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Material Variability and Repetitive Member
Factors for the Allowable Properties

of Engineered Wood Products

ABSTRACT: It has been argued that repetitive member allowable property adjustments should be larger for high-variability materials than for
low-variability materials. We report analytic calculations and simulations that suggest that the order of such adjustments should be reversed, that is,
given the manner in which allowable properties are currently calculated, as the coefficient of variation of the strength distribution of individual
elements increases, the upward repetitive member adjustments (if any) of assemblies constructed from these elements should decrease.
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Introduction

In existing standards (e.g., Refs 1 and 2), upward adjustments in
allowable properties are permitted for repetitive member assem-
blies of solid sawn wood. In the pre-2003 D5055 standard [3], this
upward adjustment was larger for high-coefficient-of-variation
(COV) material than for low-COV material. In section X1.4.1 of
the pre-2003 D5055 standard a justification of the differing adjust-
ments was given:

The allowable bending stress increases for repetitive member
use were derived taking into consideration the COV of the
stiffness of various flange materials. The original theory jus-
tifying this type of increase seems to be based on the relative
stiffness of the members and positive correlation between
bending strength and stiffness. Logic indicates that as stiff-
ness COV decreases so would the load sharing. That is, as
stiffness COV tends to zero, lack of differential deflection
eliminates load transfer.

For pragmatic reasons, the differing adjustments were removed
in the 2003 revision of D5055 [4]. However, the intuitive basis for
the differential adjustments is still found in section 5.1.3 of D6555

[5]:

Load sharing tends to increase as member stiffness variabil-
ity increases....

Based on the analytical calculations and computer simulations
reported in this paper, we conclude that the differing repetitive
member adjustments that have been based on this intuition (that is,
upward adjustments that are larger for higher COV material) are
flawed.

It is important to note that we are not arguing with the conten-
tion that “load sharing tends to increase as member stiffness vari-

Manuscript received July 1, 2008; accepted for publication June 10, 2009;
published online July 2009.

'Mathematical Statistician, U.S. Dept. of Agriculture Forest Products Labo-
ratory, Madison, WI 53726.

’Research General Engineer, U.S. Dept. of Agriculture Forest Products Labo-
ratory, Madison, WI 53726.

ability increases.” Instead we dispute the conclusion that is some-
times drawn from this intuition—that assemblies composed of
higher variability material deserve larger upward adjustments in al-
lowable properties. This conclusion is not valid as it makes the im-
plicit assumption that high-variability assemblies and low-
variability assemblies begin with the same probability of individual
element failure. As we will see below, this assumption is false.
Thus, higher variability assemblies begin with a handicap, and any
advantage due to “better load sharing” does not make up for this
initial disadvantage. In fact, for the assemblies that we consider, the
probability that an assembly fails when subjected to a load equal to
its allowable bending stress increases as COV increases. Given this
basis, larger repetitive member upward adjustments for larger
member strength COVs lead to assemblies with larger probabilities
of failure and are thus unjustified. This is the essence of our argu-
ment. We provide the analytical and simulation details in the re-
mainder of this paper.

For the purposes of this paper, we define assembly failure as the
failure of any one of the assembly’s members. A first approximation
(not our final approximation) to the probability, Py, of assembly
failure is given by

Pp= 1_(1_Ps)k (1)

where:
ps=probability that an individual element fails and
k=number of elements in the assembly.

Result 1 treats the elements of an assembly as independent
members that all see the same load. As we will see below, this ap-
proximation overestimates P if weaker members tend to be less
stiff and thus tend to see less of the load. However, it is a starting
point for our analysis and emphasizes the fundamental role played
by ps.

In the section Probability of Failure of a Single Member, we ob-
tain analytic formulas for pg for normal and lognormal distribu-
tions. In the same section, we also point out the central fact that, as
currently calculated, allowable properties are not associated with a

fixed probability of failure. That is, the probability that a member

fails when subjected to a load equal to its allowable bending stress
is smaller for members that come from distributions with smaller
coefficients of variation.
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In the section P for Normally Distributed, Perfectly Correlated
Strength and Stiffness, we derive an expression for Py in the case of
perfectly correlated, normally distributed strengths and stiffnesses.

In the section Probability of Failure of an Assembly at an Unad-
justed Allowable Stress Level, we discuss simulations of a particu-
lar hypothetical assembly. Our simulated assembly contains seven
members, and we distribute loads in proportion to member stiff-
nesses. Our simulations produce estimates of Py. In the same sec-
tion, we discuss the tables that we produced from these simulations
and the fact that they indicate that, at loads equal to allowable bend-
ing stresses, the probability of failure increases with increasing
Cowv.

