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The main goal of the present paper is to demonstrate the value of design optimization
beyond its use for structural shape determination in the realm of the constitutive charac-
terization of anisotropic material systems such as polymer matrix composites with or
without damage. The approaches discussed are based on the availability of massive ex-
perimental data representing the excitation and response behavior of specimens tested by
automated mechatronic material testing systems capable of applying multiaxial loading.
Material constitutive characterization is achieved by minimizing the difference between
experimentally measured and analytically computed system responses as described by
surface strain and strain energy density fields. Small and large strain formulations based
on additive strain energy density decompositions are introduced and utilized for con-
structing the necessary objective functions and their subsequent minimization. Numerical
examples based on both synthetic (for one-dimensional systems) and actual data (for re-
alistic 3D material systems) demonstrate the successful application of design optimiza-
tion for constitutive characterization. [DOI: 10.1115/1.3595561]
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Introduction

Design optimization, as a topic of research relative to engineer-
ing applications and product development has been popular within
the context of optimal shape determination but not as popular
within the context of material characterization. In an attempt to
fill this gap, the main objective of the present paper is to describe
design optimization efforts in the less popular application area of
the data-driven constitutive characterization of anisotropic mate-
rial systems. In this context, the term “design optimization” refers
to the material constitutive model as being the “under design” en-
tity, in contrast to the traditionally considered “shape model”
where the target design entity is that of the “shape model.” For-
mally, however, this is again an application optimization for solv-
ing the inverse problem of identifying material model parameters
when experimental data describing the systemic behavior are
known.

Composite materials are clearly the most widely used anisotropic
materials for various application areas [1,2]. Their constitutive
characterization has been an important topic of interest for struc-
tural design, material certification, and qualification practitioners.
Such characterization has been traditionally achieved through
mostly uniaxial tests aiming in the determination of elastic material
properties primarily. Typically, extraction of these properties,
involve uniaxial tests conducted with specimens mounted on uniax-
ial testing machines, where the major orthotropic axis of any given
specimen is inclined relative to the loading direction. In addition,
specimens are designed such that a homogeneous state of strain is

developed over preferably a large and well-defined area of the spec-
imen, such that the measurement of specimen loads and displace-
ments [3,4] can be reduced to material field quantities such as
stresses and strains. Consequently, the use of uniaxial testing
machines imposes requirements of using multiple specimens, grip-
ing fixtures, and multiple experiments. The requirement of a homo-
geneous state of strain frequently imposes restrictions on the size
and shape of specimens to be tested. It follows that these require-
ments result in increased cost and time, and consequently to ineffi-
cient characterization processes.

To address these issues and to extend characterization to nonlinear
regimes of the constitutive behavior, multi-degree of freedom auto-
mated mechatronic testing machines, were introduced at the Naval
Research Laboratory (NRL) [5–7] in order to enable the capability of
loading specimens multiaxially in conjunction with the employment
of energy-based inverse characterization methodologies. This intro-
duction was the first of its kind and has continued through the present
[8–10]. The most recent prototype of these machines, which is cur-
rently under functional verification [11], is shown in Fig. 1.

The energy-based approach associated with mechatronic test-
ing, although it enables multiaxial loading and inhomogeneous
states of strain, still requires multiple specimens. It is significant
to state, however, that these specimens are tested in an automated
manner with high throughput that has reached values of 30 speci-
mens per hour.

The recent development of flexible full-field displacement and
strain measurements methods has afforded the opportunity of al-
ternative characterization methodologies [12–15]. Full-field opti-
cal techniques, such as Moire and Speckle Interferometry, digital
image correlation, and meshless random grid method (MRGM),
which measure displacement and strain fields during mechanical
tests, have been used mostly for elastic characterization of various
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materials [15–18]. The resulting measurements are used for iden-
tification of constitutive model constants, via the solution of an
appropriately formed inverse problem, with the help of various
computational techniques.

Arguably, the most popular methodology is the mixed numeri-
cal/experimental method that identifies the material’s elastic con-
stants by minimizing an objective function formed by the differ-
ence between the full-experimental measurements and the
corresponding analytical model predictions via an optimization
method [5–10,15,17–20]. However, the repetitive finite element
analysis (FEA) required for each iteration of the optimization pro-
cess makes the computation considerably costly [21]. Alterna-
tively, the so-called virtual field method was developed [21–23] to
identify material parameters by finding virtual fields and inversely
solving for parameters by substitution of full-field/surface meas-
urements. That is to say, the virtual field method effectively char-
acterizes materials without finite element analysis, provided that
appropriate virtual fields are derivable.

Our focus in the present work is to describe our recent efforts
concerning design optimization methodologies for constitutive
material characterization. Our approaches are based mostly on
energy conservation arguments, and they can be classified accord-
ing to computational cost in relation to whether FEA are used iter-
atively inside the optimization loop or not. It is important to clar-
ify that digitally acquired images are processed by in-house
developed software that implements the MRGM [24,27,28] and is
used to measure the full-field displacement and compute the asso-
ciated strain fields as well as the boundary displacements required
for material characterization. Reaction forces and redundant

boundary displacement data are acquired from displacement and
force sensors integrated with NRL’s multiaxial loader—called
NRL66.3—[11]. In an effort to address the computational cost of
the FEA-in-the-loop approaches, the authors have initiated a dissi-
pated and total strain energy density determination approach [29–
32] that has recently been extended to a framework that is derived
from the total potential energy and the energy conservation, which
can be applied directly with full field strain measurement for char-
acterization [33,34].

Two techniques, built upon this framework, have been pro-
posed to identify elastic constants and to develop nonparametric
constitutive models of anisotropic materials.

