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INTRODUCTION 
Paper materials consist of a porous web of cellulose polymeric fibers held together  
by entanglement and fiber-to-fiber bonding.  These materials usually contain lignin and 
hemi-cellulose carbohydrates remaining from the pulping process.  Pulped fibers are  
a flattened ribbon shape on the order of 30 microns wide, 10 microns thick and from one to 
four mm long. Paper web porosity typically varies between 30 and 60% by volume.  All of 
these features increase the anisotropy and non-homogeneity of paper materials and 
complicate the characterization of mechanical properties.  The z-direction modulus of 
paper is an important property as it can affect calendaring and printing processes as well as 
performance of laminated paper products, such as postage stamps. Acknowledging the 
above, the present paper discusses the use of nanoindentation to measure the z-direction 
stiffness of paper. 
 
There is relatively little prior literature on measuring of z-direction moduli in paper.  
Pawlak and Keller [1] measured the compressive characteristics of paper sheets.   
Associated studies on paper are contained in Refs. 2-8. References 9 and 10 apply  
nano-indentation techniques to wood, whereas a relevant paper by Hasan et al. [11]  
uses nano-indentation to measure the mechanical properties of cell walls in aluminum foam. 
 
NANOINDENTAION: 
BACKGROUND AND 
TECHNIQUE 
Indentation techniques 
such as the Brinell, 
Rockwell and Vickers 
hardness tests have been 
employed since the early 
1900’s.  More recent 
indentation studies utilize 
highly instrumented 
equipment to monitor 
the applied load and 
associated displacement 

 
Fig. 1 – Typical load-depth (P-h) curve. 
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to characterize micro- and nano-scale mechanical properties (e.g., hardness, strength, 
residual stresses, fracture and elastic modulus/stiffness).   While various analyses have 
been developed to extract mechanical properties from measured nanoindentation load-
depth (P-h) data, the Oliver-Pharr method [12-14] is widely accepted.  This approach 
assumes (i) the unloading deformation is purely elastic; (ii) the radius of the contacted 
surface is very large compared with that of the indenter; and (iii) the compliances of the 
indenter tip and the sample combine to form an effective modulus. 
 
Knowing the Young modulus, E and Poisson ratio, ν, for the indenter material, and 
assuming ν2  for the specimen is small compared with one, the modulus of the specimen, Es, 
can be determined from the initial slope, S, of the unloading P-h curve, Fig. 1.  Jakes et al 
have demonstrated the possible need to account for structural compliance and/or 
significant local changes in in-plane compliance (e.g., when one approaches the edge of a 
specimen or when indenting between wood fibers) [10]. 
 
In the present work, the initial slope, dS/dh at Pmax, is evaluated from the analytical 
derivative of a 6th-order polynomial that is fit to the unloading data. 
 
Nanoindentation studies 
utilize spherical, flat/ 
cylindrical or pyramid 
(Berkovich) shaped indentor 
tips.  A spherical indenter 
tip is preferred for 
materials with high 
surface roughness, such as 
paper.   Most chemically 
pulped papers have local 
topographic features with 
roughness variations on 
the order of the fiber 
height, about 10μm. The 
contact area of a flat, 
punch-type, indentor tip is 
unknown for materials with 
these features, especially 
at penetration depths of 
less than the surface 
roughness. A spherical 
indentor tip provides in-
creasing contact area with 
penetration, tending to 
minimize the effect of 
local roughness variations. 
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Fig. 2 - Measured z-direction stiffness of envelope paper vs total 
penetration depth.  Three data sets that were obtained from two 
different systems (H-Hysitron and M-MTS) and using two 
different size spherical indenters (L-260 μm and S-127 μm) are 
shown.  The line included for each data set is a power law fit as 
is included simply too guide the eye. 



Classical nanoindentation analyses assume that the material being assessed is 
homogeneous, isotropic, elastic, and occupying a half space. The present paper samples are 
non-homogeneous, their constitutive response is anisotropic, nonlinear and inelastic, and 
they are relatively thin (~80 μm thick). 
 
RESULTS AND SUMMARY 
The z-direction stiffness of envelope paper has been measured using two different 
commercial nanoindentation systems: a Hysitron Triboindenter and an MTS Nano Indenter 
XP.  Spherical indenter tips, with radii of either 127 μm or 260 μm, were employed.  
Figure 1 shows a typical P-h curve obtained on paper, consisting of loading, hold and 
unloading segments.  Note that during the hold period, creep of the paper is observed.  
 
Figure 2 summarizes data from a series of indentation tests completed to examine variation 
in z-direction stiffness with depth.  Each data set was obtained by conducting multiple 
indentation tests of varying depths and extracting the z-direction stiffness for each 
measurement.  Results of Fig. 2 show a significant decrease in effective stiffness with 
indentation depth. An expanded set of measurements and a description of the underlying 
mechanics contributing to the observed decrease in stiffness with increasing depth will be 
presented. 
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