In the section Probability of Failure of an Assembly at an Ad-
justed Allowable Stress Level, we extend these simulations to cover
the case in which our assemblies are subjected to loads that have
been adjusted upward in accordance with the recommendations of
the pre-2003 ASTM D5055. These simulations indicate that such a
procedure leads to higher probabilities of failure for assemblies as-
sociated with higher member COVs.

Our simulations are based on normal and lognormal data (both
“truncated” and untruncated), a simple model of seven member as-
semblies, and a particular definition of failure. Our model includes
load sharing as defined in D6555 (in fact, because it assumes an
infinitely stiff diaphragm it incorporates greater load sharing than
that envisioned in the standard), but it does not include composite
action or residual capacity. Thus we do not claim that our results
hold in general, and we do not believe that our estimates of failure
probabilities should be applied to any real world situations. How-
ever, these results certainly call into question the validity of adjust-
ing high-variability materials more than low-variability materials.
Such adjustments cannot be based on intuition. If permitted, they
must be based on detailed theoretical calculations, simulations, or
empirical evidence. See, for example, Section 8 of D6555.

Finally, we note that a reviewer of this paper speculated that our
results might change if we focused on, for example, strength distri-
bution fifth percentiles rather than allowable stress levels. We have
performed additional simulations that compare the first, fifth, and
tenth percentiles of the strength distributions of assemblies and
single members. These simulations yield conclusions similar to
those presented in the current paper. Details are provided in Ref 6.

Probability of Failure of a Single Member

Intuition

In the Introduction we asserted that the probability, pg, that an indi-
vidual element fails when subjected to a load equal to its allowable
stress level is larger for high-COV materials than for low-COV ma-
terials. Because this fact is central to our argument and might be
counterintuitive for some readers, we provide some additional ex-
planation here.

In developing this intuition, we assume these strengths are nor-
mally distributed. However, in our simulations, we work with un-
truncated normal and lognormal distributions and with truncated
normal and lognormal distributions.

For a normal strength distribution, the probability, p, that a par-
ticular specimen fails at its allowable stress level is the probability
that the strength of the specimen lies below the fifth percentile of
the strength distribution divided by 2.1 (the safety and duration of
load factor). For a more variable material (of the same mean
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TABLE 1—For a normal population of mean one and a series of coefficients of

variation, this table provides the fifth percentile of the distribution, the associ-

ated allowable stress level (fifth percentile divided by 2.1), the number of stan-

dard deviations that the allowable stress level lies below the mean of the distri-

bution, and the probability p, that a member of the normal population will have
a strength value that falls below the allowable stress level.

Fifth Allowable Standard Deviations
COV Percentile Stress Below Mean Ds
0.05 0.918 0.437 11.26 0.104E-28
0.10 0.836 0.398 6.02 0.864E—09
0.15 0.753 0.359 4.28 0.954E-05
0.20 0.671 0.320 3.40 0.334E-03
0.25 0.589 0.280 2.88 0.200E-02

strength), the fifth percentile will be lower so the allowable stress
level will be smaller. One might assume that this will imply that the
strength of a specimen from a more variable material will be less
likely to lie below its allowable stress level. However, the more vari-
able material has a greater standard deviation, and it turns out that
its allowable stress level is not as many standard deviations from its
mean as is the allowable stress level of a less variable material. In
particular, for a specimen from a normal distribution with mean
and standard deviation o, we have

allowable stress level=(u—1.645 X ¢)/2.1

and the number of standard deviations that the allowable stress
level lies beneath the mean strength is

(u—(u—1.645 X 0)/2.1)/o=(1.1 X u+1.645 X ¢)/(2.1 X o)
=1.1/(2.1 X COV) +1.645/2.1

where:

COV=0o/u.

Thus the larger the COV, the closer (as measured in standard
deviations) the allowable stress level is to the mean strength and the
higher the probability that a specimen’s strength will fall below the
allowable stress level. This is made precise in Table 1 and is illus-
trated in Fig. 1. In Fig. 1 both normal distributions have a mean of
one. The broad distribution has a standard deviation of 0.25, and the
narrow distribution has a standard deviation of 0.05. The dotted