The first identification technique estimates the elastic constants
for every set of measurements by equating the variation of the
external work, derived from the boundary displacement/force
measurements, with that of the induced strain energy, derived
from the full-field strain measurements, and stochastically correct-
ing the estimation using a Kalman filter approach [34]. This tech-
nique has been proven to identify the elastic constants of aniso-
tropic materials even under the presence of considerable noise in
the measurements [34].

The second technique develops nonparametric representations of
constitutive models using artificial neural networks [35]. When we
first explored this approach in the early nineties [36], we deter-
mined that the computational performance of the approach, as it
was implemented on the Aspirin/MIGRAINES neural net simulator
framework [37], was not practical for the amounts of data generated
by NRL’s multidimensional testing machines. Subsequently, we
have applied it on many other material characterization applications
[38–42] for less amounts of data where it was practical. In these
efforts, the error between the energy quantities is used to develop
the neural network constitutive model, unlike the conventional
techniques where stress data are required for the modeling [43–46].
This technique allows the nonlinear constitutive relations to be
modeled comprehensively without the limitations imposed by the
parametric expressions of the conventional material models. Since
both artificial neural network (ANN) implementations and full field
measurement techniques have matured, we have decided to apply
ANN technologies for material characterization of the damage
behavior of composite materials [47]. It should be noted that some
efforts for characterizing nonlayered anisotropic biological materi-
als like trabecular bone have been implemented using FEA in the
context of numerical experiments and without the use of experi-
mental measurements [48].

In order to maintain reasonable scope, this paper considers
only methodologies that require FEA-in-the-loop because of the
simplicity of their implementation and exhaustive capability to
determine the material parameters. The consideration of other
methodologies is more appropriate for future comparative
studies.

In the section that follows, we will present the general case of
material characterization from a systemic perspective in order to
establish a common reference. Next, we present the case of deter-
mining the properties of the one-dimensional nonlinear system.
This is done mainly for instructive purposes, which bare rele-
vance to subtleties of subsequent formulations presented. Next,
we present a small strain formulation (SSF) of the general strain
energy density approach followed by a finite strain formulation
(FSF), which is for the case of linear and nonlinear constitutive
behavior of composite materials with or without damage. The pa-
per continues with a numerical application of design optimization
implementations based on these two formulations, which are in
turn based on both synthetic and actual data. Finally, conclusions
are presented.

General System Representation for Material

Characterization

For the general case of a material system, there are two repre-
sentations (see Fig. 2.) The actual physical system and the

Fig. 1 NRL66.3: Most recent 6-DoF mechatronically automated
system for the multiaxial testing of materials
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analytical model representation of the system whose general
functional form is

y ¼ f ðp; xÞ (1)

where y 2 Yqy � Rqy and x 2 Xqx � Rqx represent qy output and
qx input state variables, respectively. The vector p 2 Pp � Rp

represents p unknown parameters characterizing the system (i.e.,
design variables within a design optimization context). The vector
function f ðp; xÞ 2 Yqy � Rqy represents the behavior of the
system.

Determination of this vector function is equivalent to a determi-
nation of all qy components yu of the vector y. This is equivalent
to the identification of qy systems yu ¼ fuðp; xÞ. Assuming that
one exercises the corresponding physical system l times, incre-
mentally, one is then able to construct the experimental pairs
ðyu; xÞEk ¼ ðyE

u;k; x
E
k Þ, where k ¼ 1;…; l and the superscript “E”

indicates the experimental character of a given quantity. The ex-
perimental data are acquired by the utilization of an experimental
frame that exercises physically the actual material system (i.e., a
specimen loaded by a testing machine). It can also exercise the an-
alytical material model computationally by presenting an opti-
mizer with both the experimentally acquired systemic behavior as
well as the computationally predicted model behavior. The model
or the final material parameters emerge when the comparison by
the optimizer between actual physical behavior and that predicted
by analytical model are close to each other, within an acceptable
margin.

At this stage, without loss of generality, it is advantageous to
construct a multiplicative decomposition of fuðp; xÞ. This can be
achieved in general using a formalism that is in terms of a Taylor-
series expansion [49] according to

fuðp; xÞ ¼
X

m

pu½m�xm1

1 xm2

2 … xmm
qx
: (2)

The index vector m ¼ ½m1;m2;…;mm� is an m-tuple of nonnega-
tive integers, which identifies the term in the series or equiva-
lently, the order of each variable in each of the monomial terms of
the series. This implies that the order of each monomial term is
m ¼ mj j ¼ m1 þ m2 þ � � � þ mm. Thus, the number of terms in the
series is given by the binomial coefficient

pup ¼
mþ qx

m

� �
(3)

which defines the dimensionality of the column parameter vector
p. The components of this vector or the coefficients of the series
in Eq. (2) can now be considered as design variables of an optimi-
zation problem that requires minimization of the quantity

Aupu � buk k, which expresses the error between the experimen-
tally observed output behavior bu and that which is estimated
analytically as expressed by the product Aupu. Here, bT

u
¼ ðyu1;…; yuk;…; yulÞ, and Au is an l� pup array whose elements
are evaluations of the combinations xm1

1 xm2

2 … xmm
qx

of terms from
the series given in Eq. (2). When this minimization is defined with
respect to the L2 norm, one is able to construct [50] an objective
function for minimization that is of the form

Aupu � yE
u

�� ��2

L2
¼ ðAupu � yE

u Þ
TðAupu � yE

u Þ

¼
Xl

k¼1

ðAukpu � yE
ukÞ

2
(4)

This formulation suggests that linear least squares methods can
be used to determine the vector of the system parameters pu that
represent the coefficients of the generally nonlinear system
model with respect of the input vector x. This fact has generated
confusion within the literature and therefore requires some em-
phasis for purposes of clarity. Consequently, f ðp; xÞ can be deter-
mined through a determination of its components fuðpu; xÞ. This
is equivalent, however, to a determination of p� qy parameters
and is therefore equivalent to solving qy optimization problems,
where each problem is associated with p system parameters.

