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ABSTRAGT

The goal of this paper is to propose and demonstrate a multi level design

optimization approach for the coordinated determination of a material

constitutive model synchronously to the design of the experimental

procedure needed to acquire the necessary data. The methodology

achieves both online (real-time) and offline design of optimum experiments

required for characterization of the material system under consideration,

while it also achieves the constitutive characterization of the system. The

approach is based on the availability of mechatronic systems that can

expose specimens to multidimensional loading paths and can automate

the acquisition of data associated with stimulus and response behavior of

the specimen. Material characterization is achieved by minimizing the

difference between system responses that are measured experimentally

and predicted based on the associated model representation, The

pedormance metrics of the material characterization process are used to

construct objective functions for the design of experiments at a higher-

level optimization. Distinguishability and uniqueness of solutions that
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characterize the system are used aS twg of many possible measures

adopted for construction of objective functions required for design of

experiments. Finally, a demonstration of the methodology is presented that

considers the best loading path of a two degree-of-freedom loading

machine for characterization of the linear elastic constitutive response of

anisotropic materials.

Keywords:Design 0ptimization, Material Characterization, Design of

Experiments, Mechatronic Systems, Constitutive Response,

Anisotropic Materials, Composites

l.INTRODUCTION

Recent research advances on the area of dynamic data driven application

systems (DDDAS) have emphasized the need for exploiting the crucial value of

dynamic data not only in forming analytical and computational models of

physical systems, but also in improving operations on the experimental and

simulation aspects of the overall modeling and simulation context 17, 2).

However, arguably the great majority of the activities in the DDDAS area seem

to focus primarily on the dynamic data driven simulation aspect. The dynamic

data driven model formation area follows closely and in most cases tightly

integrated with that of the simulation. The one area that seems to experience the

least amount of activity is that of dynamic data driven experimental design,

control and execution. Some early demonstrations of real time integration of

experiments with simulation have been given on the area of wind tunnel and

fluid dynamics for a subsonic submerged inlet [3], fluid-thermal systems [4],

planning and control of laser treatment of cancer [5], brain-machine interfaces

[6] and for adaptive tracking of facial expressions [7]. Our contribution to this

area -as described herein-, is different in that it demonstrates higher

dimensionality integration between experiment and modeling for the case of

material constitutive response determination. The motivations for rhis research

originate from the goals for developing a DDDAS for sffuctural health

monitoring [8, 9] that emphasize the need for utilizing the constitutive response

of materials as they change due to the loading or other operational conditions

applied on the structure at hand.

A central premise for the feasibility of the proposed line of research is the

existence of robotic systems for mechanical testing of materials. Such

automated mechatronic systems are capable of applying multidimensional
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mechanical loading and collecting specimen response data. They have been

under evolutionary development at ihe Naval Research Laboratory since the

early 1960s and since then they have slowly proliferated. They present two

unique opportunities with respect to data driven inverse modeling. The first is
the exploitation of experimental data for parameter estimation associated with

models describing material constitutive behavior. The second and certainly less

explored oppol'tunity is the dynamic-data-driven identification of the optimum

design of experiments required for achieving best exploitation of the relevant

data for parameter estimation. The technical goal of this paper is to describe a

methodology that is structured for simultaneous and coordinated consideration

of both opportunities. Thus, the specific objective of our effort is to demonstrate

online and offline exploitation of data relative to its effect on model formation

and design of experiments within the context of dynamic data driven

application systems (DDDAS) adopted for structural health monitoring and

critical event prediction [8, 9]. Preliminary descriptions of some limited aspects

ofthe proposed methodology have already been recently presented [10, 11].

Utilization of data-driven design optimization practices in order to determine

constitutive behavior parameters of materials under mechanical loadings has

been based traditionally on experimental procedures having rigid architectures

and no consideration of the influence of experimental design on the quality of
the material parameter estimation. The advent of mechatronic systems,

however, characterized by multiple degrees of kinematic freedom, and thus

capable of multidimensional mechanical loading 11'2-141, has introduced the

potential of multiple designs of experiments for the acquisition of behavioral

data essential for parameter estimation.