probability density
4
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FIG. 1—Both normal distributions have a mean of 1. The broad distribution has
standard deviation 0.25, and the narrow distribution has standard deviation
0.05. The dotted vertical lines are at the allowable property level (AP) and fifth
percentile (5th) of the broad distribution. The solid vertical lines are at the al-
lowable property level (AP) and fifth percentile (5th) of the narrow distribution.
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vertical lines are at the allowable stress level and fifth percentile of
the broad distribution. The solid vertical lines are at the allowable
stress level and fifth percentile of the narrow distribution. Visually,
it should be clear that the strength of a specimen from the broad
distribution (COV=0.25) is more likely to fall below its allowable
stress level than is the strength for a specimen from the narrow dis-
tribution (COV=0.05). In fact, as we can see from Table 1, the al-
lowable stress level for the broad distribution lies only 2.88 stan-
dard deviations below the distribution’s mean, and the probability
that a specimen from this distribution fails at its allowable stress
level is 2.0E—3, while the allowable stress level for the narrow dis-
tribution lies 11.3 standard deviations below the distribution’s
mean, and the probability that a specimen from the narrow distri-
bution fails at its allowable stress level is 1.0E—29.

In the Normal Distribution and Lognormal Distribution subsec-
tions, we provide detailed formulas for pg for normal and lognor-
mal distributions in situations in which aging has reduced the origi-
nal strength of the specimens.

Normal Distribution

Let u be the mean of the population and o the standard deviation.
Let COV=0/u (rather than o/u X100 as it is sometimes ex-
pressed). Suppose that a member has been in service for time ¢ and
that the strength reduction factor appropriate for this length of ser-
vice is 7(¢). Then, at time 7 the probability that a single member fails
at its allowable stress level is given by

s =prob[N(u,a?)/r(t) < (u—1.645 X ¢)/2.1]
=prob[N(0,1) < (r(t)(u—1.645 X 0)/2.1 — u)/ o]
=prob[N(0,1) < (r(#)/2.1 = Du/o—r(t) X 1.645/2.1]
= prob[N(0,1) < (+(1)/2.1 = 1)/COV — r(¢) X 1.645/2.1]
)

Note that for (£) <2.1, pg increases as COV increases.

Lognormal Distribution

Let 4 and o denote the mean and standard deviation of the popula-
tion affer natural logs have been taken. Let COV be the standard
deviation of the original population divided by the mean of the
original population. It can be shown that for lognormal data, o
= \/ln(l +COV X COV). Let r(¢) be as above. Then, at time ¢ the
probability that a single member fails at its allowable stress level is
given by

ps=prob[LN(u,0?)/r(t) < exp(u — 1.6450)/2.1]
=prob[N(u,0?) < u— 1.6450 + In(r(1)) — In(2.1)]
=prob[N(0,1) < — 1.645 + (In(r(¢)) — In(2.1))/ 0]
=prob[N(0,1) < —1.645 + (In(r(z))
—1n(2.1))/\In(1 + COV X COV)] (3)
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Note that, again, for (z) <2.1, pg increases as COV increases.

Truncated Distributions

Because real populations of boards sometimes have strength distri-
butions that are left truncated (e.g., “number 2 and better”), we ex-
panded our simulations to include truncated distributions. We did
this as follows.

For a given correlation between modulus of elasticity (MOE)
and modulus of rupture (MOR), we generated 100 000 samples
from the bivariate normal distribution (in the lognormal case, the
bivariate normal distribution was the joint distribution of the MOE
and In (MOR) values). We then identified the 60 000 boards with
the largest MOEs (the top 60 % of the MOEs) and treated them as
MSR (machine stress rated) number 2 and better. We treated the
40 000 of these 60 000 with the lowest MOEs (the bottom two-
thirds of the number 2 and better) as number 2 boards. We then
found the nonparametric estimate of the fifth percentile of the
MORSs of these 40 000 boards, divided this by 2.1, and took this as
our allowable stress property. When we generated assemblies we
only accepted boards with MOEs above the 40th percentile of the
MOE distribution. Of course, because the correlation between
MOE and MOR is not one, this led to boards with MORs that were
sometimes below the 40th percentile of the MOR distribution. This
led to MOR distributions that were not truly fully truncated. (For an
MOE/MOR correlation of one, the MOR distribution would be
fully truncated. For an MOE/MOR correlation of zero, the trun-
cated MOR distribution would not differ from the original MOR
distribution. Intermediate levels of correlation lead to intermediate
levels of “truncation.”)

In Fig. 2, we plot histograms of simulated MORs of MSR num-
ber 2 and better boards when MOR and MOE have bivariate normal
distributions with COVs equal to 0.25 and correlations (top to bot-
tom) of 1.0, 0.9, 0.6, and 0.0. In this figure we also mark allowable
stress levels by solid vertical lines. In Fig. 3, we present the corre-
sponding plots for COVs equal to 0.05. These figures suggest that
for truncated distributions, a board is more likely (except in the
case in which the correlation is 1.0) to have a strength value below
the allowable property level for a high-COV distribution than for a
low-COV distribution. We report simulations based on truncated
distributions in the section Probability of Failure of an Assembly at
an Unadjusted Allowable Stress Level.