In order to reduce the complexity of the general problem and to
ensure that each fuðpu; xÞ is evaluated using a formalism that is
consistent with respect to all components, we focus on a class of
problems that is characterized by a particular mathematical repre-
sentation, which has its foundation in multiconvex potential
theory and continuum mechanics [51]. This particular representa-
tion of systemic behavior is in fact popular within continuum
mechanics and has its origins in the development of hyperelastic-
ity. Accordingly, it is postulated that there exists a potential func-
tion Wðp; xÞ such that

yu ¼ fuðp; xÞ ¼ @Wðp; xÞ
@xu

(5)

This formulation effectively equips the systemic representation
with a mathematical structure for determining all components yu

of the vector y from a single scalar potential function Wðp; xÞ. An
often forgotten assumption enabling this formulation is that the
input and output variables can actually form a correspondence
through interrelationship as conjugate pairs fyu; xug; u ¼ 1;…; q,
where q ¼ qx ¼ qy (and therefore, this approach is not applicable
for systems with mismatching cardinality of the input and output
sets). In this case, the design optimization problem is reduced to
that of a determination of the function Wðp; xÞ. A standard tech-
nique for determining this function involves its construction as an
additive linear combination of basis functions âðxÞ, weighted by
the unknown coefficients p according to

Wðp; xÞ ¼ p � âðxÞ (6)

where p ¼ ½p1; p2;…; pp� and b ¼ ½b1ðxÞ;b2ðxÞ;…; bnðxÞ�T .
Another approach for construction of the function Wðp; xÞ is based
on thermodynamics. This approach, which assumes that Wðp; xÞ
represents an internal energy density function for many continuum
systems, permits a Taylor-series expansion about the origin x ¼ 0
with respect to the state variables represented by the components
forming the basis set of the input state subspace Xq . Accordingly,
a second order expansion with respect to the variables xu results in

Fig. 2 Systemic outline of design optimization for constitutive
material characterization
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a first order constitutive theory following Eq. (5). Clearly, when
terms of higher than second order are employed, the resulting sys-
temic behavior will be nonlinear. Another important and fre-
quently forgotten fact is that Eq. (6) is actually Eq. (2) expressed
in vector notation, with the subtle difference; however, that the
basis functions âðxÞ are arbitrary and therefore can be selected
such that their structure is more convenient for a particular system
analysis. Accordingly, the structure of the basis functions âðxÞ can
be selected such that Eq. (6) is expressed by fewer terms relative
to Eq. (2).

Substitution of Eqs. (5) and (6) into Eq. (1) yields the systemic
behavior model

y ¼ p � rxbðxÞ (7)

Within the context of continuum systems and their corresponding
constitutive responses, Eqs. (1), (5)–(7) represent the behavior of
the medium for all representative volume elements (RVEs) within
the geometry that encloses it and is independent of shape. How-
ever, for the sake of identifying the components of the parameter
vector p, experimental measurements are to be made at discrete
locations i 2 ½1;…; l� on the specimen, or in general, the system.
At the same time, excitation and response are measured in terms
of input-output pairs for various magnitudes of excitation indexed
by k 2 ½1;…;m� for a total of m different magnitudes. Accord-
ingly, one can construct a vector expressing the behavior of the
system as calculated analytically according to

Ykðp; xÞ ¼ ½ðy1ðp; xÞ;…; ynðp; xÞÞ1;…; ðy1ðp; xÞ;…; ynðp; xÞÞl�k
T

(8)

and correspondingly, the behavior of the system as measured
experimentally according to

Ye
k ¼ ½ðye

1;…; ye
nÞ1;…; ðye

1;…; ye
nÞl�k

T
(9)

The quantity

Yk � Ye
k

�� ��2 ¼
Xm

j¼1

ðYkjðp; xÞ � Ye
kjÞ2 (10)

expresses the square of the L2 norm of the residual difference of
Yk and Ye

k in terms of the least square difference of their respec-
tive magnitudes for each excitation increment.

The equality expressed by Eq. (10), however, must be satisfied
for all excitation levels m and must be extended to include all dis-
crete measurement positions l. This condition combined with the
substitution of Eqs. (4)–(6) into Eq. (10) yields the generalized
form

J0 ¼
Xl

t¼1

Xm

j¼1

ðyjtðp; xÞ � ye
jtÞ

2¼
Xl

t¼1

Xm

j¼1

ðpp � rxbðxjtÞ � ye
jtÞ

2

(11)

Since this expression provides the definition of the residual error
it can be used to define the objective function J0 that when mini-
mized yields the unknown parameter vector p. As expected, the
individual objectives folded in Eq. (11) that are related to the each
individual output are satisfied as they are affected by the simulta-
neous presence of the rest of them.

If one assumes that linear constitutive behavior can approxi-
mate the behavior of a given system, it then follows from Eq. (4)
that âðxÞ must be a second order function of the components of x.
In that case, it is trivial to show that determination of Eq. (8) is re-
ducible to a problem involving the determination of the scalar
function Wðp; xÞ according to

J0 ¼ ðBp� �yeÞTðBp� �yeÞ¼
Xmþl

s¼1

Xn¼2

t¼1

Bstpt � �ye
s

 !2

(12)

where the overbar quantities correspond to the experimental val-
ues of the generalized work function corresponding to the inner
product of the input and output vectors of the original system.

