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Finite element analysis is used to simulate cone indentation creep in materials across a
wide range of hardness, strain rate sensitivity, and work-hardening exponent. Modeling
reveals that the commonly held assumption of the hardness strain rate sensitivity (mH)
equaling the flow stress strain rate sensitivity (ms) is violated except in low hardness/
modulus materials. Another commonly held assumption is that for self-similar indenters
the indent area increases in proportion to the (depth)2 during creep. This assumption is
also violated. Both violations are readily explained by noting that the proportionality
“constants” relating (i) hardness to flow stress and (ii) area to (depth)2 are, in reality,
functions of hardness/modulus ratio, which changes during creep. Experiments on silicon,
fused silica, bulk metallic glass, and poly methyl methacrylate verify the breakdown of
the area-(depth)2 relation, consistent with the theory. A method is provided for estimating
area from depth during creep.

I. INTRODUCTION

Materials scientists have long relied on indentation
creep to study rate-sensitive deformation in solids.1–3

Although not as straight-forward to analyze and inter-
pret as the more conventional uniaxial creep experi-
ment, the indentation test is nevertheless easier to
perform, especially when the specimen is too small to
grip for uniaxial testing. Over the years the great
majority of work in indentation creep has been per-
formed at high homologous temperatures where the
yield stress is a small fraction of the Young’s modulus.
These kinds of experiments have motivated theoretical
treatments to address the relationship between indenta-
tion and uniaxial creep under conditions where the

elastic deformations are small and therefore relatively
unimportant.2,4–6

This research is motivated by the desire to investi-
gate low-temperature, rate-sensitive deformation in high
hardness/modulus (H / E*) materials like refractory coat-
ings and bulk metallic glasses (BMGs). Although one does
not normally think of hard materials as creeping at low
temperatures, such materials do exhibit time- and temper-
ature-dependent flow behavior near the yield stress, and
this behavior carries within it information about the defor-
mation mechanisms.7 The time-dependent behavior is
readily manifested in an indentation hardness test, which
thereby offers an experimenter the unique capability to
study deformation kinetics in hard, brittle materials
because it can produce deformation without fracture.

This investigation differs from the earlier theoretical
studies on low H / E* materials because in the materials
now under consideration, the elastic components of the
deformation can be quite large. For low H / E* materials,
the indentation creep properties are not sensitive to mod-
ulus, so the modulus can be neglected in a theoretical
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analysis. For high H / E* materials modulus effects must
be taken into account for a proper analysis.

In experimental studies of indentation creep it is often
assumed that the strain rate sensitivity of the hardness
(mH) equals that of the flow stress (ms) and that the
square root of the projected area of the indent,

ffiffiffi
A

p
, in-

creases in proportion to indentation depth, hi, defined in
Sec. II, during creep (e.g., Refs. 8 and 9). These key
assumptions lead to a convenient, closed-form solution
for the depth as a function of time, thereby allowing the
experimenter to back out the material parameter ms

from a depth-versus-time trace. However, there is no
theoretical justification for such assumptions. In this
work, we therefore test them using a combination of
finite element analysis and nanoindentation experiments
on high H / E* materials.

II. PRELIMINARIES

There are different ways of controlling the indenter to
measure rate-sensitive deformation. In indentation creep
the indenter is first driven into the specimen to a
predetermined load or depth, and the load is then held
constant for a period of time prior to unloading. During
the hold the indenter continues to penetrate, and as it
does the area of the indent increases, so the hardness
drops. As the hardness drops, the rate of penetration
decreases, and in this way the experiment sweeps out a
spectrum of hardness versus indentation strain rate, the
slope of which on a log–log scale gives mH. Other
methods for measuring mH include indentation load
relaxation,10 in which the depth is held fixed and the load
is allowed to relax; indentation rate-change, in which the
specimen is first loaded at one rate and then partially
unloaded, then reloaded at a second rate11; and constant
indentation strain rate that measures the hardness at fixed
_L=L, where L is the load.12 In the Appendix, we construct
an analysis to handle creep and load relaxation. Because
the constant load creep test is the easiest and most com-
monly used experiment, the remainder of the work
focuses exclusively on this experiment. Under some
conditions at least, indentation creep, indentation load
relaxation, and indentation rate-change give the same
results.11

A schematic load-depth trace from an indentation
creep experiment is shown in Fig. 1. During the loading
and constant load creep portions of the experiment, the
instantaneous hardness, H, is defined as the instanta-
neous load divided by the instantaneous projected con-
tact area,

HðtÞ ¼ PðtÞ
AðtÞ : ð1Þ

An indentation strain rate, _eH, can be specified based on
any dimension of the indent that increases with time; we use

_eH ¼ d ln
ffiffiffi
A

p

dt
: ð2Þ

The strain rate sensitivity of the hardness is

mH ¼ @ lnH

@ ln _eH

����
hp

; ð3Þ

where the derivative is taken at fixed depth to eliminate
the effects of an indentation size effect, if any.11,13 In
indentation creep the results of the analysis for strain rate
sensitivity do not depend appreciably on which character-
istic length of the indent (e.g., total depth, square root of
area) is used to define strain rate.14 However, for indenta-
tion load relaxation in which _ht = 0 even though plastic
deformation is taking place, it makes more sense to useffiffiffi
A

p
for the basis for calculating strain rate.