Py for Normally Distributed, Perfectly
Correlated Strength and Stiffness

In the Normal Distribution and Lognormal Distribution subsec-
tions we performed simple calculations that demonstrated that in
the normal and lognormal cases, the probability of failure of a
single member that is subjected to a load equal to its allowable
property increases as COV increases. In this section we perform
simple calculations that establish that, for a special case (bivariate
normal MOE/MOR distribution, perfect correlation between MOE
and MOR), the probability that an assembly fails at an unadjusted
property level increases with COV. These calculations are merely
meant to be suggestive. The increase in probability of failure with
COV that they suggest has, however, been confirmed by the simu-
lations reported in the remainder of the paper.
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FIG. 2— “Truncated normal” distributions. The COV is 0.25. The correlations between MOE and MOR are (from top to bottom) 1.0, 0.9, 0.6, 0.0. The vertical lines

are at the allowable property levels.

We have

Pp=prob(one or more failures)

=1—prob(no failure of any member)

There is no failure of any member if and only if

u+e kX (- 1.645 X @)
+€1+...+ﬂ+6k 2.1

(u+e€)r(t) =
u
4)

holds for i=1,...,k. Here, k is the number of members in the as-
sembly, u is the mean of the strength distribution of the members,
the €’s are normally distributed with mean zero and standard devia-
tion o, (u+e;)/r(¢) is the strength of the ith member, (u+e€;)/(u
+e€,+...+tu+te,) is the fraction of the load on the assembly that the
ith element sees (under the assumption that strength and stiffness
are perfectly correlated), and kX (u—1.645Xa)/2.1 is the total
load on the assembly.
The k inequalities of Eq 4 hold if and only if
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(1) Ko 1.645 X o
T (w+o 2.1

where:
€_=(€1+ .. .+€k)/k.
Thus,

prob(no failure of any member) = prob(u+ é=u X r(f) X (1
—1.645 X COV)/2.1)
= prob(N(u,1i?COV¥/k) = pu X r(t) X (1 —1.645 X COV)/2.1)
= prob(N(0,COV?/k) = r(t) X (1 —1.645 X COV)/2.1—1)
1 - 1.645 X COV 1))

k
=prob(N(0,1) = % X (r(t) X 51

) _ () ) ) X 1.645
_pmb(N(O’l)_&x(cov(m 1) 2.1 ))
(5

and

Univ+Of+Wisconsin-Madison pursuant to License Agreement. No further reproductions authorized.



VERRILL AND KRETSCHMANN ON MATERIAL VARIABILITY AND REPETITIVE MEMBER FACTORS 5

g8
gy
235
=]
© (o)
28
9 9
3 I
o © ..
o
0.0 0.5 1.0 1.5 2.0
strength, COV = 0.05, corr = 1.0
g8
o «
S -
- O
=]
© @
s8
N ]
§ =] ,|| |I||..
o
0.0 0.5 1.0 1.5 2.0
strength, COV = 0.05, corr = 0.9
g8
o N
S -
- O
=]
© [*o)
i ‘” H“
~ o
o<
g o ,.||||| ||I||.,
o
0.0 0.5 1.0 1.5 2.0
strength, COV = 0.05, corr = 0.6
Qo
38
o N
S -
- O
=]
o @
b ”m m
= o
o<
g (=} ..|||||| ||||||
0.0 0.5 1.0 1.5 2.0

strength, COV = 0.05, corr = 0.0

FIG. 3—Truncated normal distributions. The COV is 0.05. The correlations between MOE and MOR are (from top to bottom) 1.0, 0.9, 0.6, 0.0. The vertical lines are

at the allowable property levels.

prob(failure of at least one member)

@_1)_r(t)>< 1.645))

A
— prob| N(0,1) < Vk X | ——
pm( 0. <x ( (2.1 2.1

cov
()

Provided that (¢) <2.1, this probability will increase as COV in-
creases.

Probability of Failure of an Assembly at an
Unadjusted Allowable Stress Level

For the purposes of this paper, we consider a simple model of seven
member assemblies. No claim is made that this is a highly realistic
model or that the results can be extrapolated to arbitrary assem-
blies. However, the results from our simulations do suggest that as-
semblies of higher COV material do not deserve higher upward re-
petitive member adjustments.

In an associated Forest Products Laboratory technical report [7],
we consider four cases—normal, lognormal, truncated normal, and
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truncated lognormal. For the purposes of brevity, here we only con-
sider the truncated lognormal case. However, the conclusions that
can be drawn from all four simulations are the same.

