients of the strain invariant monomials in Eq. 24 such that the
FSF matches the SSF by constructing and minimizing an objec-
tive function of the form
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(a) Discretization and boundary conditions of typical specimen used for ma-
terial characterization

(b) Detail of FEA model near one of the notches

FIGURE 4: Finite Elements Model

JURF(d,a1,b1,c1,d1)≈
∮

∂Ω

(
UR

FSF −UR
SSF
)2

dS≈

≈

∮
∂Ω

(
2

∑
i=1

2

∑
j=i

2

∑
m=1

2

∑
n=m

(
UR

FSF −UR
SSF
))2

dS

 (30)

This was done is order to establish the proper parameters of
the FSF model that match the SSF model.

In the second stage the material parameters encoding the

(a) Determined experimentally via MRGM

(b) Corresponding matched distribution of the numerical model as it was pro-
duced by FEA

FIGURE 5: Distributions of the vertical component of strain
(εyy) for the purpose of determining the five elastic constants of
AS4/3506-1 composite lamina material

damage behavior of the FSF were determined through the mini-
mization of the objective function

JUF(d,a1,b1,c1,d1,d∞
a ,ηa)≈

∮
∂Ω

(
U1

FSF −U2
FSF
)2

dS≈

≈

∮
∂Ω

(
2

∑
i=1

2

∑
j=i

2

∑
m=1

2

∑
n=m

(
U1

FSF −U2
FSF
))2

dS

 (31)

where U1
FSF(d̄, ā1, b̄1, c̄1, d̄1, d̄∞

a , η̄a) is the SED of the FSF for the
parameters d̄, ā1, b̄1, c̄1, d̄1 computed from the previous step of
matching the FSF with the SSF. The parameters d̄∞

a , η̄a were cho-
sen arbitrarily to be some values that can capture nonlinearity due
to damage. This complete set of parameters represents the known
target model of the material as shown in the second row of Table
4. The unknown constitutive model was chosen to be represented
by another FSF SED, namely U1

FSF(d,a1,b1,c1,d1,d∞
a ,ηa). The

bottom row of Table 4 shows the parameters determined by mini-
mizing the objective function in Eq. 31 via a Monte-Carlo global
optimizer.
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TABLE 4: FSF parameters of AS4/3506-1 laminae with damage

Model d a1 b1 c1 e1 d∞
a ηa

Target 0.00007012 1611 713 29212 -458.7 0.9 1.8

Identified 0.00006987 1613 721 29105 -449.3 0.92 1.979

(a) Small strain formulation FEA results

(b) Finite strain formulation FEA results

FIGURE 6: FEA results of the vertical component of strain (εyy)
for the case of a specimen loaded both in tension and torsion

An indication of how well the FSF can capture the SSF, for
the case of the recoverable (linear elastic) regime, is shown in
Fig. 6, where the distribution of εyy is shown for both models
for a case of combined torsion and tension of the specimen. In
addition, a comparison of load vs. strain evolution, for a point in
front of the first of two notches, is shown in Fig. 7.

CONCLUSIONS AND DISCUSSION
We have demonstrated the application of design optimiza-

tion methodologies for the determination of the constitutive re-
sponse of composite materials with or without damage. Strain

FIGURE 7: Comparison of the load vs. vertical component of
strain (εyy) at a point in front of the notch, between the target and
the identified model by using the FSF

energy density and full field strain based approaches have been
utilized to incorporate massive full field strain measurements
from specimens loaded by a multiaxial custom-made loading
machine. We have formulated objective functions expressing
the difference between the experimentally observed behavior of
composite materials under various loading conditions, and the
simulated behavior via FEA, which are formulated in terms of
strain energy density functions of a particular structure under
identical loading conditions.

Two formalisms involving small strains and finite strains
have been utilized in a manner that involves both additive decom-
position of recoverable and irrecoverable strain energy density.
This was done in order to address both the elastic and inelastic
response of composite materials due to damage. The finite strain
formulation further involves a volumetric and distortional energy
decomposition.

Demonstrations have been given in terms of numerical ex-
amples utilizing both synthetic and actual data in determining
both the elastic and inelastic material parameters.

We are currently working in extending these energy formu-
lations to approaches that achieve two main goals. First, that
those approaches do not require FEA in the loop and second, that
they incorporate the stochastic nature of the material response
and the acquired data in a manner that quantifies uncertainty.
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This quantification should utilize prior knowledge via Bayesian
based stochastic formalisms, which enable incremental and re-
cursive algorithms based on Kalman filtering and in general, in-
formation theory.
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