The problem expressed by Eq. (12) can be solved by methods
based on the solution of normal equations (normal-equations
method), QR factorization, or singular value decomposition
(SVD) [50]. Selecting one of these methods to determine the
unknown model parameters can be a process that depends on
ranking these methods with regard to their performance in terms
of attributes or metrics that are important to the user. It has been
documented, for example, that the normal equation method is
computationally fast and requires less resources, but is less accu-
rate. In contrast, it is well known that SVD requires substantial
computational resources, but is more reliable and accurate than
other methods.

In all material characterization cases that follow, the material
parameters will be determined in a manner that follows this sec-
tion as a general template, in the sense of solving optimization
problems that minimize objective functions constructed as
described in this section.

The Case of One-Dimensional Material System

To introduce design optimization for material characterization
in a fashion of increasing complexity, we consider first a one-
dimensional system that possesses both linear recoverable and
nonlinear irrecoverable responses. The template approach that we
will employ first for this simple case and then for more realistic
cases is that of defining a strain energy density (SED) function
that governs the material behavior and indirectly contains the
actual constitutive behavior.

U1D ¼ UR
1DðS; eÞ þ UI

1DðS; bi; eÞ ¼
1

2
Se2

� �R

1D

þ Dðbi; eÞ
1

2
Se2

� �I

1D

(13)

where UR
1DðS; eÞ and UI

1DðS;bi; eÞ are the recoverable (elastic)
SED and the irrecoverable (inelastic or dissipated) SED,
respectively. The quantities S;bi; and DðS; bi; eÞ are the stiff-
ness constant (modulus of elasticity), the constants participating
in the dissipated energy coefficient function, and the dissipated
energy density coefficient function, itself, respectively. Equa-
tion (13) implies that the irrecoverable or dissipated strain
energy density (DSED) has been constructed to be a multiplica-
tive decomposition with weighting Dðbi; eÞ for the recoverable
SED according to:

UI
1DðC;bi; eÞ ¼ Dðbi; eÞUR

1DðS; eÞ (14)

The functional form of Dðbi; eÞ should be one that ensures energy
dissipation in a manner that yields a softening of nonlinear stress-
strain constitutive response. There are many forms that have this
property, based on transcendental functions, which have been
used in the past [47]. Here, we employ a functional form that can
be expanded in a Taylor-series. This functional form provides for
a polynomial representation that is a necessary condition for alge-
braic reducibility and is therefore convenient for algebraic trans-
formations. This form of the DSED, which is initially negligible
and then monotonically increasing, can be represented by the fol-
lowing physically consistent choice of Dðbi; eÞ

Dðbi; eÞ ¼ Dðm; ef ; eÞ ¼ 1� e�ð1=meÞ e=efð Þm (15)
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where b1 ¼ m and b2 ¼ ef are the two material parameters con-
trolling the dissipative nature of the material behavior. The expo-
nent m controls the level of nonlinearity involved in the model,
and ef expresses the level of failure strain. The series expansion of
�Dðm; ef ; eÞ defined by Eq. (15) yields

�Dðm; ef ; eÞ ¼
Xn

k¼1

ð�1Þk

k!

1

me

� �k e
ef

� �mk

(16)

Given Eqs. (16) and (13), it follows that Eq. (14) may be
expressed by

UI
1DðS;bi; eÞ ¼

1

2
S
Xn

k¼1

ð�1Þk

k!

1

me

� �k e
ef

� �mk

e2 (17)

A plot of the function defined by Eq. (17), normalized by the Elas-
tic constant S, is presented in Fig. 3 for m ¼ 4 and ef ¼ 0:0008.
Referring to Fig. 3, it can be seen that for more than two terms the
series expression gives essentially identical results to those of the
exact evaluation of DSED. It is interesting to note that the single
term expression is also in good agreement with the exact form.
Therefore, we can truncate all but the first term in Eq. (17) to
obtain

UI
1DðS; bi; eÞ ¼ �

1

2
S

1

me

� �
e
ef

� �m

e2 (18)

It follows then that Eq. (13) can be expressed

U1D ¼ UR
1DðS; eÞ þ UI

1DðS;bi; eÞ ¼
1

2
Se2 � 1

2
S

1

me

� �
e
ef

� �m

e2

(19)

According to Eq. (7), the corresponding constitutive law will be
given by

r1D ¼
@½UR

1DðS; eÞ þ UI
1DðS;bi; eÞ�

@e
¼ rR

1DðS; eÞ þ rI
1DðS; bi; eÞ

¼ Se� S
2þ m

2me

� �
emþ1

ef
m

� �
(20)

The resulting constitutive law contains the linear elastic part, as
expected, that is modified by a nonlinear inelastic term. An indica-
tive variation of total SED and its components (recoverable and
irrecoverable SEDs), as described by Eq. (19), are shown in Fig.
4(a). Figure 4(b) shows the corresponding stress distribution
defined by the constitutive law expressed by Eq. (20).

In the present formulation, the material parameters to be identi-
fied, or estimated based on experimental data, are the stiffness pa-
rameter, S, and the two dissipated energy parameters m and ef .

The results of applying design optimization for determining
these material parameters for 20 data points created synthetically
by using the material model defined Eq. (19) or (20) are shown in
Table 1 for three global optimization methods implemented by the
“NMinimize” function call in MATHEMATICA 7.0 [51]. The minimi-
zation was performed on the objective function defined by Eq.
(10), where Yk ¼ fU1d;kgT

and Ye
k ¼ fUe

1d;kg
T
, and therefore the

problem is a nonlinear optimization one. The methods utilized
were the Nelder Mead (also called downhill simplex method or
amoeba method nonlinear optimization technique, which is a
well-defined numerical method for twice differentiable and unim-
odal problems), the differential evolution (which optimizes a
problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality) and the Simulated Annealing
methods.

