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ABSTRACT 

This paper summarizes recent laboratory and field data studies on thermal 
performance of stress-laminated timber highway bridges. Concerns about the 
reliability of stress-laminated deck bridges when exposed to sub-freezing 
temperatures triggered several investigations. Two laboratory studies were conducted 
to study the effects of wood species, preservative, moisture content, and temperature 
variations on pre-stressing bar forces (critical factor) in stress-laminated decks. The 
field performance of several stress-laminated timber bridges were monitored within a 
Nationwide Timber Bridge Monitoring Program, a cooperative effort by the U.S. 
Forest Service, Forest Products Laboratory and Federal Highway Administration. 
Bar-force and temperature data from a subset of bridges were continuously monitored 
for a period of 2 to 5 years with remote data acquisition systems. Significant pre­
stressing bar-force losses were observed in laboratory studies when the moisture 
content of deck laminations were at 30 percent and greater and the deck temperature 
reached 0°F (–18°C) and below. The field study concluded that the magnitude of 
cold-temperature induced bar-force losses were not significant enough to warrant 
special considerations in the U.S. bridge design code. However, it may warrant 
special considerations in cold weather regions outside the United States whenever 
deck lamination moisture contents exceeding 20 percent are combined with ambient 
temperatures remaining below 0°F (–18°C) for extended periods of time. 

INTRODUCTION 

Stress-laminated deck bridges are longitudinal deck (i.e., slab-type) super­
structures that can be manufactured using sawn lumber, glued-laminated timber 
(glulam), laminated veneer lumber (LVL), or structural-composite lumber products 
for the deck laminations. The configuration (Figure 1) of a stress-laminated deck 
bridge consists of deck laminations (placed on edge) and laminated together with a 
high degree of compressive force, or stress, provided by high-strength steel bars that 
pass through the mid-depth of the deck in pre-bored holes. Mechanical fasteners such 
as nails or adhesives are not required in the deck system, and decks can employ butt-
joints to achieve longer or multiple span continuous arrangements. A key advantage 
of stress-laminated structural systems is their ability to easily restore structural 
efficiencies in the deck system by re-tensioning the pre-stressing bars to their original 
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design force levels. Stress-laminating technology was first used to rehabilitate nail-
laminated decks that had loosened after many years in service. In this case, the stress-
laminating hardware was retrofitted externally to the timber deck and embedded with 
the asphalt-wearing surface. 

Figure 1. General configuration of stress-laminated deck bridge superstructure. 

Over 1,000 stress-laminated bridges are estimated to have been built in the past 20 
years in the United States. Their field performance has been generally satisfactory, 
but most bridges have required periodic pre-stressing bar re-tensioning because of the 
creep of moist deck laminations. This periodic maintenance task has been 
problematic and the primary reason stress-laminated decks have not become more 
popular in the United States. Some engineers have successfully mitigated this 
problem by replacing wet lumber laminations with dry glulam beams or replacing the 
steel pre-stressing members with fiber-reinforced polymer strands. 

Concerns about stress-laminated deck performance in cold environments were 
initially raised by a bridge owner in northern Minnesota who detected severe bar-
force losses (Erickson et al. 1990). Heavy trucks were transporting logs from wetland 
areas during the winter while the roadway was frozen. The combination of inadequate 
bar forces and heavy truck loading presented a potentially critical issue that warranted 
investigation. Therefore, the Forest Products Laboratory (FPL) in cooperation with 
the Federal Highway Administration (FHWA) launched a series of laboratory and 
field investigations to determine if stress-laminated bridges required special design 
considerations for cold weather climates. This paper summarizes those laboratory and 
field data regarding the cold temperature performance of stress-laminated timber 
highway bridges. 
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LABORATORY AND THEORETICAL EVALUATIONS 

Two separate laboratory investigations along with a theoretical analysis were 
conducted and are summarized below. 

Initial Study. The initial study conducted by FPL examined the behavior of bridge 
deck sections as they were placed into a controlled environment of 0°F 
(–18°C). The configuration of the 1.5 m2 bridge test deck sections is provided in 
Figure 2. The deck laminations included CCA-treated Southern Pine, creosote-treated 
Douglas-fir, untreated Douglas-fir, and untreated laminated-veneer-lumber (LVL). 
Bar forces were measured with hollow-core steel load cells, and temperatures were 
measured by thermal couple wires embedded into the deck sections. A datalogger 
automatically collected data at 15-minute intervals throughout testing. The bridge 
deck sections were initially tensioned to several different pre-stress levels (690kPA, 
517kPA, 276 kPa, 173 kPA) before entering the cold-temperature chamber. In 
addition, testing was repeated under three separate wood moisture content levels 
(12%, 18%, and >30%). For additional details on this research effort, refer to Kainz et 
al. (2001). 