For comparison, the strain rate sensitivity of the flow
stress is defined as

ms ¼ @ lns
@ ln _e

����
e

; ð4Þ

where ms can be measured in tension, compression, or
shear using a rate-change or load relaxation experiment.
Fixing the strain during the experiment helps to ensure
that the strain rate sensitivity is isostructural, which
means that increases in flow stress caused by work hard-
ening are excluded in the measurement.
From Eqs. (1) and (2) it should be evident that for an

accurate analysis of creep data the growth of the area of
the indent during creep must be identified. One way to

FIG. 1. Load–depth curve illustrating constant load creep along

with the different definitions of indentation depth: h0t , h
0
c , and h0p

are the total, contact, and plastic depths, respectively, at the end of

creep. These parameters can be measured directly from a load-

depth trace. At any time during or before creep, the instantaneous

values are ht, hc, and hp. These, along with the instantaneous

contact area, may be estimated based on the analysis presented in

this work.
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do this is to use the dynamic stiffness method in which a
small alternating current (ac) signal is superimposed on
the applied load to allow the stiffness of contact, which
is proportional to

ffiffiffi
A

p
, to be determined continuously

throughout the experiment.15 We shall use this method
for some of the experiments on fused silica described
below. Another way to determine A(t) during creep is to
estimate it from the load-depth-time trace. Stone and
Yoder11 proposed a method for performing this esti-
mate. With their method the total depth of indentation
(ht) is separated into plastic (hp) and elastic (he) compo-
nents following the Doerner and Nix16 approach of
extrapolating the top portion of the unloading curve
directly back to zero load (Fig. 1). The area of the
indent is assumed to be a function of plastic depth: A =
A(hp). Although for the vast majority of nanoindentation
studies the Doerner–Nix definition of plastic depth has
been superceded by the Oliver–Pharr17 contact depth,
hc, there is no fundamental reason why hp cannot be
used as the basis for calculating areas, and our experi-
ments suggest that hp might often be better for analyzing
creep than hc. Even the total depth, ht, can be used as a
basis for estimating A(t). The main differences between
using the different depth measures to estimate area
arise from the different ways elastic displacements are
subtracted out in the analysis. In our analysis these dif-
ferences are rigorously handled through the power law
exponents zi (i = t, p, c) introduced below.

The different depth measures are illustrated in Fig. 1.
The values of these parameters, h0t , h

0
c, and h0p, at the

end of the constant load portion, can all be obtained
directly from the unloading portion of the load–depth
curve. The corresponding instantaneous ht, hc, and hp
(inset) are defined based on the assumption that the
unloading slope could be measured if the test were
interrupted. In the absence of stiffness measurements
to determine the instantaneous area during indentation
creep, the trick to analyzing indentation creep is then to
estimate this area based on instantaneous ht, hc, or hp in
Fig. 1. In turn, hc and hp cannot be measured directly,
but must themselves be estimated using methods
derived in the Appendix. At constant hardness the area
scales in proportion to the square of each of ht, hc, and
hp. But during a creep test the hardness changes with
depth, so the proportionality breaks down. In the new
terminology, the exponents relating

ffiffiffi
A

p
to the different

hi at constant load are called zi, and these generally
differ from 1.

In the Appendix, we revise the earlier analysis.11

Guided by the results of finite element modeling
described in Sec. III, (i) we no longer require for

ffiffiffi
A

p
to

increase directly proportional to depth for cone- and pyr-
amid-shaped indenters, but instead by a power law; and
(ii) we expand the original analysis based on hp so that hc
and ht, too, can be used to determine A(t).