The criterion used by MATHEMATICA to exit from the optimiza-
tion loop is to make the numerical error in the result of size x be
less than 10�8ð1þ xj jÞ or reach 550 iterations except for the case
of simulated annealing that required a maximum iteration limit of
5000.

These results indicate that Nelder-Mead and differential evolu-
tion methods are able to determine the properties exactly, while
simulated annealing takes much longer and achieves less accurate
parameter determinations.

Fig. 3 Difference of 1- and 2-term approximations of normal-
ized irrecoverable or dissipated energy density as a function of
strain relative to the exact model

Fig. 4 Distribution of elastic, dissipated (or irrecoverable) and total SEDs for one-dimensional case (a) and corresponding
stress distributions as a function of strain (b)
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Composite Material System

For the general case of a composite material system, we con-
sider that a modified anisotropic hyperelastic strain energy density
function can be constructed to encapsulate both the elastic and the
inelastic responses of the material. However, certain classes of
composite materials reach failure after small strains and some
under large strains. For this reason, we give two examples, one
involving a small (infinitesimal) strain formulation (SSF) and
another involving a finite (large) strain formulation (FSF).

Small Strain Formulation. For the SSF, we introduce a SED
function that, in its most general form, can be represented as a
scaled Taylor expansion of the Helmholtz free energy of a de-
formable body, which is in terms of small strain invariants of the
form

USSFðI1; I2; I3Þ ¼ s0 þ s11I1 þ
1

2
s12I2

1 þ
1

3!
s13I3

1 þ
1

4!
s14I4

1

þ � � � þ s21I2 þ
1

2
s22I2

2 þ
1

3!
s23I3

2 þ
1

4!
s24I4

2

þ � � � þ 1

2
s13I2

3 þ
1

3!
s13I3

3 þ
1

4!
s14I4

3 þ � � �

þ 1

2
s1121I1I2 þ

1

3!
s1221I2

1I2 þ
1

3!
s1122I1I2

2 þ � � �

þ 1

2
s1131I1I3 þ

1

3!
s1331I2

1I3 þ
1

3!
s1133I1I2

3 þ � � �

þ 1

4!
s1321I3

1I2 þ
1

4!
s1221I2

1I2
2 þ

1

4!
s1123I1I3

2 þ � � �

(21)

where the invariants are defined by

I1 ¼ trðeÞ ¼ eii; I2 ¼
1

2
trðe2Þ ¼ 1

2
eijeij; I3 ¼

1

2
trðe3Þ ¼ 1

3
eijejkeki

(22)

The invariants are chosen to guarantee the a priori knowledge that
the SED as a scalar quantity must be invariant under frame refer-
ence translations and rotations. This follows in that the SED
should be objective (i.e., independent of the observer’s frame of
reference).

An additive decomposition of this expression in terms of a
recoverable and an irrecoverable SED can be expressed by

USSF ¼ UR
SSFðS; eijÞ þ UI

SSFðD; eijÞ (23)

Clearly, all the second order monomials of strain components will
be forming the recoverable part UR

SSFðS; eijÞ and the higher order
monomials will be responsible for the irrecoverable part
UI

SSFðD; eijÞ. The resulting constitutive law is be given by

rij ¼ @USSF=@eij

¼ @ðUR
SSFðS; eijÞ þ UI

SSFðD; eijÞÞ=@eij

¼ @USSF

@I1

@I1

@eij
þ @USSF

@I2

@I2

@eij
þ @USSF

@I3

@I3

@eij
(24)

A general expression which provides a strain-dependent version
of Eq. (23), is given by

USSF ¼ UR
SSFðS; eijÞ þ UI

SSFðD; eijÞ ¼
1

2
sijkleijekl þ dijklðeijÞeijekl

(25)

where sijkl are the components of the elastic stiffness tensor
(Hooke’s tensor) and dijklðeijÞ are strain-dependent damage func-
tions, which fully define irrecoverable or dissipated strain energy
density given by enforcing the dissipative nature of energy den-
sity. The quantity dijklðeijÞ is given by

dijklðeijÞ ¼ sijklð1� eð�ðeij/qijÞÞpij =ðepijÞÞ (26)

This is done in a manner analogous to that employed for the 1D
system described above. As in the 1D case, we perform an equiva-
lent series expansion and subsequently drop all terms except the
first, in that it captures almost all of the dissipative behavior.
Accordingly,

dijklðeijÞ ¼ sijkl

Xn

m¼1

ð�1Þm 1

epij

� �m eij
mpij

m!qij
mpij

¼ sijkl �
1

epij

� �
eij

pij

qij
pij
þ 1

epij

� �2 eij
2pij

2qij
2pij
� � � � þ

 !

’ �sijkl
1

epij

� �
eij

pij

qij
pij

(27)

Thus, the irrecoverable part of the energy in Eq. (23) becomes

UI
SSFðD; eijÞ ¼ UI

SSFðsijkl; pij; qij; eijÞ

¼ �sijkl
1

eð2þ pijÞpijqij
pij

eij
1þpijekl (28)

Next, substituting Eq. (26) into Eq. (23) yields

USSF ¼ UR
SSFðS; eijÞ þ UI

SSFðD; eijÞ

¼ 1

2
sijkleijekl � sijkl

1

eð2þ pijÞpijqij
pij

eij
1þpijekl (29)

Applying Eq. (22) on Eq. (27), and employing matrix [3] notation
for the case of a general orthotropic material, yields the constitu-
tive relation

rxx

ryy

rzz
rxz
ryz

rxy

2
666664

3
777775 ¼

sxxð1� �dxxÞ sxy sxz

sxy syyð1� �dyyÞ syz

sxz syz szzð1� �dzzÞ
sxzð1� �dxzÞ

syzð1� �dyzÞ
szzð1� �dxyÞ

2
6666664

3
7777775

exx

eyy

ezz
cxz
cyz

cxy

2
666664

3
777775 (30)