In addition to the technical requirements described earlier, the work presented

here is also motivated by the goal of demonstrating that it is possible

to dynamically affect the manner by which data are gathered in multidimensional

data and model spaces. The particular contribution of the present work

that departs from other DDDAS efforts is based on the presentation of a

hierarchical design optimization methodology that inteffelates two successive

design optimization subprocesses for the case of material property identification

and its corresponding optimal experiments. One of these subprocesses is

responsible for the traditional parameter estimation associated with either linear

or nonlinear material constitutive behavior; the other subprocess is responsible

for the nontraditional parameter estimation associated with the characterization

of the loading path followed by a multidimensional loading frame. In particular,

this approach allows for the development of a DDDAS that adapts such that two
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sets of objectives are satisfied. The first set of objectives contains those related
to determining the material parameters and is based solely on physical
performance measures of the parameterization or model selected to represent the

constitutive behavior of a given material. The second set of objectives contains
those related to determining the online parametric characteristics of an

experimental sequence as controlled by a multiple degree of freedom loading

machine. It is significant to note that one can extend this optimization
methodology to include determination of offline characteristics of experiments.

The concept of a meta-objective function is constructed to determine
performance of a given constitutive model having been employed in the

previous optimization cycle iteration. Thus, the experimental design is

generated dynamically as data are being acquired in a fashion that optimizes the

performance of the lower level optimization employed for the material
parameter estimation.

The paper continues with a section that defines the methodology presented

here. Subsequently, an application related to characterizing the elastic response of
a composite material is described where the performance of the characterization
process is defined in terms of the uniqueness and distinguishability of the

parameter set that has been deduced as solution of a singular value decomposition
(SVD) problem. Finally, an example of the methodology is described, which is

followed by a discussion of results and future research.

2. HIERARCHICAL DESIGN OPTIMIZATION FRAMEWORK

The hierarchical nature of the methodology presented here is based on the

observation that there are at least two layers of design optimization activities
that can be involved in using data obtained from experiments for the

characterization of a system.

As shown in Fig. 1 the lower level (i.e., level-l) is assigned with the more

traditional task of identifying the parameters associated with the behavior of a
model in general, and the material constitutive model in particular. A
performance specification for that model and an instantaneous snapshot of its
behavior, as instantiated from the previous set of material model parameters, are

used for specification of the optimizer's objectives (in terms of the related

objective functions) and associated equality or inequality constraints. In this
performance specification of the material system model, it is usually required

that the output of the tentative parameterization or model be within a given
tolerance relative to experimental data characterizing the behavioral response of
the system.
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Figure 1 . Design optimization hierarchy.

At the higher level (i.e.. level 2) of this hierarchy, essentially all the

components discussed in the lower level still exist. For this level, however,

instead of designing the material model, optimization is utilized for the design

of the experimental procedures. This optimization is achieved by determining
parameters that characterize design of experiments in particular. This second

level can be further subdivided into sublevels. One sublevel involves
characterizing the experiment dynamically online with the material
characterization itself (i.e., level 2a). The other involves characterizing the

features of the experiment in an offline fashion prior to execution of the

experiment (i.e., level 2b). The blocks shown in Fig. I designated by the labels
"model of online experimental system" do in fact correspond to the model

approximating the experimental procedure itself. The blocks in Fig. I

designated by the labels including "performance specification" correspond to
the performance specification of this experimental model for both online and

offline cases.