III. FINITE ELEMENT ANALYSIS SIMULATIONS

The finite element simulations have been reported
in detail elsewhere.14 These simulations used the elasto-
plastic features of ABAQUS finite element code (Simulia,
Warwick, RI) to model the penetration of a conical
indenter into a substrate. The indenter and solid were
modeled as bodies of revolution to take advantage of axi-
symmetry. The indenter was a perfectly rigid cone with an
inclined face angle of 22.5�. The sample was modeled as a
semi-infinite, elastic–plastic von Mises material, using
quadrilateral axisymmetric four-node isoparametric ele-
ments. Meshes were generated using GENMESH2D, and
multipoint constraints (MPCs) were created using
GENMPC2D. The mesh was further refined in regions
near the edge of contact to minimize the discrete dis-
placement effects during relaxation.

The contact between indenter and sample was modeled
as having a friction coefficient, m, varying from 0.0 to
0.5.18 To simulate a variety of material behaviors we
adopted a strain-hardening creep law given by

_ecr ¼ ðksn½ðmþ 1Þecr�mÞ 1
mþ1 ; ð5Þ

where n, m are the stress and the strain exponents.
k is a rate parameter. By adjusting k while keeping
n and m constant, it is possible to tailor the hardness
of the material while maintaining a fixed strain rate
sensitivity [ms ¼ (m þ 1)/n] and work-hardening expo-
nent (w ¼ �m / n). This constitutive relation can obvi-
ously model steady-state power law creep (m = 0); it
can also model other behaviors over modest ranges of
strain rate in situations where the strain rates can be
approximated as power law functions of stress. The
reason for including strain hardening in the constitutive
model is to identify whether it influences mH.

14

The indentation process was simulated in four sequen-
tial steps. In the first step, contact between indenter tip
and sample was established. Next, the indenter was
pushed into the sample under a load that increased para-
bolically throughout 1 s. In the third step, the load on the
tip was held constant for 2 to 3 s (this is the indentation
creep portion of the experiment). The last step consisted
of pulling the indenter out of the sample over a period of
about 1 s.

The hardness versus strain rate curves generated for
materials with the same strain rate sensitivity ms (same
m, n) but with different hardness (different k) are shown in
Fig. 2. The slopes of the curves, which correspond to mH,
are all different, leading us to conclude that in general
mH 6¼ ms. Nevertheless, the slopes approach ms as the
hardness decreases, and we find that the ratio of mH / ms

is a unique function of H / E* and is independent of
the other material properties as shown in Fig. 3. The data
in Figs. 2 and 3 are taken from simulations with friction-
less indenter-specimen contact; the addition of friction,
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however, does not appreciably affect the results.18 The
continuous curve in Fig. 3 is an empirical fit of the data
given by

mH=ms ffi 0:91� 0:057arctan
logðx=28:2Þ

0:2

 !" #

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=0:21Þ2

q
; ð6Þ

where x = H / E*. Using Eq. (6), it is possible to correct a
measurement of mH to obtain ms.

With finite element analysis it is possible to calculate
H(t) using the load and area as direct outputs of the
simulations. In a real experiment only the load and depth
can be measured directly, and the area must be deter-
mined indirectly. Dynamic stiffness measurements can
be used to determine the area19; but experimenters usu-

ally estimate the change in area during creep based on an
increase in depth, assuming that the area is proportional
to the square of depth.8,9 This latter practice is open to
dispute. For instance, Rar and coworkers20 have reported
that the area-(depth)2 law is violated during creep, an
assertion that is supported by our work. We define the
parameter zi ¼ @ ln

ffiffiffi
A

p
=@ ln hi Pj , where hi is the measure

of depth being used to estimate area. In practice, it is
possible to use total measured depth, ht, plastic depth,
hp,

16 or contact depth, hc to estimate the area during
creep.17 A plot of the zi determined from simulations of
different materials at zero friction is shown in Fig. 4.
Interestingly, all of the data fall along master curves,
but only for low H / E* do all of the zi approach 1. For
H / E*5 0.04 zp is closest to 1 (approximately 1.03). For
hardness higher than 0.04E*, zc is closest to 1.

IV. DISCUSSION OF FINITE ELEMENT ANALYSIS
SIMULATION RESULTS

Finite element analysis reveals that the strain rate sen-
sitivity of the hardness, mH, differs from that of the flow
stress, ms, except at low H / E* (Fig. 3). It also reveals
that for constant load creep with a cone-shaped indenter,ffiffiffi
A

p
increases in proportion to the depth hp, hc, or ht,

raised to a power other than 1, in contrast to what one
might anticipate given the self-similar geometry of the
indenter (Fig. 4). The significance of these two results
is that the measurement of rate-sensitive deformation in
hard materials is more complicated than a simplistic
analysis might suggest. Fortunately, both results are
systematic and easy to understand, so that it remains
possible to work around them in the analysis and inter-
pretation of indentation creep data.