Truncated Lognormal Distribution Version of the
Model

1.  Member strengths are drawn from a truncated (see Trun-
cated Distributions subsection) lognormal distribution.

2.  Member strengths are reduced by a factor of r(¢). In this
paper we consider (£)=2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, and
1. The mean 10 year reduction factor due to duration of
load is believed to be 1.6 [8]. We considered the other val-
ues in our simulations to establish the trends in P as a
function of COV as the material ages.

3. The assemblies contain seven members.

4. Each assembly is subjected to the
X (fifth percentile of number 2 strengths)/2.1.

5. Because the assembly elements are connected by a dia-
phragm, they each bend the same distance, so loads are pro-
portional to MOEs. In particular

load 7
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load; = (assembly load) X MOE/(MOE, + ...+ MOE-).

6. The correlation between In(MOR) and MOE is 0.5 or 0.7.
7.  The failure of the assembly occurs when any member fails.

The FORTRAN code for this simulation can be obtained in Ref
9.

The results from this simulation depend on 7(¢). Results for
r(t)=2.1,...,1.5 and r(¢)=1 are provided in Table 2. For correla-
tions 0.5 and 0.7 between In(strength) and MOE, Table 2 contains
the COV values, the corresponding probability of failure of a single
member, pg, the weakest link approximation to Pr in Eq 1, and a
simulation estimate of P that takes into account load sharing.

Here are the relevant facts to note from Table 2. (In Fig. 4 we
plot the log of the simulation estimate of Py versus COV for p
=(0.7 and r(¢)=2.1,2.0, ...,1.5,1.0.)

1. As we would expect, due to load sharing, the simulation
estimates of P are generally lower than the weakest link
approximation to Py given by Eq 1.

2. Also, as we would expect, P, decreases as the correlation
between MOE and MOR increases (as load sharing be-
comes more effective).

3. Except in the r(¢)=2.1 case, the simulation estimate of Py
increases with COV, so we would expect that any upward
adjustments of allowable stress level should be smaller for
larger COVs.

The results from the other three simulations are similar. These
results do not support the assumption that higher COVs justify
larger upward repetitive member adjustments.

Probability of Failure of an Assembly at an
Adjusted Allowable Stress Level

The fact that higher COV material is associated with a higher prob-
ability of failure at an unadjusted allowable stress level does not
necessarily imply that it does not deserve a higher upward adjust-
ment than a lower COV material. A priori, it is conceivable that the
probability of failure of a lower COV material might increase more
rapidly as load is increased than the probability of failure for a
higher COV material. To check this in a practical situation we ran
our model under the three conditions discussed in the pre-2003
ASTM D5055. In particular the authors of that standard permitted a
15 % upward adjustment for material with a 25 % COV, a 7 % up-
ward adjustment for material with an 11 % COV, and a 4 % upward
adjustment for material with a 7 % COV. Our results for the trun-
cated lognormal strength distribution are presented in Table 3. Cor-
responding tables for the other three cases that we considered can
be found in Ref 7. The tables do not support the larger upward ad-
justments for larger COV material that were specified in the stan-
dard. Such adjustments lead to probabilities of failure that are often
much larger for the high-COV material than for the low-COV ma-
terial.

The FORTRAN code for these simulations can be obtained in
Refs 10-13.

An Objection

A reader who is wedded to the idea that repetitive member adjust-
ments should be larger for materials with a larger COV might make
the following argument.

Copyright by ASTM Int'l (all rights reserved); Wed Sep 22 10:29:48 EDT 2010
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Suppose that individual elements have normally distributed
bending moduli with mean x and variance o2, Further suppose that
the bending modulus of an assembly is the average of the bending
moduli of its elements. Then the fifth percentile of the modulus dis-
tribution of an element is

1~ 1.645 X o= p(1 — 1.645 X COV)

and the fifth percentile of the modulus distribution of an assembly
of n elements is

1~ 1.645 X o/\n=u(1 - 1.645 X COV/\n)

Thus the ratio of the fifth percentile of the modulus distribution of
the assembly to the fifth percentile of the modulus distribution of an
element is

(1—1.645 X COV/\n)/(1—1.645 X COV)

and a little calculus demonstrates that this ratio increases as COV
increases. Thus, the argument goes, the repetitive member “adjust-
ment” from the modulus of an element to the modulus of an assem-
bly increases with COV.