The performance specifications of level-2a and level-2b can be defined in
terms of objectives that maximize the quality of the determined model at the

lower level and also maximize its computational performance. The necessary

and sufficient condition for this to be possible, requires the creation of objective
functions at this level, that are expressed in terms of design variables that
express quality features of model determination at level-l. These objective
functions can further be endowed with measures of computational performance
such as speed of calculation, computational cost of algorithm, level of accuracy,

etc. Thus multi-objective function determination is implied here with at least

two different partitions. One partition expresses the numerical performance of
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the lower level model while the other expresses its computational efficiency.
For each acceptable determination of a model (establishment of a set of material
model parameters) there is a set of values expressing the quality of the

numerical and computational operations that depend on various decisions made
(codified as design variable instantiation) directly related to the procedure

according to which experiments are to be conducted. The fact that the overall
performance of the lower level is adopted for performance specification at the
higher level implies that indeed the higher level represents the design meta-
level of the lower level.

Figure 2 shows a restructuring of the design optimization levels such that the
ordering is described from the perspective of applying initially the offline
design optimization and subsequently the online optimization. In the case of
this restructuring the online optimization includes the determination of both the

Figure 2. Design optimization hierarchy.
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material constitutive parameters and the experimental parameters. This

representation utilizes information theoretic semantics and clearly indicates that

the offline optimization must be performed by means of finite element analysis

(FEA) of the specimen. Accordingly, it is necessary to adopt a parameterized

model representation of the constitutive response.

3. GENERAL SYSTEM REPRESENTATION PRELIMINARIES

In the general case of the lower level plane on Fig. 1, it is expected that a system

ulder identification is described by some general form of the type:

y =,f(p; x) (1)

where y e Yu,- c Rqr, x € Xs.,c lRq. represent q) output, Qrinput state variables,

respectively. The vector p € Pp c Rp represents p unknown parameters

characterizing the system (i.e., design variables within a design optimization

context). The vector function/(p;x) e Yur c lRqj represents the behavior of the

system.

Determination of this vector function is equivalent to a determination of all q,

components ),, of the vector y. This is equivalent to the identification of q,-

systems lu: f,(p;x). Assuming that one exercises the corresponding physical

system / times, incrementally, one is then able to consffuct the experimental pairs

(yr, 
")l = OEu.k, xf), where k = 1,..., l, and the superscripl"E" indicates the

experimental character of a given quantity. At this stage it is advantageous to

construct a decomposable factorization off(R;x). This can be achieved in general

using a formalism that follows a Taylor-series expansion [15] according to

T
Ja(p:x)=I p, [.1.i', .ri', ...xtr',., '

The index vector m = lm, t/12t . . . ; m *) ts an m-tuple of nonnegative integers

that identifies the term in the series, or equivalently, the order of each variable

in each of the monomial terms of the series. This implies that the total order of
each monomial term will be *= l^l = *r+ m2+'..* ffirr. Thus, the number

of terms in the series is computed by the binomial coefficient

(3)

which essentially defines the dimensionality of the column parameter vector p.

The components of this vector or the coefficients of the series in eqn (2) can

(2)

(*+q,\hv=l m )'
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now be considered as design variables of an optimization problem that

requires the minimization of the quantity ll l,p,-b, ll tftat 
""pt"sses 

the error

between the experimentally observed output behavior b,, and that which is

estimated analytically as expressed by the product A,,p,,. Here bT,= 0rt, ...,
lup, ...,Ir7), and A,, is an lxPup array whose elements are evaluations of the

combinations xllt vnz..- xi'Xof terms from the series given in eqn (2)' When

this minimization is defined with respect to the L, norm, one is able to

construct [16] an objective function for minimization of the form

llo,,o, -rf ll: =(A,,p,, -vF)' (A,p, -vf )= i (o,ro,, -vu,o)' (4)
K-t

This formulation suggests that linear least squares methods can be used to

determine the vector of the system parameters P, that represent the coefficients

of the generally non-linear system model with respect of the input vector x. This

fact has generated confusion within the literature and therefore requires some

emphasis for purposes of clarity. Consequently, f(p;x) can be determined

through a detetmination of its componentsf(p,;x). This is equivalent, howevef,

to a determination of p x q),parameters, and is therefore equivalent to solving

Q, optimization problems, where each problem is associated with p system

parameters.