FIG. 2. Hardness-strain rate data generated from computer simulations

employing finite element analysis. The units of k are GPa�5 s�0.8.
FIG. 4. Exponents relating

ffiffiffi
A

p
to depth (ht, hp, hc) during indentation

creep. The solid lines are empirical (spline) fits. Based on the theory

presented in the paper, these curves can be algebraically manipulated

and integrated to construct the theory curves in Fig. 5.

FIG. 3. Effect of hardness level on strain rate sensitivity of the hardness.
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The trend in mH / ms, Fig. 3, is independent of work
hardening and strain rate sensitivity14 as well as fric-
tion.18 Instead, the trend is primarily caused by the pro-
portionality factor between hardness and flow stress, i.e.,
k in H ¼ kseff, which is not a constant but depends
instead upon the ratio seff / E* (see, e.g., Ref. 21). Our
previous analysis14 shows that in a creep test, as the flow
stress beneath the specimen evolves due to changes in
deformation rate, so does the ratio k. Kermouche and
coworkers22,23 have independently arrived at a similar
conclusion. The changes in hardness that take place dur-
ing indentation creep are therefore related not only to
changes in seff but also to changes in k. Working with
logarithms, we may designate these changes as

D lnH¼D lnseff þD lnk¼ð1þ d lnk

d lnðseff=E�ÞÞD lnseff :

ð7Þ

For low seff / E* materials, k is independent of seff / E*,
in which case D ln H ¼ D ln seff. In this instance mH ¼
ms. For elastic materials with H / E* approaching 0.21
in simulations for the cone geometry, the hardness be-
comes proportional to E* rather than seff, so that the
second term in parentheses in Eq. (7) approaches �1, in
which case D ln H (and therefore mH) goes to zero.

In a hardness measurement with a pyramid- or cone-
shaped indenter, the average strain rate beneath the
indenter is proportional to _eH as defined above, and the
average strain is proportional to the tangent of the angle
between indenter and specimen surface.24,25 Earlier
results suggest that these other proportionality factors,
like k, also depend on H / E*, and that to account for the
detailed shape of the mH / ms curve in Fig. 3 it is neces-
sary to take them into account.14 Nevertheless, the over-
all tendency of mH / ms to approach zero at high H / E*
in Fig. 3 is simply because the higher hardness materials
are becoming increasingly elastic so that the right side of
Eq. (7) approaches zero.

Likewise, the trends in the different zi, Fig. 4, can
also be explained by noting how the elasticity of the
solid affects the ratios of

ffiffiffi
A

p
=hi. For instance, we may

suppose ffiffiffi
A

p
¼ Cihi ði ¼ t; p; or cÞ ; ð8Þ

where the Ci depend on H / E*. Because H changes
during a creep experiment, so do the Ci. Working with
logarithms, we identify the change in

ffiffiffi
A

p
as arising from

both a change in depth and a change in H / E*:

D ln
ffiffiffi
A

p
¼ d lnCi

d ln ðH=E�ÞD lnH þ D ln hi : ð9Þ

At constant load D ln H ¼ �2 D ln
ffiffiffi
A

p
; algebraic

manipulation of Eq. (9) leads to

d lnCi

d ln ðH=E�Þ ¼
1

2

1

zi
� 1

� �
: ð10Þ

To verify this relationship, we show data of Cp, Ct, and
Cc in Fig. 5. These data were generated by taking the
ratios of

ffiffiffiffiffi
A0

p
at the end of creep to the depths at the end

of creep (i.e., h0t ; h
0
c ; h

0
p) from all of the different simula-

tions. The lines in Fig. 5 for Ci-versus-H / E* (“theory”)
have been generated by taking spline fits of the zi-versus-
H / E* data (lines in Fig. 4), then incorporating them into
Eq. (10) and integrating. Our ability to accomplish this
feat proves that values of zi in Fig. 4 come from the
trends in Ci with hardness. Interestingly, there is a signif-
icant amount of scatter in the Ci for small H / E* in
Fig. 5. This scatter is due to the influence of pileup,
which is sensitive to the work hardening and strain rate
sensitivity properties of the materials in addition to the
ratio H / E*.26 In comparison there is relatively little
scatter in zi for low H / E*, which suggests that while
pileup might affect the ratio Ci, pileup has little effect on
the derivative d ln

ffiffiffi
A

p
=d ln hp for cone-shaped indenters.

This result suggests that the Ci can be written as a prod-
uct of functions, one depending solely on H / E*, and the
other depending on other parameters such as friction and
the work hardening and strain rate sensitivity exponents.
We conclude that for indentation creep at constant load,
the deviations of the zi away from 1 are caused by the
changes taking place in Cp, Ct, and Cc as hardness is
lowered during creep.