There are two problems with this argument. The first and possi-
bly more minor problem is that the modulus of an assembly is not in
general the average of the moduli of its elements. In fact, if load
transfer to stronger elements is limited (if the correlation between
MOE and MOR is not high), the modulus of the assembly can be
closer to the modulus of its weakest element than to the average
modulus of its elements. The second and more fundamental prob-
lem with this argument is that allowable properties are not fifth per-
centiles. Instead they are currently calculated as fifth percentiles
divided by 2.1. Thus, since equivalent assembly designs and repeti-
tive member adjustments should lead to equivalent probabilities of
failure under equal loads, we must approach the problem as in the
current paper, and as we saw in the Intuition subsection and its se-
quel, the division by 2.1 leads to individual element probabilities of
failure that are higher for more variable material. This in turn leads
to assemblies that have higher probabilities of failure for more vari-
able material, and thus we are not justified in awarding such assem-
blies higher repetitive member adjustments.

A Second Objection

It can be argued that the only age-related strength reduction that is
relevant in our tables is 7(¢#)=2.1, and for this reduction, individual
element probabilities of failure are the same for all COVs, and as-
sembly probabilities of failure do go down as COVs increase. One
response to this argument is that we do not actually expect 2.1 re-
ductions due to duration of load. Instead the mean 10 year reduc-
tion is believed to be 1.6 [8]. The 2.1 is achieved by multiplying by
an additional “factor of safety” of 1.3. A second response is that we
do not see failures with the frequency that would be predicted if we
really had reductions on the order of 2.1. A third response is that
even if we really believed that lifetime reductions in strength were
of the order of 2.1, design engineers typically apply an additional
1.3 factor of safety (that does not take into account differences in
COV) to the allowable property. In this case, even if we assume a
2.1 reduction in strength due to duration of load, we have (here we
use the normal distribution for purposes of illustration)
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TABLE 2—Failure probabilities of single members (pg) and seven member assemblies (P) when the strengths of

the single members have been reduced by the factor r(t), the single members are subjected to a load equal to their

allowable property level, and the assemblies are subjected to a load equal to seven times the allowable property
level for a single member, “truncated lognormal” case.

p=0.5 p=0.7

Py Py

r(t) COV ps’ Weakest Link”  Load Sharing® s’ Weakest Link”  Load Sharing®

2.1 0.05 0.381E-01 0.238E+00 0.235E+00 0.344E-01 0.217E+00 0.145E+00
0.10  0.382E-01 0.239E+00 0.225E+00 0.344E-01 0.217E+00 0.139E+00
0.15 0.383E-01 0.239E+00 0.218E+00 0.344E-01 0.217E+00 0.134E+00
0.20  0.382E-01 0.238E+00 0.211E+00 0.344E-01 0.217E+00 0.130E+00
0.25 0.381E-01 0.238E+00 0.206E+00 0.344E-01 0.217E+00 0.128E+00
0.30 0.382E-01 0.239E+00 0.202E+00 0.344E-01 0.217E+00 0.126E+00
0.35 0.381E-01 0.238E+00 0.198E+00 0.344E-01 0.217E+00 0.124E+00
0.40 0.381E-01 0.238E+00 0.195E+00 0.344E-01 0.217E+00 0.122E+00

2.0 0.05 0.211E-02 0.147E-01 0.153E-01 0.105E-02 0.730E—-02 0.323E-02
0.10 0.103£-01 0.701E-01 0.659E—-01 0.718E—02 0.492E—-01 0.253E-01
0.15  0.164E-01 0.109E+00 0.979E-01 0.125E-01 0.844E-01 0.448E—-01
0.20  0.205E-01 0.135E+00 0.117E+00 0.164E-01 0.109E+00 0.578E-01
025 0.232E-01 0.152E+00 0.128£+00  0.190£E-01 0.126E+00 0.670E—-01
030 0.253£-01 0.164E+00 0.136E+00  0.210E-01 0.138£+00 0.734E-01
0.35 0.268E-01 0.173E+00 0.141E+00  0.226£-01 0.148E+00 0.772E—-01
0.40 0.278E-01 0.179E+00 0.144£+00  0.238E£-01 0.155E+00 0.814E-01

1.9 0.05 0.303E-04 0.212E-03 0.273E-03 0.343E-05 0.242E—-04 0.800E—-05
0.10  0.193E-02 0.134E-01 0.128E-01 0.894E-03 0.624E—-02 0.263E-02
0.15  0.595E-02 0.409E-01 0.359E-01 0.363E—-02 0.252E-01 0.112E-01
020 0.979E-02 0.665E—-01 0.569E—-01 0.676E—02 0.464E—-01 0.217E-01
0.25 0.131E-01 0.882E-01 0.733E-01 0.959E-02 0.653E-01 0.311E-01
0.30  0.158£-01 0.106E+00 0.850E-01 0.120E-01 0.811E-01 0.392E-01
035 0.179E-01 0.119E+00 0.943E-01 0.140E-01 0.937E-01 0.457E-01
0.40 0.197E-01 0.130E+00 0.102E+00 0.157E-01 0.105E+00 0.512E-01