Table 1 Design optimization results for a nonlinear 1D material
system

Method Objective function CðGPaÞ m ef

Target values 0.00 130.00 4 0.0008
Nelder Mead �0.0000116825 130.00 4 0.0008
Differential evolution �4.29153 * 10�6 130.00 4 0.0008
Simulated annealing 134,234 131.21 3.1 0.000856
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where

�dij ¼
1

epijqij
pij

eij
1þpij (31)

All terms that are not shown in expression (30) are zero due to the
orthotropic symmetry requirements. Therefore, the material pa-
rameters are the nine elastic constants sij and the 6� 2 ¼ 12 dam-
age constants pij; qij for a total of 21 parameters. Clearly, when
the quantities �dij do not depend on the strains and they are con-
stant, Eq. (28) reduces to most of the continuous damage theories
given by various investigators in the past [46,52–55]. For a trans-
versely isotropic material, the number of material parameters
drops to 5þ 10¼ 15 for a 3D state of strain and to 4þ 8¼ 12 for
a plane stress state.

Finite Strain Formulation. The FSF can be written in a dou-
ble additive decomposition manner. The first being the decompo-
sition of the recoverable and irrecoverable SED, and the second
being the decomposition between the volumetric (or dilatational)
Wv and the distortional (or isochoric) Wd parts of the total SED.
For a material with two principal directions, this decomposition
can be expressed by [56]

USSF ¼ UR
SSFðai; J; �CÞ þ UI

SSFðai; bi; J; �CÞ
¼ ½WvðJÞ þWdð �C;A� A;B� BÞ�
� ½dvWvðJÞ þ ddWdð �C;A� A;B� BÞ� (32)

where ai;bi are the elastic and inelastic material parameters of the
system, respectively. A rearrangement of these decompositions,
such as the volumetric versus distortional decomposition, which
appears on the highest expression level, leads to an expression
introduced in Ref. [56], i.e.,

UFSF ¼ ð1� dvÞWvðJÞ þ ð1� ddÞWdð �C;A� A;B� BÞ (33)

with the damage parameters dk 2 ½0; 1�; k 2 ½v; d� defined as

dk ¼ d1ka 1� e � ak tð Þ=gkað Þð Þ
h i

(34)

where ak tð Þ ¼ maxs2½0;t�W
o
k ðsÞ is the maximum energy component

reached so far, and d1ka and gka are the two pairs of parameters con-
trolling the energy dissipation characteristics of the two compo-
nents of SED. In this formulation, J ¼ det F is the deformation
gradient, �C ¼ FT:F is the right Cauchy Green (Green deforma-
tion) tensor, A and B are the constitutive material directions in the
undeformed configuration, and A� A and B� B are microstruc-
ture structural tensors expressing fiber directions. Each of the two
components of SED are defined as

WvðJÞ ¼
1

d
ðJ � 1Þ2

Wdð �C;A� A;B� BÞ ¼
X3

i¼1

aið�I1 � 3Þi þ
X3

j¼1

bjð�I2 � 3Þj

þ
X6

k¼1

ckð�I4 � 1Þk þ
X6

l¼2

dlð�I5 � 1Þl

þ
X6

m¼2

emð�I6 � 1Þm þ
X6

n¼2

fnð�I7 � 1Þn

þ
X6

o¼2

goð�I8 � ðA � BÞ2Þ
o

(35)

where the strain invariants are defined as follows:

�I1 ¼ tr �C; �I2 ¼
1

2
ðtr2 �C� tr �C

2Þ

�I4 ¼ A � CB; �I5 ¼ A � �C
2
B

�I6 ¼ B � CB; �I7 ¼ B � �C
2
B; �I8 ¼ ðA � BÞA � �CB (36)

The corresponding constitutive behavior is given by the second
Piola-Kirchhoff stress tensor according to [52]

S ¼ 2
@UFSF

@C
(37)

or the usual Cauchy stress tensor according to

rFSF ¼
2

J
F � @UFSF

@C
� FT (38)

Note that both of the last two relations follow the general form
described in Eq. (5). Under the FSF formulation, the material char-
acterization problem involves determining the 36 coefficients (at
most) of all monomials when the sums in the expression of distor-
tional SED are expanded in Eq. (15), in addition to the compressi-
bility constant d and the four parameters used in Eq. (14). It fol-
lows that potentially there can be a total of 41 material constants.

Numerical Results

For the purpose of demonstrating numerically the aforemen-
tioned concepts, the material selected for generating the necessary
simulated experimental data is a typical laminate constructed
from an epoxy resin/fiber laminae system of type AS4/3506-1.
The elastic moduli of this material are listed in Table 2 according
to several sources [3,54,57–62].