Figure 2. Configuration of initial lab study test deck specimens. 
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Figure 3. Summary of results of Lab Study 1 at 8% moisture content 
for several different pre-stress levels. 
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Figure 4. Summary of results of Lab Study 1 at 18% moisture content 
for several different pre-stress levels. 
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Figure 5. Results of Lab Study 1 at 30% moisture content at three different pre-stress levels 
(a) 173 kPa; (b) 276 kPa; (c) 517 kPa. 
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The initial study results indicated that species, preservative, and pre-stress levels did 
not have a significant effect on the thermal behavior of the stress-laminated deck 
sections. However, the wood moisture content seemed to be a major contributor in 
the behavior of deck sections at very low temperatures. When the wood laminations 
were dried to a very low moisture content of 8%, the magnitude of bar-force losses 
when equilibrated at cold temperatures of –18°C (0°F) averaged approximately 25kN 
regardless of the pre-stress level (Figure 3). Similar behavior was observed when the 
wood laminations were tested at a dry moisture content of 18% (Figure 4). When the 
wood laminations were at fiber saturation near 30% moisture content, dramatic bar-
force losses were observed, especially for the LVL test deck section (Figure 5). 

This suggests that the specimen configuration and more importantly, the lamination 
moisture content, determined the magnitude of the temperature-induced bar-force 
losses for any cold temperature scenario. Even though the rate of thermal contraction 
for steel is much higher than those reported for wood, saturated wood clearly has a 
significantly higher rate of contraction, exceeding that of steel. This mechano­
sorptive phenomenon where wood contracts at a faster rate than the steel pre-stressing 
bars confirms previous work by Kubler et al. (1973) where testing focused on small-
clear specimens. It was also noted in the initial study that these temperature-induced 
losses in pre-stressing bar force were fully recovered once the internal deck 
temperatures stabilized above 0°C (32°F). 

Figure 6. Configuration of Laboratory Study 2 test deck specimens. 
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Second Study. A follow-up laboratory study was conducted cooperatively by the 
University of Minnesota and FPL. These tests were very similar to the initial study 
but eliminated some variables (species, preservative, pre-stress level) and achieved 
even colder temperatures reaching −34.4°C (−30°F). Three replicate test decks of red 
pine sawn lumber (Figure 6) were placed in an environmental chamber where the 
temperature was decreased from 21.1°C (70°F) to five freezing temperatures that 
ranged from –12.2°C to –34.4°C (10°F to –30°F). In addition to the variation of 
temperature, the moisture content of the red pine laminations was altered. Each 
freeze–thaw run was completed at three levels of moisture content: above fiber 
saturation or green, 18%, and 8% (Wacker 2003). 
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Figure 7. Summary of results from the Laboratory Study 2 

at the three moisture content levels tested (phase I – 30%, phase II – 18%, phase III – 8%).
 

These experimental results (Figure 7) further characterized this mechano-sorptive 
behavior at sub-freezing temperatures ranging from 0°F (–18°C) down to –34.4°C 
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(–30°F). During Phase III with wood moisture content equilibrated at approximately 
8%, pre-stressing bar-force losses observed during each successive sub-freezing 
temperature test were insignificant. During Phase II with wood moisture contents 
equilibrated at approximately 18 percent, pre-stressing bar-force losses observed 
during each successive sub-freezing temperature test were slightly higher at 10-15 
kN. During Phase I with wood moisture contents exceeding fiber saturation, pre­
stressing bar-force losses were very significant. As the target cold temperature 
decreased from -12.2°C (10°F) down to –34.4°C (–30°F), the magnitude of the pre­
stressing bar-force losses became more dramatic. During the last temperature test 
where the test deck section was placed in a controlled environment of –34.4°C 
(–30°F), the pre-stressing bar-force losses were estimated at 90 kN, or nearly 80% of 
their original level. These results seemed to be on the magnitude of the initial field 
report, so field investigations were initiated to determine how widespread was this 
thermal phenomenon of cold temperature-induced pre-stressing bar-force losses. 

Theoretical Modeling. Theoretical modeling of the thermal behavior of sawn wood 
laminations pre-stressed with steel bars was performed in conjunction with initial 
study experiments (Kainz 1994). The model represented the steel pre-stressing bars 
and the wood laminations as linear-elastic springs in parallel, predicted higher pre­
stressing bar-force losses than were observed in the experimental studies. One of the 
larger challenges was assigning accurate thermal coefficients to a large number of 
deck laminations with varying grain orientations. 

FIELD EVALUATIONS 

The field performance of several stress-laminated timber bridges was monitored 
within a Nationwide Timber Bridge Monitoring Program (Appendix A, Wacker 
2003), a cooperative effort by FPL and FHWA. Bar-force and temperature data from 
a subset of bridges were continuously monitored for a period of 2–5 years with 
remote data acquisition systems. In other cases, bar-force and temperature data were 
collected periodically with portable strain indicators and hand-held thermometers by 
on-site personnel. 