1.8 0.05  0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.10 0.230E-03 0.161E—-02 0.159E-02 0.603E—-04 0.422E-03 0.132E-03
0.15 0.176E-02 0.122E-01 0.107E-01 0.792E-03 0.553E£-02 0.211E-02
020 0.422E-02 0.292E-01 0.241E-01 0.238E-02 0.165E-01 0.673E-02
0.25 0.684E—-02 0.469E-01 0.378E-01 0.431E-02 0.298E-01 0.126E—-01
0.30 0.926E—-02 0.631E-01 0.501E-01 0.631E-02 0.434E-01 0.191E-01
035 0.115E-01 0.779E—-01 0.606E—-01 0.812E—-02 0.555E-01 0.245E-01
0.40  0.133£-01 0.896E—-01 0.689E—-01 0.974E-02 0.662E—-01 0.298E-01

1.7 0.05 0.000E+00 0.000E+00 0.000E+00  0.000£+00 0.000E+00 0.000E+00
0.10  0.186E—04 0.130E-03 0.117E-03 0.229E-05 0.159E-04 0.300E—-05
0.15  0.400E-03 0.280E—-02 0.244E-02  0.126E-03 0.883E£—-03 0.276E—-03
020 0.159E-02 0.111E-01 0.907E-02  0.676E-03 0.472E—-02 0.166E—02
025 0.321E-02 0.222E-01 0.177E-01 0.167E—02 0.116E—-01 0.436E—02
0.30 0.505E-02 0.348E—-01 0.272E-01 0.302E-02 0.209E-01 0.834E-02
0.35  0.688E£—-02 0.472E-01 0.360E-01 0.439E-02 0.304E-01 0.126E-01
0.40 0.869E—02 0.593E-01 0.445E-01 0.579E—-02 0.398E-01 0.167E—-01

1.6 0.05 0.000E+00 0.000E+00 0.000E+00  0.000E+00 0.000E+00 0.000E+00
0.10  0.571E-06 0.417E-05 0.800E—-05 0.000E+00 0.000E+00 0.000E+00
0.15 0.714E—-04 0.500E—-03 0.474E—-03 0.133E-04 0.930E—-04 0.280E—-04
020 0.501E-03 0.350E-02 0.268£-02  0.163E-03 0.114E-02 0.294E-03
0.25 0.134E-02 0.936E—-02 0.730E-02  0.561E-03 0.392E-02 0.127E-02
030 0.255E-02 0.177E-01 0.133£-01 0.127E-02 0.886E—02 0.309E-02
0.35  0.396E—-02 0.274E-01 0.203£-01 0.217E-02 0.151E-01 0.564E—-02
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TABLE 2— (Continued.)

p=0.5 p=0.7
Py Py

r(t) COV ps” Weakest Link®  Load Sharing® ps’ Weakest Link® Load Sharing®
0.40 0.532E-02  0.367E-01 0.267E-01 0.315£-02  0.218E-01 0.839E-02

1.5  0.05 0.000E+00  0.000E+00 0.000E+00  0.000£E+00  0.000E+00 0.000E+00
0.10  0.000E+00  0.000E+00 0.000E+00  0.000£+00  0.000E+00 0.000£+00
0.15 0.101E-04  0.709E—04 0.500E-04  0.100E-05 0.709E-05 0.100E-05
020 0.121E-03 0.847E—-03 0.663E—03  0.281E-04  0.197E-03 0.570E—04
0.25 0.510E-03 0.357E-02 0.265E-02  0.149E-03 0.104E-02 0.299E-03
030 0.118£-02  0.822E—-02 0.589E—02  0.474E-03 0.331E-02 0.103E-02
035 0.204£-02  0.142E-01 0.105E-01 0.963E-03 0.672E—-02 0.221E-02
0.40 0.307E-02  0.213E-01 0.153E-01 0.158£-02  0.110E-01 0.378E—-02

1.0 0.05 0.000E+00  0.000E+00 0.000E+00  0.000£+00  0.000E+00 0.000£+00
0.10  0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.15  0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.20  0.000E+00  0.000E+00 0.000E+00  0.000E+00  0.000E+00 0.000E+00
0.25 0.000E+00  0.000E+00 0.000E+00  0.000£E+00  0.000E+00 0.000E+00
0.30  0.100E-05  0.709E—05 0.100E—-04  0.143E-06  0.834E-06 0.000E+00
035 0.153E-04  0.107E-03 0.510E-04  0.171E-05  0.121E-04 0.300E-05
0.40 0.424E-04  0.297E-03 0.195E-03  0.586E-05  0.409E-04 0.120E-04

*Monte Carlo result based on 7 000 000 simulated members.