The Appendix provides mathematical formulas for
estimating instantaneous area during creep. For instance,
with formulas (A5) and (A3) (i = p) it is possible to
calculate the area from a load-depth trace provided that

FIG. 5. Proportionality factors relating
ffiffiffi
A

p
to depth (ht, hp, hc) at

constant hardness, from simulated hardness tests on different mate-

rials. The theory lines are calculated from the lines in Fig. 4 with the

help of Eq. (10).
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zp is known. Likewise, Eq. (A3) (i = t) can be used if zt is
known, and Eqs. (A7) and (A3) (i = c) can be used if zc is
known. The different zi can, in turn, be garnered either
from theory (e.g., Fig. 4) or by fitting the area–depth
curves generated from these formulas to experimental
data. The formulas based on different zi are equivalent;
the choice of which to use is up to the discretion of the
practitioner. Using zt and Eq. (A3) is the simplest ap-
proach from a computational standpoint.

The Appendix formulas have been derived using first
order Taylor series approximations, so it helps to test
them by comparing them with the output of finite ele-
ment analysis simulations. For the purpose of illustration
we use the method that uses zp. In this case for formulas
(A5) and (A3) to be useful they should be able to repli-
cate the area-depth profile when zp is used as a fitting
parameter. Furthermore, the best fit zp-value should
agree with the zp-value generated directly from finite
element analysis output (Fig. 4). Comparisons are shown
in Fig. 6 for two materials. Curve A is from a relatively
elastic material (H / E* � 0.15; n = 0.5, m = �0.2), while
curve B is for a relatively plastic material (H / E* �
0.015; n = 3.75, m = �0.4). From the load-depth traces
(inset) the relevant parameters for A are P0 = P = 6.51 �
10�5 N, 1 / A0 Eeff = 8472 N/m, h0p = 12.8 nm, and h0t =
20.5 nm. For B they are P0 = P = 8.03 � 10�6 N, 1 / A0

Eeff = 9379 N/m, h0p = 15.2 nm, and h0t = 16.1 nm. The
best fit values of zp are 0.73 and 1.03 for materials A and
B, respectively. If substituted into Eqs. (A5) and (A3) the
best fit parameters give

hp
h 0
p

¼ 2:838
ht
h 0
t

� �
� 1:838 ; ðA5AÞ

and

A

A0
¼ hp

h 0
p

 !1:46
; ðA3AÞ

for material A; and

hp
h 0
p

¼ 1:121
ht
h 0
t

� �
� 0:121 ; ðA5BÞ

and

A

A0
¼ hp

h 0
p

 !2:06
; ðA3BÞ

for material B. The formulas, represented by the dots in
Fig. 6, work remarkably well in their ability to replicate
the area–depth curves. Furthermore, the best fit values of
zp are close to the values of 0.71 (Material A) and 1.04
(Material B) generated directly as output from the finite
element analysis simulations, Fig. 4. We conclude that
formulas (A3) and (A5) are accurate enough to handle
large changes in area without having to rely on unreason-
able values of zp to do so.

V. EXPERIMENTS INVESTIGATING THE
AREA-DEPTH RELATION DURING CREEP

Indentation creep experiments were performed to
evaluate the zi for comparison with finite element analy-
sis predictions, Fig. 4. Materials studied included a BMG
Zr45Cu48Al7, poly methyl methacrylate (PMMA), fused
silica, and (100)-silicon. All of these have high H / E*
ratios. With the exception of silicon, all lack an indenta-
tion size effect, and even in silicon the size effect is
weak. Yielding in amorphous solids is known to be pres-
sure sensitive (e.g., Refs. 27 and 28), so the BMG,
PMMA, and fused silica all violate the von Mises
assumption of our finite element model. It is not known
how this difference might affect the behavior.
The BMG specimen was made by casting a 3-mm-

diameter ingot in a vacuum apparatus from pure compo-
nents. The glassy nature of the specimen was verified by
differential scanning calorimetry, XRD, and dark-field
transmission electron microscopy. Its surface was ground
and polished to 0.01-mm alumina29 prior to testing. The
PMMA specimen was a nanoindentation standard
obtained from Hysitron Inc. (Minneapolis, MN) and was
tested in the as-received condition. Fused-silica calibra-
tion standards were obtained from MTS (Oak Ridge, TN)
and Hysitron, and the silicon wafer was obtained from
Polishing Corporation of America (Santa Clara, CA).