Minnesota Bridge. The Ciphers Bridge (Figure 8) is a single-lane stress-laminated 
deck bridge with a total length of approximately 12.19 m (40 ft). It is located in 
northern Minnesota, one of the coldest U.S. regions during the winter season. This 
bridge was also the origin of the initial reports of dramatic bar-force losses. So, it was 
one of the first stress-laminated bridge decks to have its field performance monitored 
for period of two years beginning three years after installation (Wacker et al. 1998). 
At the initiation of field monitoring, all pre-stressing bars were re-tensioned to the 
full design force. The deck laminations were measured to be near fiber saturation 
(~30%) even after three years in service. 
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Figure 8. Ciphers stress-laminated deck bridge located in northern Minnesota. 

Figure 9. Two-year record of bar-force and deck temperature data from 
the Ciphers Bridge in northern Minnesota. 

The results from the monitoring study of the Ciphers Bridge are summarized in 
Figure 9. The monitoring period included two winter cold seasons where the internal 
deck temperatures reached –20°C (–4°F) and –30°C (–22°F) below freezing. Pre­
stressing bar-force losses were observed each winter season and were fully recovered 
during the spring. The pre-stressing bar-force losses were on the magnitude of 50 kN, 
which represented nearly 50 percent losses from the pre-winter level. However, 
during the entire monitoring period, the bar forces did not fall below the long-term 
threshold level of 207 kPa (30 lb/in.2) interlaminar stress established in the design 
procedure. 

Pennsylvania DOT Bridges. Several stress-laminated deck bridges constructed of 
hardwood lumber were investigated over a 5-year period (Wacker et al. 2004) in 
conjunction with the Pennsylvania Department of Transportation. The effect of cold-

http:http://www.ascelibrary.org
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temperature-induced bar-force loss was observed over several consecutive winter 
periods on the Birch Creek Bridge located in Sullivan County (Figure 10). The 
magnitude of the pre-stressing bar-force losses were relatively small compared with 
those observed at the Minnesota bridge or the second laboratory study. In the present 
study, the moisture content levels were near fiber saturation (~28%), but ambient 
temperatures did not drop low enough. A close-up view of a winter cold-temperature 
data set from the Laurel Run Bridge (Figure 11) clearly shows that the internal deck 
temperature is more stable with a time-lag behind the rapidly changing ambient 
temperature because of the insulating characteristics of wood. 
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Figure 10. Bar-force and internal deck temperatures from 
the Birch Creek bridge in Sullivan County, Pennsylvania. 
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Figure 11. Typical plot of cold-temperature induced bar-force losses 
from the Laurel Run Bridge in Huntingdon County, Pennsylvania. 
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DESIGN IMPLICATIONS 

Although laboratory studies detected significant percentages of bar-force loss when 
moisture content was near or above fiber saturation and test temperatures dropped 
below 0°F (–18°C), numerous field-monitoring studies throughout the United States 
did not detect any significant bar-force losses during the cold winter seasons. 
Therefore, we have not recommended thermal-related design considerations to the 
American Association of State Highway and Transportation Officials  (AASHTO) 
specifically for stress-laminated decks. The current AASHTO-LFRD (Load and 
Resistance Factor Design) Bridge Design Specifications (AASHTO 2007) includes 
design considerations for thermal expansion of timber decks (reference 9.9.3.4), but 
requires only consideration of longitudinal movements of continuous stress-laminated 
or glued-laminated timber decks longer than 400 ft. Bridge owners and designers 
should be made aware that stress-laminated decks with elevated moisture contents are 
susceptible to significant bar-force losses under extreme cold temperatures. There 
should also be renewed emphasis placed on the importance of specifying, verifying, 
and installing dry sawn lumber (maximum moisture content of 19 percent) for stress-
laminated decks. 

SUMMARY 

Stress-laminated deck highway bridges are more common since being introduced in 
the United States in the late 1980s. Their structural integrity is predicated on adequate 
bar-force, or deck pre-stress, and being maintained above the long-term threshold of 
40 lb/in.2 interlaminar stress. Field reports of a stress-laminated bridge deck in 
northern Minnesota losing significant amounts of deck pre-stress (well below 40 
lb/in.2 interlaminar stress) during the cold winter season triggered further 
investigations of this phenomenon. Two laboratory studies were conducted to study 
the effects of wood species, preservative, moisture content, and temperature 
variations as they affect pre-stressing bar forces (critical factor) in stress-laminated 
decks. Field performance of several stress-laminated timber bridges were monitored 
within the Nationwide Timber Bridge Monitoring Program, a cooperative effort by 
the Forest Products Laboratory and Federal Highway Administration. Bar-force and 
temperature data from a subset of bridges was continuously monitored for a period of 
2 to 5 years with remote data acquisition systems. The field study concluded that the 
magnitude of cold-temperature induced bar-force losses is not significant enough to 
warrant special considerations in the U.S. bridge design code. However, it may 
warrant special design considerations in cold weather regions like interior Alaska and 
other countries, wherever deck lamination moisture contents exceeding 20 percent are 
combined with ambient temperatures remaining below 0°F (–18°C) for extended 
periods of time. 
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FUTURE WORK 

Further monitoring efforts should investigate stress-laminated decks in severely cold 
climates and with average moisture content ranges above 20 percent to determine the 
severity of temperature-induced bar-force losses. 
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