In order to reduce the complexity of the general problem, as stated until this

stage of our development, and to ensure that each{(P,;x) is evaluated using a

formalism that is consistent with respect to all components, we focus on a class

of problems that is characterized by a particular mathematical representation

that has its foundation in multiconvex potential theory and continuum

mechanics [17]. This particular representation of systemic behavior is in fact

popular within continuum mechanics and has its origins in the development of
hyperelasticity. Accordingly, it is postulated that there exists a potential

function Y(p;x) such that

!,: fu(p;")= 
dY-(P;x) 

(5)
dru

This formulation effectively equips the systemic representation with a

structure for determining all components ),, of the vector y from a single scalar

potential function Y(p;x). An often forgotten assumption enabling this

formulation is that the input and output variables can actually form a

corespondencethroughinterrelationshipasconjugatepairs {y,, xul ,u=1, "',Q,
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where Q = Q,r= Q,@nd therefore, this approach is not applicable for systems with
mismatching cardinality of the input and output sets.) In this case the design

optimization problem for level-l optimization is reduced to that of a

determination of the function Y(p;x). A standard technique for determining this

function involves its construction as an additive linear combination of basis

functions p(x), weighted by the unknown coefficients p according to

Y(p;x) = p.0(x), (6)

where p = lp1, p2, ..., p] and F : [0,(x), FrG), ..., B,(x)J'. Another approach

for construction of the function Y(p;x) is based on thermodynamics. This

approach, which assumes that Y(p;x) represents an internal energy density

function for many continuum systems, permits a Taylor-series expansion about

the origin x = 0 with respect to the state variables represented by the

components forming the basis set of the input state subspace X+. Accordingly,

a second order expansion with respect to the variables x, results in a first order

constitutive theory following eqn (5). Clearly when terms of higher than second

order are employed, the resulting systemic behavior will be nonlinear. Another

important and frequently forgotten fact is that eqn (6) is actually eqn (2)

expressed in vector notation, with the subtle difference, however, that the basis

functions p(x) are arbitrary and therefore can be selected such that their

structure is more convenient for a particular system analysis. Accordingly, the

structure of the basis functions p(x) can be selected such that eqn (6) is

expressed by fewer terms relative to eqn (2).

Substitution of eqns (5) and (6) into eqn (1) yields the systemic behavior

model

y: p.V*F(x)

Within the context of continuum systems and their corresponding

constitutive responses, eqns (1,5-7) represent the behavior of the medium for
all representative volume elements (RVEs) within the geometry that encloses it,
and is independent of shape. However, for the sake of identifying the

components of the parameter vector p, experimental measurements are to be

made at discrete locations i e [1,...,/] on the specimen, or in general, the

system. At the same time excitation and response is measured in terms of input-

output pairs for various magnitudes of excitation indexed by k e fI,..., ml for
a total of n different magnitudes. Accordingly, one can construct a vector

expressing the behavior of the system as calculated analytically according to

(7)
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r, .. -rr
Yp(p:x)=[(r'(u*). .y,,(p:*))r. .(y,(p'*), .r,,(p,")),.]o . (8)

and correspondingly, the behavior of the system as measured experimentally
according to

The quantity

llvo - vr ll' = i("r,(n' "; - vf,)' . ( ro)
j=l

which expresses the square of the L, norm of the residual difference of Y, and

Y[ in terms of the least square difference of their respective magnitudes for each

excitation increment.