FIG. 6. Instantaneous area versus depth curves generated from finite

element analysis. (A0 and h0t are, respectively, the area and depth at

end of creep.) The solid lines are obtained directly from the output

based on radius of contact. The data points (most of which have been

omitted for clarity sake) are obtained indirectly based on the approxi-

mations in Eqs. (A5) and (A3). The arrows point to the beginning of

the constant load portion of the area-depth trace.
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Most of the testing was performed on a Hysitron
Triboindenter. Using this instrument, we subjected the
BMG, PMMA, fused silica, and silicon specimens to a
novel kind of experiment that we call broadband
nanoindentation creep (BNC).29 With BNC it is possible
to obtain hardness-strain rate data spanning 4–5 decades
of strain rate from a single indent. The indenter is loaded
into the specimen as quickly as possible (0.01–0.05 s),
held at constant load for intervals ranging between 0.01
and 50 s, and then unloaded (beyond about 50–200 s hold
time it becomes difficult to correct for instrumental
drift). The data collection rate of the Triboindenter is
high enough to capture strain rates extending up to 10/s–
100/s; however, for correct data analysis it is necessary
to account for low-pass filters acting on the displacement
signal.30 The component of filtering arising from the
spring-mass-damping system is relatively minor because
the indenter is in contact with the specimen. The details
of the BNC experiment are described elsewhere.29

Indentation creep measurements were also performed
on a fused-silica calibration standard using an MTS
Nanoindenter XP. The experiments consisted of first
loading the indenter into the specimen, holding the load
constant for 20 s, and then unloading. The instantaneous
projected contact area was determined based on dynamic
contact stiffness measured continuously during the creep
portion of the experiment.

For experiments performed with the Triboindenter, re-
sidual indents were imaged and the areas measured with
a Quesant (Agoura Hills, CA) atomic force microscope
(AFM) incorporated in the Triboindenter. The AFM was
operated in contact mode and calibrated using an
Advanced Surface Microscopy, Inc. (Indianapolis, IN)
calibration standard with a pitch of 292 	 0.5 nm. The
AFM was calibrated separately for 4- and 10-mm field of
view images. Individual 4-mm field of view images were
made for the BMG, fused silica, and silicon specimens
and 10 mm for the PMMA. Image analysis software
ImageJ was used to manually measure the projected con-
tact areas from the AFM images as described in a previ-
ous publication.31,32 The ImageJ software website is
found at (http://rsb.info.nih.gov/ij/).

One might reasonably question whether the areas of
residual indents measured following removal of load
might differ from the areas under load. Sakai and
Nakano33 found that for Vickers indents in soda-lime
glass and PMMA the areas remain unchanged. To test
whether the same holds true for Berkovitch indents in
PMMA, which has a viscoelastic response, we repeatedly
measured the profile of an indent at different times
between 2 min and 5 days following a test and found that
although the indent gradually becomes shallower, its lat-
eral dimensions remain the same. We therefore assume
in our analysis below that the indent areas remain
unchanged for all materials other than fused silica. For

fused silica, which is the most elastic of all the materials
studied here, it has been shown that the areas of indents
increase on unloading,34 which might explain a discrep-
ancy in our fused silica data, detailed below.

Area versus time data from the BMG are shown in
Fig. 7 for a series of BNC tests run for different lengths
of time. Individual data points were obtained by measur-
ing the areas of the different indents. The lines were
calculated from depth-load-time data based on Eqs. (A3)
and (A5) in the Appendix. The hardness/modulus ratio
for these glasses is about 0.075–0.085, corresponding to
a predicted value of zp � 0.88 from Fig. 4. We find that
zp = 0.95 works best, as represented by the labeled curve
in Fig. 7. Additional curves representing zp = 1.10 and
0.80 are also shown to illustrate the limits of uncertainty.

Another way to identify the exponents zi is to measure
them directly from area versus depth at constant load.
Figures 8(a) and 8(b) show

ffiffiffiffiffi
A0

p
-h0i data from interrupted

experiments on fused silica and PMMA, respectively.
Duplicate experiments were performed at three different
loads. The results were found to be independent of load,
consistent with lack of an indentation size effect in these
materials. The dashed lines in Fig. 8 have slopes of 1 on a
log scale, which verify the proportionalities between

ffiffiffi
A

p
and the various hi at fixed hardness. The data at constant
load depict slopes (zi) that differ from 1. Because PMMA
tends to creep more, it exhibits larger differences in area
depending on creep time and therefore less relative scat-
ter in the data. The construction of the “theory” line
shown next to the deepest indents in PMMA is based on
Eq. (10) as described below.