Clearly, what is considered to be a set of material constants
varies widely as it really depends on the fiber volume fraction, the

Table 2 Engineering properties of AS4/3506-1 laminae

Ref E11 (GPa) E22 (GPa) E22 (GPa) v12 v23 v13 G12 (GPa) G23 (GPa) G13 (GPa)

[3] 147.0 10.3 10.3 0.27 0.28 0.27 7.0 4.04 7.0
[54] 142.0 9.8 9.8 0.30 0.34 0.30 6.0 3.77 6.0
[57] 135.0 9.0 9.0 0.28 0.28 6.9 6.9
[58] 138.0 9.7 9.7 0.30 0.49 0.30 5.24 3.24 5.24
[59] 139.3 11.1 11.1 0.30 0.40 0.30 6.0 3.964 6.0
[60] 150.0 8.0 8.0 0.30 0.30 5.0 5.0
[61] 147.0 10.3 10.3 0.27 0.27 6.89 6.89
[62] 142.0 10.3 10.3 0.27 0.27 7.2 7.2
Min 135.0 8.0 8.0 0.27 0.28 0.27 5.0 3.24 5.0
Avg. 142.5 9.8 9.8 0.29 0.30 0.29 6.279 3.753 6.279
Max. 150.0 11.1 11.1 0.30 0.49 0.30 7.2 4.039 7.2
Deviation (%) 11.1 38.8 38.8 11.1 78.2 11.1 44.0 24.7 44.0
Avg. cons. 142.5 9.81 9.81 0.29 0.30 0.29 6.279 3.769 6.279
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fiber coating, and the manufacturing process of the fiber, resin,
and composite. As can be seen from the bottom of the entries of
the table where we added some statistical observations, % devia-
tion observed varies from 11.1% to 78.2%. It is therefore impor-
tant to identify the set of elastic material properties before and af-
ter a batch of new material is manufactured or before a material
system is used for design, material qualification, or material certi-
fication. To demonstrate the usage of the SSF in conjunction with
design optimization, we present here an example of using real
data form a multiaxially loaded specimen from a test conducted
by utilizing NRL66.3. The model characteristics of the specimen
used are presented in Fig. 5, where on the left, the discretization
model and potential boundary conditions are depicted, and on the
right, a detail at the area of the left notch shows a stacking of
[þ 60, �60]16 with each lamina made out of AS4/3506-1.

Two objective functions were constructed. Both utilized the
fact that through the REMDIS-3D software, developed by our group,
one can obtain full field measurements of the displacement and
strain fields over any deformable body [24–28]. The mesh-free
representation of the displacement and strain fields throughout the
entire field of view allows the calculation of the experimentally
measured values at any point on the specimen surface, including
the nodal points of the FEM analysis utilized for the forward com-
putation of the direct problem embedded in the optimization loop.
Our software has the capability of accepting the nodal coordinate
specification generated by the FEA as a definition for exporting
the required quantities at these points. Thus, our experimental
measurements for the formation of the objective functions were
chosen to be the strains at the nodal points of the discretization
shown Fig. 5. The first objective function chosen was based
entirely on strains and is given by

Je ¼
XN

k¼1

X2

i¼1

X2

j¼i

½eexp
ij �k � ½e

fem
ij �k

� � !2

(39)

and the second objective function is given in terms of surface
strain energy density according to

JU �
þ
@X

Uexp � Ufem
	 
2

dS

�
þ
@X

X2

i¼1

X2

j¼i

X2

m¼1

X2

n¼m

ðsijmne
exp
ij eexp

mn � sijmne
fem
ij efem

mn Þ
 !2

dS

2
4

3
5

(40)

where ½eexp
ij �k and ½efem

ij �k are the experimentally determined and the
FEM produced components of strain are at node k. The quantities

Uexp and Ufem are the values of the surface strain energy density
formulated by using the experimental strains and the FEM pro-
duced strains, respectively.

It is worthwhile to mention here that, because it is not experi-
mentally possible to obtain through-thickness strain data, with any
full field strain measurement method, we formulated the objective
functions only in terms of the surface strains as is evident by the
fact that the indices in Eqs. (38) and (39) do not take the value 3
to account for the through-thickness components of strain.

The formal optimization problem for all objective functions in
the present work, can be stated as follows:

min JðsijnmÞ (41a)

subject to gkðsijnmÞ 	 0; k ¼ 1; 2;…;K (41b)

hlðsijnmÞ ¼ 0; l ¼ 1; 2;…; L (41c)

sL
ijnm 	 sijnm 	 sU

ijnm; i; j; n;m ¼ 1; 2; 3 (41d)

where the design variables sijnm should be considered as the mate-
rial parameters to be determined and where Eqs. (41b) and (41c)
express potentially active inequality and equality constraints,
respectively, and Eq. (41d) expresses the design space bounding
constrains.

For our case throughout the present paper, there are no physi-
cally or mathematically justified constrains. However, since we
know the class of materials we are involved with, we can select
bounding domains that are justified on the basis of their positive
definiteness (for all SSF parameters) and reasonable selections for
low and upper bounds selected strictly to reduce the numerical
search time of the used optimizers.

An implementation of this optimization for both objective func-
tions was applied by using the DIRECT global optimizer [63],
which is available for MATLAB [64], and a custom developed
Monte-Carlo optimizer as described in Ref. [65], also imple-
mented in MATLAB. The DIRECT global optimizer was signifi-
cantly slower than the Monte Carlo and therefore here we are
reporting the results of the Monte Carlo optimizer. Since the
results from implementing both objective functions were virtually
identical here we are reporting only those corresponding to Eq.
(38). The convergence criterion for exiting the optimization loop
was JU < 2e� 6 and the optimization was completed after 1562
evaluations in about 11 h. The calculation of the objective func-
tion integral was done on 2493 nodes and the forward part of the
calculation was implemented on ANSYS Mechanical [66].

The loading conditions applied for the moveable edge of the
specimen were ux ¼ 0 ½m�, uy ¼ 0:0005 ½m�, uz ¼ 0:001 ½m�,
rx ¼ 0 ½rad�, ry ¼ 0 ½rad�, rz ¼ 0 ½rad�. The bounds of the design
variables (engineering constants) were E11;E22 2 ½1e9; 5e11� Pa,

Fig. 5 Discretization and boundary conditions of typical specimen used for material characteri-
zation (a) and detail of FEA model near one of the notches (b)
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�12; �23 2 ½0:1; 0:9�, and G12 2 ½5e8; 5e10� Pa. A preliminary sen-
sitivity analysis on the potential bounds suggested that neither the
optimization performance nor accuracy are greatly affected by
this choice, as long as their values are sensible.

