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abstract
Detailed structural studies on the plant cell wall 
have traditionally been difficult. NMR is one of 
the preeminent structural tools, but obtaining 
high-resolution solution-state spectra has 
typically required fractionation and isolation of 
components of interest. With recent methods 
for dissolution of, admittedly, finely divided plant 
cell wall material, the wall can now be studied by 
solution-state NMR. Exploiting the dispersion of 
2D (and even 3D) NMR allows strikingly detailed 
structural analysis of the wall components 
without the need for isolation and fractionation. 
The initial method utilized acetylation of the 
wall to prepare optimal samples for NMR, but 
more recently we avoid the acetylation step; 
spectra from unacetylated walls have improved 
resolution of some components and allow natural 
acetylation (of polysaccharides and lignins) to be 
readily identified. The structural “fingerprint” of 
the cell wall produced by 2D 13C–1H correlative 
NMR experiments is potentially unmatched 
by any other spectroscopy. Dissolution/NMR 
methods therefore potentially lend themselves 
well to chemometrics methods once the issues 
of dealing with multivariate analyses on 2D NMR 
data have been addressed. Improved throughput 
(in principle, toward 50 samples per day) seems 
possible.

the original dissolution Method
Two H-bond-disrupting solvent 
systems to fully dissolve finely 
divided whole cell walls, DMSO-
N-methylimidazole (DMSO-NMI) 
and DMSO-tetrabutylammonium 
fluoride (DMSO-TBAF) were 
introduced in a cover article in 
The Plant Journal.1

 When walls in DMSO-NMI are acetylated, 
as is readily accomplished simply by adding 
acetic anhydride to the solvent after dissolution, 
the resultant acetylated cell walls (Ac-CWs) 
dissolved readily in common NMR solvents (e.g. 
CDCl3, DMSO-d6) allowing the application of high-
resolution solution-state NMR methods. 2D 13C–
1H correlative NMR at low level shows just the 
cellulose (and the methoxyl of lignin), illustrating 
how the entire 6 
correlation-contour 
pattern represents 
a (unique) profile 
for cellulose. Also, 
in (b), the solid-
state 13C NMR 
spectrum is shown, 
illustrating how 
much sharper 
the solution-state C1 
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spectra in (a) are. But it is 2D spectroscopy that 
has the spectral dispersion to make profiling the 
wall so powerful.

 At lower levels, NMR shows the entire 
wall profile and that, even in the presence of 
overwhelming polysaccharides, allows the 
identification of all the common lignin structures 
(colored). The syringyl/guaiacyl composition 
can be deduced from the aromatic region, and 
that the polysaccharides can potentially be 
distinguished, particularly in the anomeric region 
(yellow highlighting). 

direct in-nMr-tube dissolution
A logical extension to the method came once 
NMI-d6 was synthesized;2 — the finely-ground 
sample could be dissolved directly, in the NMR 
tube.

Pre-grinding steps are not normally required, but 
ball milling to about 5 micron is crucial. 
The resulting spectra were superior in some 
ways to those from the Ac-CWs. Some peaks 
we more dispersed (although others were less 
dispersed).

In particular, naturally acetylated polysaccharide 
units could be identified. These are important as 
they can limit saccharification. Here we see the 
natural acetylation of mannans and xylans (and 
the 2- and 3-positions of each).

The anomeric region was also particularly 
well dispersed, allowing the polysaccharides, 
including uronics, to be profiled; assignments 
remain incomplete, however.

Gel-State Modifications
It is not necessary to fully dissolve 
the wall. Simply swelling the finely 
divided cell wall sample in DMSO 
produces gels that give surprisingly 
good spectra.3

In grasses, p-coumarates (pCA), and the 
important ferulate (FA) cross-linking agents are 
readily identified. Full 2D spectra from the viscous 
gels can be acquired in <30 min! If sample 
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separated the normal (N) population from 
the tension wood (T) population, with the first 
principal component (PC1) accounting for 81% 
of the variation.10

In the PC1 2D NMR ‘reconstructed spectrum’ 
we can see that the cellulose is enhanced, as 
expected, with concomitant relative decreases 
in the levels of the hemicelluloses (mannan and 
xylan) and the lignin. An unknown polysaccharide 
is elevated — we are still tracking this down.
If just the aromatic region is subjected to PCA, 
we readily see that the syringyl units (and their 
attached p-hydroxybenzoates) are depleted in 
favor of guaiacyl units.
Further validation of the chemometrics 
methodology was by discovering, and 
subsequently authenticating by other methods, 
5% relative level changes in lignin units 
(syringyl:guaiacyl) caused by downregulation of 
a pectin methyl esterase — an enzyme whose 
effect on the cell wall was not known.10

conclusions
Detailing cell wall polymer composition and 
structure without the need for lengthy fractionation 
and component isolation is becoming a reality for 
some studies. Although there remain technical 
difficulties, and questions about whether some 
components are fully soluble (or fully swelled) 
and whether they are therefore fully represented 
in the spectra, the ability to now quickly profile the 
wall in a meaningful way is a significant advance. 
The NMR structural fingerprint coupled with 
mulitvariate analysis should allow correlations 
to be made between the profile and parameters 
in any process that depends on plant cell wall 
composition and structure!

preparation can be streamlined, the potential for 
using this method for screening may become a 
reality.

applications
The methods are relatively new, and work best 
with relatively modern NMR instrumentation with 
sensitive cryogenic probes, but have already been 
used in various studies on natural and transgenic 
plants,4-6 and to delineate the mechanisms of 
brown rot fungi.7 Entire-cell-wall 2D difference 
NMR spectroscopy has also become useful in, 
for example, establishing the incorporation of 
free ferulic acid into lignins in poplar deficient 
in cinnamoyl-CoA reductase (CCR),4,6 and 
to improve assignments in Gingko lignins in 
difference spectra from natural and specifically 
13C-enriched Gingko.8

chemometrics
2D NMR spectro-
scopy has not 
previously  been 
amenable to multi-
variate analysis 
(MVA). The Umeå group developed methods to 
allow the ‘2D NMR Profile’ to be used like any 1D 
spectrum in chemometrics.9

proof of concept
Poplar tension wood cells are loaded with 
cellulose. Can MVA reveal this difference? 

Spectra were acquired from 5 replicated samples 
of normal wood, and 5 tension wood samples. 
Principal component analysis (PCA) readily 
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