Area-depth data from fused silica obtained using an
MTS nanoindenter with continuous stiffness measurement

FIG. 7. Area versus time data from indentation creep of BMG. The

measured areas (data points) were obtained directly using AFM and

inferred from unloading stiffness. The lines are obtained using

Eqs. (A5) and (A3).
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capabilities are shown in Fig. 9. The experimental details
are described in Ref. 18. Here, the area of the indent is
determined using contact stiffness. It is seen that during
loading, the square root of area (stiffness) increases in
proportion to the displacement; but once creep starts the
power law relating depth to area increases to about zt = 4
	 1.5. This value for zt is substantially higher than what
we observe by measuring the areas directly, zt = 1.6 	
0.2, Fig. 8(a). The difference between the two methods
might lie in the interpretation of continuous stiffness
measurement data or in the measurement of indent areas
in fused silica, for which it has been shown that the areas
increase during unloading.34

The values of the zi measured for fused silica, PMMA,
and the Zr45Cu47Al8 BMG are all compared with the
results from the finite element models in Fig. 10. The

lines in this figure are redrawn from Fig. 4. The data
agree qualitatively with the model, but the uncertainties
are too large to assess the precision to which the model
predicts the behaviors of individual materials. The most
reliable data are from PMMA, for which changes in area
are large and therefore easy to measure. It is interesting
to note that the experimental data generally fall at higher
values for zp and zc than the theoretical results. This
discrepancy might be a result of the fact that in the
experiments a three-sided pyramid was used, while in
the simulations the indenter was a cone.
Because of their relatively high quality resulting from

the large change in area, the data for PMMA deserve

FIG. 8. Area-depth data for fused silica and PMMA. The dashed lines

have slope 1 corresponding to the power law relation between
ffiffiffi
A

p
and

hi at constant hardness. The individual curves have slopes zi, which
generally differ from 1. For PMMA the theoretical prediction based on

the results of finite element modeling is also shown.

FIG. 10. Comparison between theory and experiment for power law

exponent relating
ffiffiffi
A

p
to depth (ht, hc, hp). For each material (excepting

the BMG) the three data points correspond to zt, zc, and zp in

descending order (i.e., zp is the lowest data point). For the BMG, only

zp was determined. The error bars represent standard error due to

random sampling.

FIG. 9. Stiffness-depth data from indentation creep of silica obtained

using CSM. Stiffness is proportional to
ffiffiffi
A

p
.
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more scrutiny. With these data H goes from about
0.16 E* at the beginning of creep to about 0.05 E* at the
end (E* = 6.34 GPa). Inspection of the zt curve in Fig. 4
over this range of hardness suggests that zt should
decrease as the area grows larger, a behavior that should
give rise to a downward curvature in the

ffiffiffi
A

p
-versus-ht

data in Fig. 8. We can make the prediction of the theory
more quantitative by using it to generate theoretical
curves in Fig. 4 over the relevant range of hardness. The
(H / E*, zt) curve in Fig. 4 is first converted to (A, zt)
based on knowledge of E* and the load. From this it is a
simple matter to numerically evaluate the integral

ln ht ¼
Z

1

zt
d ln

ffiffiffi
A

p
þ const ; ð11Þ

where the integration constant establishes the value of Ct.
The slope and shape of the resulting theory line are con-
sistent with the experimental PMMA data. It is not clear
from the experimental data whether they have a downward
or upward curvature, but even in the theoretical curve the
downward curvature is relatively small, so we should not
expect to easily detect the curvature in an experiment.

VI. SUMMARY

An analysis of indentation creep at constant load has
been performed. The strain rate sensitivity of the hardness
generally differs from that of the flow stress. The growth
of the area of the indent with respect to depth differs from
what it does during loading. Fortunately, with both situa-
tions the trends are insensitive to work hardening, creep,
and friction, and the trends in behavior can be understood
in terms of how the elastic–plastic problem depends on the
ratio H / E*. Experiments to measure the growth of the
area with depth show results that are consistent with the
finite element analysis simulations. Formulas for estimat-
ing the area from load and depth data during a creep or
load relaxation experiment have been provided. This
knowledge helps in the measurement and interpretation
of rate-sensitive deformation using nanoindentation.
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APPENDIX: DERIVATION OF AREA-LOAD-DEPTH
RELATIONS FOR ANALYSIS OF CREEP AND
RELAXATION

The key to analyzing an indentation creep experiment
is to be able to identify how the area increases with depth.
One way to accomplish this is to measure the instanta-
neous contact stiffness continuously during creep then
relate this stiffness back to area.19,20 Another way is to
estimate the area based on depth, which is what we have
used previously.11 Below, we present an updated method
for using this latter approach. Previously, it was argued
that the area-plastic depth relation during creep can be
obtained using the usual area function. This is equivalent
to assuming zp 
 d In

ffiffiffi
A

p
/ d In hp = 1 for a pyramid-

shaped indenter. However, our finite element analysis
and experimental results show that in general zp 6¼ 1.
Although this work is predominantly concerned with

constant load creep, we shall formally allow P to vary in
the analysis so that the analysis is capable of handling the
non-ideal situation where P changes a little during a test
due to instrumental effects. For instance, the BNC test
works best when the Triboindenter is run in open loop
control, in which case the load changes by a small
amount during the experiment. Furthermore, the analysis
is capable of handling the more general case where P
is intentionally allowed to change, such as in the load
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relaxation test, where the depth is held fixed while the
load is allowed to relax.11