In Fig. 6, we can see the experimentally acquired distribution
of eyy (left) and the corresponding distribution produced from
FEM analysis for the five identified unique elastic constants,
which are shown in Table 3, in comparison to those of Ref. [3].

For the case of the FSF, a two stage optimization was per-
formed. In the first stage, we determined the values of the coeffi-
cients of the strain invariant monomials in Eq. (35) such that the
FSF matches the SSF by constructing and minimizing an objective
function of the form

JURFðd;a1;b1;c1;d1Þ �
þ
@X

UR
FSF�UR

SSF

	 
2
dS

�
þ
@X

X2

i¼1

X2

j¼i

X2

m¼1

X2

n¼m

UR
FSF�UR

SSF

	 
 !2

dS

2
4

3
5

(42)

This was done is order to establish the proper parameters of the
FSF model that match the SSF model.

In the second stage, the material parameters encoding the dam-
age behavior of the FSF were determined through the minimiza-
tion of the objective function

JUFðd; a1; b1; c1; d1; d
1
a ; gaÞ

�
þ
@X

U1
FSF � U2

FSF

	 
2
dS

�
þ
@X

X2

i¼1

X2

j¼i

X2

m¼1

X2

n¼m

U1
FSF � U2

FSF

	 
 !2

dS

2
4

3
5 (43)

where U1
FSFð�d; �a1; �b1; �c1; �d1; �d1a ; �gaÞ is the SED of the FSF for the

parameters �d; �a1; �b1; �c1; �d1 computed from the previous step of

matching the FSF with the SSF. The parameters �d1a and �ga were
chosen arbitrarily to be some values that can capture nonlinearity
due to damage. This complete set of parameters represents the
known target model of the material as shown in the second row of
Table 4. The unknown constitutive model was chosen to be repre-
sented by another FSF SED, namely U1

FSFðd; a1; b1; c1; d1; d
1
a ; gaÞ.

The bottom row of Table 4 shows the parameters determined by
minimizing the objective function in Eq. (43) via a Monte-Carlo
global optimizer.

The convergence criterion for exiting the optimization loop was
JUF < 2e4 and the optimization was completed after 2748 evalua-
tions in about 29 h. The calculation of the objective function inte-
gral was done also on 2493 nodes.

The bounds of the design variables (engineering constants)
were d 2 ½1e� 6; 1e� 7�, a1; b1 2 ½1e2; 1e4�, c1 2 ½1e2; 1e4�,
e1 2 ½�1e4; 1e4�, d1a 2 ½0:3; 1:0�, and ga 2 ½1:0; 2:0�.

It should be noted that since energy-conforming limits have not
been established for the parameters of the FSF model, a penalty
factor was introduced in the optimizer for the cases the energetic
formulation in the FEA was nonconforming.

For this case, the evolution of the objective function versus iter-
ation steps is shown in Fig. 7.

An indication of how well the FSF can capture the SSF, for the
case of the recoverable (linear elastic) regime, is shown in Fig. 8,
where the distribution of eyy is shown for both models for a case
of combined torsion and tension of the specimen. In addition, a
comparison of load versus strain evolution, for a point in front of
the first of two notches, is shown in Fig. 9.

Conclusions and Discussion

In an effort to provide an overview of mechatronically and
computationally automated research, we have demonstrated the
application of design optimization methodologies for the determi-
nation of the constitutive response of composite materials with or
without damage. Strain energy density and a custom developed
mesh-free full field strain measurement based approaches have
been utilized to incorporate massive full field strain measurements
from specimens loaded by a multiaxial custom-made loading
machine. We have formulated objective functions expressing the
difference between the experimentally observed behavior of com-
posite materials under various loading conditions, and the simu-
lated behavior via FEA, which are formulated in terms of strain
energy density functions of a particular structure under identical
loading conditions.

Two formalisms involving small strains and finite strains have
been utilized in a manner that involves both additive decomposi-
tion of recoverable and irrecoverable strain energy densities. This
was done in order to address both the elastic and inelastic

Table 3 Engineering properties of AS4/3506-1 laminae

Ref E11 (GPa) E22 (GPa) v12 v23 G12 (GPa)

Daniels [3] 147.0 10.3 0.27 0.28 7.0
Present 125.0 10.8 0.27 0.32 7.96

Table 4 FSF parameters of AS4/3506-1 laminae with damage

Model d a1 b1 c1 e1 d1a ga

Target 0.00007012 1611 713 29212 -458.7 0.9 1.8
Identified 0.00006987 1613 721 29105 -449.3 0.92 1.979

Fig. 7 Decay of the objective function versus iteration number

Fig. 6 Distributions of the vertical component of strain (eyy) as
determined experimentally via MRGM (a) and the correspond-
ing matched distribution of the numerical model as it was pro-
duced by FEA (b) for the purpose of determining the five elastic
constants of AS4/3506-1 composite lamina material
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response of composite materials due to damage. The finite strain
formulation further involves an a priori volumetric and distor-
tional energy decomposition.

Demonstrations have been given in terms of numerical exam-
ples utilizing both synthetic and actual data in determining both
the elastic and inelastic material parameters.

We are currently working in extending these energy formula-
tions to approaches that achieve two main goals. First, focus on
approaches that do not require FEA in the loop, and second, on
approaches that incorporate the stochastic nature of the material
response and the acquired data in a manner that quantifies uncer-
tainty. This quantification should utilize prior knowledge via
Bayesian based stochastic formalisms, which enable incremental
and recursive algorithms based on Kalman filtering and in general,
information theory.
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