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Abstract. The anisotropy of wood creates a complex problem requiring that analyses be based on 
fundamental material properties and characteristics of the wood structure to solve heat transfer problems. 
A two-dimensional finite element model that evaluates the effective thermal conductivity of a wood cell 
over the full range of moisture contents and porosities was previously developed, but its dependence on 
software limits its use. A statistical curve-fit to finite-element results would provide a simplified expres­
sion of the model’s results without the need for software to interpolate values. This paper develops an 
explicit equation for the values from the finite-element thermal conductivity analysis. The equation is 
derived from a fundamental equivalent resistive-circuit model for general thermal conductivity problems. 
Constants were added to the equation to improve the regression-fit for the resistive model. The equation 
determines thermal conductivity values for the full range of densities and moisture contents. This new 
equation provides thermal conductivity values for uniform-density wood material using inputs of only 
oven-dry density and moisture content. An explicit method for determining thermal conductivity of 
uniform density wood cells has potential uses for many wood applications. 

Keywords: Resistive-circuit modeling, wood cell, thermal conductivity, moisture content, heat transfer, 
cellular structure, finite element modeling, anisotropy. 

INTRODUCTION	 Anisotropy of wood is due to wood fiber’s ra­
dial, tangential, and longitudinal orientation (Fig 

The structure of wood has a significant effect on 1) and the structural differences between the de-
its heat transfer process as when drying lumber, velopment of earlywood and latewood bands for 
heating logs in veneer mills, or hot-pressing each annual ring (Fig 2). In two previous papers 
wood composites. Therefore, for optimum wood (Hunt and Gu 2006; Gu and Hunt 2006), a finite 
heating, whether from mature or small-diameter element (FE) model was presented that solved 
trees, the fundamental heat transfer properties for the heat transfer coefficient of a wood cell 
are needed to accurately predict process condi­ structure over the full range of porosities (or 
tions. density) but without any moisture effect. 

Moisture has a significant effect on the heat­
* Corresponding author: jfhunt@fs.fed.us	 transfer coefficient, but to measure this effect is 
† SWST member not easy. Early in the 1940s, MacLean (1941) 1 This article was written and prepared by U.S. Government 

pointed out that conductivity of wood at various employees on official time, and it is therefore in the public 
domain and not subject to copyright. moisture contents, as determined under steady-
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FIGURE 1. Three principal axes of wood with respect to 
fiber direction and growth rings. 

state conditions, does not represent true conduc­
tivity of wood under the original moisture-
distribution conditions. This change from the 
original uniform to steady-state redistributed 
moisture is a result of the process to conduct the 
experiment that causes moisture to migrate and 
results in slight errors in measurement. There­
fore, we believe a better value of thermal con­
ductivity of wood can be obtained by theoretical 
modeling because modeling with fundamental 
principles does not involve moisture redistribu­
tion errors associated with physical testing. The 
FE model results were compared with Mac­
Lean’s data in a previous paper (Gu and Hunt 
2006), and showed fair agreement for average 
wood densities. However, when extrapolated be­
yond the empirical equation’s data set, Mac­
Lean’s equation does not approach those of pure 
substances on either end of the density scale. A 

new set of equations of heat transfer will help 
determine thermal conductivities over the full 
range of moisture contents and densities that 
could be used to better understand the wood– 
water–density relationships in the heat-transfer 
processes. 

Previous models using a cellular structure of 
wood have been developed (Hart 1964 and Siau 
1995) to describe thermal conductivity. They 
used an electrical resistive modeling technique 
to describe thermal conductivity effects for a 
unit cell. Equivalent electrical resistive-circuit 
thermal conductivity models have been exten­
sively developed for many nonwood applica­
tions. These steady-state one-dimensional equa­
tions are well established and found in funda­
mental heat transfer textbooks. Hart’s model 
describes thermal conductivity only in the cell-
wall material but does not include any effect of 
air, vapor, or free water in the cell lumen. Siau 
also uses a resistivity-circuit model and does in­
clude vapor effects in the lumen. He also limited 
his investigation to moisture content (MC) be­
low the fiber saturation point (FSP) and porosi­
ties greater than 25%, thus not dealing with free 
water in the lumen. No other model was found in 
the literature on wood cellular thermal conduc­
tivity that covered the full range of porosity or 
density and moisture contents for the wood cell. 