At any instant during the experiment, the plastic com-
ponent of the indenter depth will be the total depth less
the elastic contribution

hp ¼ ht � P

Eeff

ffiffiffi
A

p : ðA1Þ

The second term on the right side of Eq. (A1) is the
compliance of specimen-indenter contact for the material
immediately adjacent to the indent, with Eeff ¼ bE*. It has
been assumed in this formula that the machine and struc-
tural compliances32 have been removed from the measure-
ment. In its current form, Eq. (A1) cannot be used to
calculate hp from measured load, P, and total depth, ht,
because A at each point during the experiment is unknown.
To solve this problem, we use an approximation. To first
order, 1=

ffiffiffi
A

p ffi ð1=
ffiffiffiffiffi
A0

p
Þ 1� D In

ffiffiffi
A

p Þ�
where A0 is the

area at unloading and D In
ffiffiffi
A

p ¼ ðA� A0Þ=2A0. We have

hp ffi ht � P

Eeff

ffiffiffiffiffi
A0

p 1� D ln
ffiffiffi
A

p� �
: ðA2Þ

Changes in
ffiffiffi
A

p
in (A2) derive from changes in Cp and

hp as evident from Eq. (8). Substituting D ln H ¼ D ln
P � D ln A into Eq. (9), then employing some algebraic
manipulation along with Eq. (10) gives

D ln
ffiffiffi
A

p
¼ 1

2
1� zið ÞD lnPþ ziD ln hi : ðA3Þ

We may then substitute this expression with i! p into
Eq. (A2) to obtain

hp ffi ht� P

Eeff

ffiffiffiffiffi
A0

p 1� 1

2
1� zp
� 	

D lnP� zpD lnhp

� �
:

ðA4Þ
Finally, D ln hp � ðhp � h0pÞ=h0p, where h0p is the plastic

depth immediately prior to unloading. Rearrange terms
and solving for hp gives

hp ffi h0p þ
ht � h0p �

P

Eeff

ffiffiffiffiffi
A0

p 1� 1� zp
� 	P� P0

2P0

� �

1� Pzp
h0pEeff

ffiffiffiffiffi
A0

p
;

ðA5Þ

where P0 is the load immediately prior to unloading. In
the analysis of creep data Eq. (A5) is used to determine
hp as a function of time from instantaneous load (P) and
depth (ht) data; Eq. (A3) is then used to determine the
changes in the area of the indent as a function time. With
the exception of zp, all of the parameters on the right side
of Eq. (A5) can be measured from a load-depth trace.

A critical assumption in the analysis is that the
indenter is a perfect cone or pyramid. Experiments
should be analyzed consistent with that assumption. In
practice, it is necessary for a Berkovich tip that the
indents for creep analysis be placed deeper than the
bluntness of the tip. Even for deep indents, it is also
necessary to account for the bluntness of the tip by
adjusting the depths accordingly. For instance, for one
of the Berkovich indenters used in this work the

ffiffiffi
A

p
-ht

profile for deep indents can be approximated with a
straight line that intercepts the depth axis at �16 nm. In
this case the tip bluntness is 16 nm, which is added to the
measured values of depth (ht) prior to performing the
analysis. All other calculations follow from there.

In practice, an experimenter might wish to work with
hc or ht rather than hp as we have done. The hc is defined as

hc ¼ ht� 2 P
1

Eeff

ffiffiffi
A

p
� �

; ðA6Þ

where 2 is the indenter shape factor of Oliver and
Pharr,17 usually taken to be about 0.72. Using arguments
similar to the ones used to derive Eq. (A5), we may
estimate hc as a function of time during creep or load
relaxation based on

hc ffi h0c þ
ht � h0c �

2 P

EeffA0
1� 1� zcð ÞP� P0

2P0

� �

1� 2 Pzc
EeffA0h0c

:

ðA7Þ
Once the contact depth is determined as a function of

time, the change in area may be estimated using Eq. (A3)
with i = c. To analyze creep based on total depth,
Eq. (A3) with i = t to calculate the area. Although in
principle this is the easiest approach, it is also likely to
be the one that is most subject to error because zt has a
wider variation than either zc or zp.
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