"Weakest link—Pr=1—(1 —ps)’. This assumes that all members see the same load.

“Load sharing—Monte Carlo result based on 1 000 000 simulated assemblies. Due to load sharing, these simula-
tion estimates of P are generally smaller than the weakest link estimates.

ps=prob[N(u,a?)/2.1 < ((u— 1.645 X ¢)/2.1)/1.3]
= prob[N(u,0?)(1.3/2.1) < (u— 1.645 X ¢)/2.1]
~ prob[N(u,0%)/1.6 < (u— 1.645 X ¢)/2.1]

so the appropriate sections of our tables are those in which r(7)
=1.6. In these sections of the tables, P increases as COV increases.

The Wrong Lesson

In questioning the belief that higher COV material deserves a
higher repetitive member upward adjustment, we are not advancing
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FIG. 4—Truncated lognormal case. Here, for p=0.7, we have plotted the logs
(base 10) of the simulation Pr data in Table 2.
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an argument for upward adjustments in low-COV material that are
higher than allowed under current standards. As we noted earlier,
our simulations are based on a simple model of an assembly, and
although they are sufficient to cast doubt on the belief that higher
upward adjustments are justified for higher COV material, they are
not sufficient to identify proper upward adjustments (if any).

Summary

We have demonstrated that, for at least one hypothetical assembly,
from a reliability3 standpoint, upward repetitive member adjust-
ments that are larger for more variable material are not justified. On
the contrary, our simulations suggest that given the manner in
which individual element allowable stress levels are currently cal-
culated, as the COV of the strength distribution of individual ele-
ments increases, the upward repetitive member adjustments (if any)
of assemblies constructed from these elements should decrease.
These results stem from the fact that under current standards,
individual element allowable stress levels associated with higher
COV material correspond to larger probabilities of assembly fail-
ure. This, in turn, follows from the fact that allowable stress levels
are not as many standard deviations below mean strength for a
high-COV material as for a low-COV material. Thus, the probabil-

3In the simulations reported here, we assumed that the load was fixed at the
allowable property. More complete simulations would replace the fixed load
with a load distribution whose 99th (for example) percentile was set equal to the
allowable property.
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TABLE 3—Fuilure probabilities of seven member assemblies (Pp) when

strengths of single members have been reduced by the factor r(t) and the assem-

blies are subjected to loads adjusted in accordance with pre-2003 ASTM
D5055, truncated lognormal case.

Pt
r(t) (¢(0)% p=0.5 p=0.7
2.1 0.07 0.584E+00 0.521E+00
0.11 0.614E+00 0.558E+00
0.25 0.556E+00 0.497E+00
2.0 0.07 0.167E+00 0.937E-01
0.11 0.312E+00 0.225E+00
0.25 0.416E+00 0.339E+00
1.9 0.07 0.205E-01 0.518£—-02
0.11 0.108E+00 0.524E-01
0.25 0.284E+00 0.204E+00
1.8 0.07 0.115E-02 0.980E—-04
0.11 0.254E-01 0.715E-02
0.25 0.177E+00 0.107E+00
1.7 0.07 0.260E—-04 0.000E+00
0.11 0.388E—-02 0.556E-03
0.25 0.982E-01 0.486E-01
1.6 0.07 0.000E+00 0.000E+00
0.11 0.394E-03 0.200E—-04
0.25 0.483E-01 0.189E-01
1.5 0.07 0.000E+00 0.000E+00
0.11 0.280E—-04 0.100E-05
0.25 0.211E-01 0.601E£—-02
1.0 0.07 0.000E+00 0.000E+00
0.11 0.000E+00 0.000E+00
0.25 0.120E—-04 0.000E+00

*Monte Carlo result based on 1 000 000 simulated assemblies. The simulation
takes into account both load sharing and the upward adjusted loads.

ity, ps, that an individual element fails when subjected to a load
equal to its allowable stress level is larger for members from
strength distributions with larger COVs. This leads to a larger Pp,
the probability of at least one member failure in an assembly.

Our results should not be used to argue for a particular upward
adjustment in the standards. Improved analytical models and addi-
tional empirical testing would be required to establish appropriate
(if any) upward repetitive member adjustments.
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