The equality expressed by eqn (10), however, must be satisfied for all
excitation levels m and must be extended to include all discrete measurement

positions /. This condition combined with the substitution of eqns (4-6) into
eqn (10) yields the generalized form,

I nt , ,.) I nt

l('-r -ZL(r,,(p,")- yi,)' ='Z>(r, v,p(x7i )-rj,)' (l r)
t=l j=1 t=t j=\

Since this expression provides the definition of the residual error it can be

used to define the objective function 1f'-t 1'tu1 when minimized yields the

unknown parameter vector p, and therefore, the design optimization process

that is performed at level-1. As expected, the individual objectives folded in
eqn (11) that are related with the each individual output are satisfied as they are

affected by the simultaneous presence of the rest of them.

If one assumes that linear constitutive behavior can approximate the

behavior of a given system, it then follows from eqn (4) that p (x) must be a
second order function of the components of x. In that case it is trivial to show

that determination of eqn (8) is reducible to a problem involving the

determination of the scalar function Y(p;x) according to

Yf =[(yf , ..,yf,)r,...,(yf ,. .,r,,),f'o (e)

nt+t( n=2 \2

:t: B"P'-'r )' (12)l(v-t -(sp - ,')t (sp - t') =
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where the overbar quantities correspond to the experimental values of the

generalized work function corresponding to the inner product of the input and

output vectors of the original system.

The problem expressed by eqn (12) can be solved by methods based on the

solution of normal equations (Normal-Equations method), QR factorization, or

Singular Value Decomposition (SVD) [16]. Selecting one of these methods to

determine the unknown model parameters can be a process that depends on

ranking these methods with regard to their performance in tetms of attributes or

metrics thal are important to the user. It has been documented for example that

the Normal Equation method is computationally fast and requires less

resources, but is less accurate. In contrast, it is well known that SVD requires

substantial computational resources, but is more reliable than other methods. It
is natural therefore, to ask the question of how these attributes might vary given

that there exists user control of the characteristics that determine the particular

choice of experimental data adopted for population of all column alrays having

superscript "e", denoting experimental value, in the relations presented above.

4. COMPOSITE MATERIAL SYSTEM

For demonstration purposes we consider a linear anisotropic material with the

four moduli representing its constitutive parameters. We have already

demonstrated t18-201 that by the use of the principle of virtual work this

problem can be reduced to the following linear (with respect to the unknown

parameter vector) relation

G(o)q,:wP (13)

where G(0) = [gr (0),. .., q(Aff is a m x 4-dimensioned array that contributes to

the finite element approximation of the intemal energy stored in the system from

an increment of strain from point k-1 to point ft in a manner that does not contain

the material moduli since this quantity is contributed by the 4 x I array g, of
unknown pa.rameters on the left hand side of eqn (13). The right side the ru-

dimensional array wr = lWrlt, ...,W/r)'contains the extemal work that is applied

as excitation into the system for all loading increments. In eqn (13) the right side

represents the measured output of the system, while the left side represents the

corresponding change inside the system due to all possible excitation inputs. This

equation is a special case for application of the more general eqn (7). Its solution

can be approached as a special case of the problem presented by eqn (12) and can

be achieved by using any of the three methods available for implementation of
least squares approximation.
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While selecting among the various methods may implicitly suggest the idea
of yet another optimization level, here we will focus on SVD for the purpose of
determining the parameters of the material model associated with level-1. We

will also neglect additional computational performance criteria and focus only
on potential measures of performance of SVD implementation from an
algorithmic perspective.

Thus, the solution containing the identified parameters according to eqn (13)
can be written in the form

Q"= G (0)*wr (14)

where

G(0)+ = { G(0IG(O }-' G(O r (1s)

is the pseudoinverse of G(0) and it exists uniquely only when n> 4 or when the
system of linear equations represented by eqn (14) is overdetermined.