The thermal conductivity models developed by 
Hart and Siau were one-dimensional, whereas 
the FE model previously described (Hunt and 

FIGURE 2. Microscope images of softwood structure in earlywood (left) and latewood (right) regions. 
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Gu 2006; Gu and Hunt 2006) uses the FE ap­
proach to incorporate two-dimensional analysis. 
We believe the FE modeling approach may be a 
better predictor of cellular thermal conductivi­
ties for the full range of cellular density and 
moisture contents because the heat transfer in a 
wood cell involves complex two- and three-
dimensional flow and should be studied using a 
method capable of handling these complex char­
acteristics. For through-the-thickness analysis, a 
two-dimensional model can provide a better un­
derstanding of the wood–water relationship in 
the heat transfer process. 

FINITE ELEMENT MODEL—DISCUSSION 

The material properties used for input variables 
in the FE model for the cell-wall substance, 
bound water in the cell wall, air, water vapor, 
and free water in the lumen, are listed in Table 1. 

The results from the FE modeling studies (Hunt 
and Gu 2006; Gu and Hunt 2006) are plotted as 
a function of wood cell oven-dry density (Fig 3). 
For each line shown, 0% porosity (an impossible 
case, but shown for theoretical purposes) is on 
the right end, and 90% porosity is on the left 
end, with increments of 10% porosity plotted 
between these two extremes. All the thermal 
conductivity values from the FE model are based 
on the property values at 30°C. Values at other 
temperatures can be reestimated by the model or 

TABLE 1. Physical and thermal properties. 

using the simple K-Temp relationship given by 
Siau’s Eq (5.23) (1995). 

Thermal conductivity values at four moisture 
content (MC) conditions are plotted in Fig 3: 1) 
0% MC (oven-dry); 2) 30% MC in the cell wall 
(FSP); 3) cell lumen filled with 50% free water; 
4) a fully saturated lumen (the maximum MC 
condition). For this model, the FSP is assumed 
to be nominally 30% but could range 25–35% 
based on extrapolated adsorption data from the 
dry-condition or even as high as 40% from 
never-dried wood (Stamm and Smith 1969). 
These plots show that when wood is not fully 
saturated by water (ie certain amount of free 
water and vapor in lumen), there is a significant 
increase in thermal conductivity as density in­
creases (porosity decreases). But when the cell 
lumen is fully filled with free water (the maxi­
mum moisture content of wood at that porosity 
or density), the thermal conductivity decreases 
as density increases. At fully saturated condi­
tions, the thermal conductivity through the water 
dominates the thermal conductivity effect 
through the wood cell structure. Thus the lower 
the density (or the higher the porosity), the more 
water in the wood lumen, the higher the effec­
tive thermal conductivity for wood. Theoretical­
ly, the maximum thermal conductivity of a fully 
saturated cell approaches that of water (0.61 
W/m-K) as porosity approaches 100%. While at 
any nonfully saturated conditions, low thermal-

Material properties in the cellular model 

Symbol Thermal conductivity (W/m·K) Density (kg/m3) Specific heat (J/kg·K) 

Cell-wall substance (0% MC)1 kCW 0.410 1540 1260 
Air in the lumen (0% MC)2 kair 0.026 1.161 1007 
Bound water in cell wall3 kBW 0.680 1115 4658 
Saturated cell wall (FSP)4 kf 

7 0.489 1415 2256 
Water vapor in cell lumen5 kV 0.018 0.734 2278 
Free water in cell lumen6 kFW 0.610 1003 4176 

Note: 
1. Property values for cell-wall substance at 0% MC was obtained from Siau’s book (1995). 
2. Air property values for air were obtained from Incropera and DeWitt (1981). 
3. Density of bound water was obtained from Siau (1995). Thermal conductivity and specific heat of bound water was obtained based on water properties and 

assumption of the linear relationship with density. 
4. Property of saturated cell wall was obtained by rule of mixture. FSP, fiber saturation point. 
5. Property values of water vapor were obtained from Ierardi (1999). 
6. Property values of free water were obtained from Incropera and DeWitt (1981). 
7. The kf is constant when MC is over FSP, but changes with MC below FSP. 
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FIGURE 3. Thermal conductivity values predicted from the FE model plotted vs oven-dry density of a wood cell and 
compared with MacLean’s (1941) empirical equations estimates. 

conductive water vapor in the cell lumen has a 
dominant effect on Keff-density relationship. 
Thus a cell with an increasing amount of water 
vapor results in decreasing thermal conductivity. 