5. LEVEL.I PERFORMANCE MEASURES

What determines the quality of solving eqn (13) is now reduced to determining
the quality of applying eqn (14) and therefore the quality of the process

associated with establishing the pseudoinverse array defined by eqn (15). We

have identified in the past [18, 19] that the concepts of "uniqueness" and
"distinguishability" of the obtained solution can be used as performance metrics
for the determination of the parameter column afiay qM.In order to define these

two concepts it is necessary to focus on a few preliminaries relating the singular
values of the SVD process to the problem at hand. In particular, the uniqueness

of the solution depends not only on the size of G(0) but also on whether G(Or
G(0) in eqn (12) has an inverse matrix (or this matrix is fully ranked (r = 4)).
In order to guarantee the uniqueness and further prepare for designing optimal
experiments via level-Z optimization, the proposed technique obtains the

singular values of the matrix as a result of singular value decomposition (SVD)

[16] as they are expressed by the factorization:

G(0) = USVI (16)

where U e lRnxn and V e lRa"4 are orthogonal to each other and S e lR"4 is
a diagonal array with real, non-negative singular values s,,Vi e {1,...,4}. These

singular values can be used to define two measures characterizing parameter
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identification, i.e., distinguishability and uniqueness of the solution, which are

described as follows.
From a conceptual perspective distinguishability can be defined as the

property of the obtained solution to provide the largest possible variation of
the measured response of two systems when their material parameters are

very close to each other. It has been demonstrated that when two material

systems exhibit a small difference in their properties, then the difference in
the values of their corresponding responses (observed experimentally)
depend linearly on S [16]. Accordingly, any expression of the combined effect
of the elements of S as it increases has the ability to distinguish two materials

that are seemingly close to each other from a properties perspective, by
producing exaggerated energy responses that are scaled values of these

property variations.
From a quantitative peffipective we have defined distinguishability as the

product of all singular values as,

n

Fd =lIsi.

From a conceptual perspective uniqueness has been defined as the measure

of whether G(0)rG(0) in eqn (15) has an inverse matrix or not, is equivalent to

the existence of (S'S)-l as shown by substituting eqn (16) into eqn (15) that

yields

G(9)* = V{S'S} lsrur (18)

The necessary and sufficient condition for this to occur is given by

lstsl= sr2slslsl *0, (19)

i.e., s, + O,Vi € {1,...,4}. In addition to helping identify the uniqueness,

singular values can also be used to quantify the degree of uniqueness of the

solution. This is because a non-zero but near-zero singular value, if it exists,

dominates the elements of the pseudoinverse matrix given by eqn (18) and

makes the parameters having the other singular values difficult to identify
uniquely. Accordingly, the degree of uniqueness can be quantified by the fact
that the greater the differences of the singular values, the more unique (i.e.

higher uniqueness) the solution.

0J3

(t7)
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One way to define uniqueness quantitatively requires the introduction of the

concepts of maximum and minimum singular values

and evaluation of deviation from uniqueness in terms

c, which is commonly used in sensitivity analysis as:

1.
EIt :t - 

Jmtn .' 1

t' smax

(20)

of the condition number

(21)

It is important to note that distinguishability increases as any of the s,

increase, while uniqueness increases as the condition number decreases to
unity.

6. LEVEL-2 OPTIMIZATION

If in addition to determining the material parameters we require that this is
achieved such as distinguishability and uniqueness are as high as possible, then

we have instantly defined the goals of the level-2 optimization regardless of
whether we are referring to the online (level-2a) or offline (level-2b) versions.
The design variables at level-2 have to therefore be connected with what is
controllable in an experimental setup used to acquire experimental data for
identification of the material parameters at level- 1. Such parameters can be those

that define the evolution of the loading path, such as total number of increments,
loading path increment magnitude, and loading path increment orientation. For
the case of a displacement controlled two degree of freedom (2-DoF) testing

machine, used for experimentation, the parameter vector to be identified per

loading increment could be formed by the measure of displacement increment

azp=llue*1-uell (22)

and the angle denoting the change in orientation of the loading path between to
successive increments defined as

smax = -u^{r; lvi e {t,...,4}}
smin = min{s; lVi e {t,...,4}}

Ar.r*r = ran -l [ilYrt+r 
- u'rr 

]
Ir u.rlt +t - urlk )

(23)
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where the total boundary displacement vector is defined by its components

along the two axes according to the usual definition Ltr= fu,, ur)p= lu,11r, u,11r).

In the subsequent analysis we will assume constant displacement increment of
a chosen magnitude and the parameter to be optimized is the load path

directional change A*.**, fot all increments. Since increased uniqueness and

distinguishability both express a sense of reliability of the SVD process used for

determining the material parameters in level-1, we can define a vectorial

objective function that needs to be maximized for maximum reliability. It is

constructed such as

J x .x *t =lt ft .o -,.J k .x *r] - ,ili:

637

where the objective function components 4,u*r, J'ir,u*, represent the

corresponding increments of distinguishability and uniqueness along an

increment of loading according to

(24)

()5\J*,u*, = F&,rc*r(Au,r*r )- F&,u

Jk,x *r = Ft,x *t(At,t*t ) - Ft,u

Distinguishability and uniqueness are computed through the derivation of the

matrix G(0) in eqn (18). In order to compute F[1", the matrix G(0) is assembled

for the sensor readings at load increment k, through the derivation of the

altemate form of eqn (13) [18, l9]:

8,,@)' em = Lfrr,Yk e{1,...,r<} \26)

Distinguishability and uniqueness of F[)o,(Ao.K+l) for steps less than K +
are predicted from the matrix with the additional row:

Ert@)r qm = Lfrx'(A,r,,r*r), (21)

where 9u*J0)' and AIPu*,(Au'*,) are computed via Finite Element Analysis
(FEA) with the controllable boundary displacements/forces governed by Au.r*,
and using the material parameters (elastic moduli for this case) identified up to

this stage. This represents a l-step look-ahead computation relative to the

activities of level-1 as they relate to those of level-2.
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Throughout the paper the symbolic representation 1:-; is used to represent the

quantity (.) as it is associated with FEA.
As expected, the solution of the two objective functions problem is not given

by a single point but by a space satisfying the Pareto-optimality, which is often
referred to as Pareto-optimal front [18-20]. This formulation requires the

derivation of a Pareto-optimal front prior to the determination of a single

solution and this is extremely time-consuming from a computational
perspective. For this reason and assuming that the Pareto-optimal front is convex

or near-convex, the problem can be reformulated in a manner such that a single

scalar objective function is constructed according to the generalized form

J x .r *t :- 0 - lr) tfr,K +K,, * t-tJ k .rc * rc,, -,f::,

where each objective function is given by the scaled increment:

(28)

Idr K,K+K,, : ,Y a e {d,u} (2e)

and p e [0,1] is a weighting factor that controls the bias towards one or the

other component of the objective function. The formulation expressed by eqns
(28-29) avoids the derivation of the Pareto-front.

7. NUMERICAL EXAMPLES

For the sake of numerical demonstration of the proposed concepts the material

selected for generating the necessary simulated experimental data is a typical
laminate constructed from an epoxy resinfiber laminae system of type

454/3506-1 with a balanced +l- 30 degrees stacking sequence. The elastic
moduli of this material are listed in Table 1.

All subsequent computational results have been produced by the

implementation of the analysis presented earlier within MATLAB [21].
Figure 3 shows the deformed stages of a simple rectangular plate made from the

specified material and displaced under the influence of an undulating loading
path for a sequence of 20 increments in this path (a). Distinguishability and

uniqueness are increasing with increasing load step increments in Fig. 3(b) and

3(c) respectively. We have already discussed elsewhere I18, 191 the fact that an

undulating path (a. displacement component is non monotonic), maximizes
distinguishability and uniqueness more efficiently than a uniaxial loading path

F&:o*u,, - Ft
t;d]K
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Table 1 . Moduli of 454/3506-l laminae

Lamina [,aminate

Prop. Value Parm. Value

E,r . ,_,*-_- 111:10:lu_ _ .*-2t, _ *_. 1,118rsf qB_

-Etz*- *
G,,

9.6 x 10e Pa o"" 9.7452 x 106Pa

5.99 x lOe Pa Qoo 5.9986 x 106Pa

vtz 0.334 Q,, _ _ 3,?549 x 106Pa

Etote(!
-c
.a
5
o).c 10 2u

.9o

10 22

0 5 10 155101520
Step

(b) Distinguishability

Figure 3. Undulating

Step

(c) Uniqueness

loading path.

along the y-direction (that cannot actually determine all unknown material

parameters) or a linear path with monotonic u, and z, displacement

components. This represents the results achieved during level-1 optimization.

Figure 4 presents the results of performing the level-2 optimization as described

earlier, in terms if the evolution of the pareto front as defined in terms of

distinguishability and uniqueness for a the entire range of the weighting factor

(a) Deformation by FEA
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Figure 4. Pareto-optimal solutions as a function of distinguishability, uniqueness

and bias factor.

pr e [0,1]. Figure 5 depicts the results of the material moduli determination as

a function of loading steps for the loading path represented by Fig. 3 (a). The

choice of the optimal solution has no physical basis and corresponds to setting

It = 0.5 because this choice balances the contribution of each one of the original

objective functions on the global one as expressed by eqn (25). The resulting

5101520
SteP

o
c)
O IUU
E
(s
(!
o
(d.E
g 107
6

06 1

0
1

Figure 5. Evolution material properties characterization
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Figure 6. Final design of loading path chosen for p = 0.5.

solution for level-2 optimization is expressed in terms if the loading path

defined on the u,au)-pLane as shown in Fig. 6.

8. GONCLUSIONS AND DISCUSSION

The framework of a general hierarchical methodology was proposed. This

methodology can succeed in the coordinated determination of parameters

characrerizing the response of a system, as well as characterizing the design

parameters of an experiment required to collect data necessary for the systemic

characlerization. The approach was applied in the context of an elastic

anisotropic material system. The systemic constitutive response of linear

anisotropic behavior to be identified was selected to be that of an elastic system

defined from its four elastic moduli. These were the design variables adopted

for the first hierarchical level of optimization (level- I ). The experimental model

that was required for the second level of optimization (level-2) was chosen to

represent the loading path within a 2-dimensional loading space. Implied here

is the existence of a 2-degree of freedom loading frame, capable of applying

such a loading path and of measuring both the path and mechanical load

characteristics for each increment.

In order to achieve a definition of the objective function at level-2, the

quantities of distinguishability and uniqueness were introduced as performance

metrics of the design optimization process at level-2, thus quantifying the

performance of the SVD process employed. Accordingly, a two-component
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meta-objective function was constructed to be maximized. Normally,

maximization of this dual objective function leads to the creation of a Pareto-

optimal front that ultimately contains the loci of all acceptable solutions that

can be used to determine dynamically the experimental design specification in

terms of a loading-path direction parameter. Numerical simulation of the entire

process was performed in order to demonstrate its feasibility. Wit was

demonstrated that the material moduli unknowns can be determined in

conjunction with the loading path characteristics needed to design an

appropriate experiment for collecting data required for level-1. Clearly, the

question of "how good the design optimization for level-n is" from the

perspective of the optimization of level-(n+l) is valid for all subsequent

levels a user wishes to employ. Effectively this extends the hierarchy

upward. Practicality and total computational cost will eventually have to

appear in these objective functions and the hierarchy's extension will
eventually have to stop. This will also determine the throughput capability of

the entire process from a DDDAS perspective. Various extensions of this

type will be considered for further investigation, while simulation as the

activity of exercising the determined model, will also be added for

completion the triad (dynamic and simultaneous physical model

identification, design of experiments and design of simulation) of activities

associated with a DDDAS ll, 21. Finally it is planned that actually

experimental data with their natural unceftainty sources will be used to study

sensitivity bounds of the proposed procedure for realistic situations.
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