Plots extrapolated from MacLean’s (1941) two 
empirical equations are also shown in Fig 3. One 
equation is for MC <40% and the other for MC 
>40% MC. Most of MacLean’s test data were 
measured using wood blocks having a density 
between 600 and 1200 kg/m3. In Fig 3, Mac­
Lean’s equations are extrapolated beyond the 
data test conditions and show that they do not 
adequately describe wood-cell thermal conduc­
tivity over the full range of densities and mois­
ture conditions. The differences and similarities 
of the two modeling approaches are discussed in 
a previous paper (Gu and Hunt 2006). 

The 2D FE model can analyze the geometrical 
description of the cell, including the interior ra­
dius of the lumen as part of the heat transfer 
effects, which is not possible at the cellular level 
with other models or average-density empirical 
models. The FE results plotted for selected con­

ditions are useful for understanding general 
trends, but for practical everyday use it would 
require interpolation between plotted figures or 
tabled data to determine the thermal conductiv­
ity at any other condition between plotted val­
ues. The usefulness of the FE model would be 
better if an independent equation could be de­
veloped that fits results. This study focuses on 
developing an explicit equation for thermal con­
ductivity by curve fitting an electrical-resistive­
circuit equation to the FE model results (Gu and 
Hunt 2006) based on the cell-wall structure. 

RESISTIVE CELL MODELS 

An equation or equations that would describe the 
thermal conductivity results and could be used 
independently of any FE computer program or 
used for other heat and mass transfer calcula­
tions would be ideal. A typical polynomial re­
gression of the FE data was initially tried but 
did not fit well because of the complex interac­
tion of density and moisture content. Building 
on the ideas of Hart and Siau mentioned earlier, 
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a resistive-circuit model that would have inputs 
of both density and moisture content was tried. 
In setting up the resistive circuit, two basic ap­
proaches were evaluated. The first approach as­
sumes parallel-circuit (Fig 4a) heat flux paths 
across the unit cell, and the other approach as­
sumes a series-circuit (Fig 4b) heat flux path. 
The assumptions made in developing the physi­
cal model of the cell structure are listed in the 
Appendix. The purpose for using these two ap­

proaches was to determine which might have a 
closer relationship to FE model results. In the 
parallel-circuit flow approach, the cell was di­
vided into independent parallel paths (dotted 
horizontal lines), Fig 4a, that were modeled by 
the resistive-circuit shown. The top resistance 
path, R1, represents the cell wall plus any bound 
water (Y1) over the cross-section area L-a for 
the full length of the cell wall, L (Fig 4a). The 
middle resistance path, R2, represents the series 

FIGURE 4. Two electrical resistive-circuit models used to describe heat flow through a wood cell: a. parallel flow and b. 
series flow. 
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path of the cell wall and any bound water (Y2) 
plus free water (Y3) across the cross-section 
area of a-b for the full length of the cell, L. The 
bottom resistance path, R3, represents series 
path of the cell wall and any bound water (Y4) 
plus free water (Y5) plus water vapor (Y6) 
across the cross-section area of b for the full 
length of the cell, L. 

Similarly, the cell can also be divided into flow 
paths that can be modeled by a series resistive 
circuit, shown as material grouped by vertical 
dotted lines as shown (Fig 4b). The first resis­
tance path, R4, represents the cell wall plus any 
bound water (X1) over the cross-section area L 
for part of the length of the cell wall, L-a (Fig 
4b). The middle resistance path, R5, represents 
the parallel path of the cell wall and any bound 
water (X2) plus free water (X3) across the cross-
section area of L for the partial length of the cell, 
a-b. The end resistance path, R6, represents par­
allel path of the cell wall and any bound water 
(X4) plus free water (X5) plus water vapor (X6) 
across the cross-section area of L for the partial 
length of the cell, b. The two approaches are 

described in more detail in the Appendix and the 
resulting thermal conductivity, Keff, is the in­
verse of effective resistance, Reff, Eq (1). 

1 
Keff = (1)

Reff 

Comparison of resistive models with FE 
model results 

Both the parallel and series approaches were 
evaluated at the six moisture conditions de­
scribed above. A reduced set of results is plotted 
in Fig 5 (for clarity) and compared with the 
matching FE model curves. The two resistive-
circuit models give slightly different results. The 
parallel heat flow model predicts lower Keffp val­
ues than the FE model, and the series flow 
model predicts a slightly higher but closer ther­
mal conductivity, Keffs. Both resistive models 
converge to pure thermal conductivity values at 
either extreme of the density range. On one end 
where porosity has 0% pure cellulose alone or in 
combination with the bound water, thermal con-

FIGURE 5. Comparison of thermal conductivity values for the FE model, parallel electrical resistance model, and series 
electrical resistance model. 
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ductivity approaches that of cellulose with or 
without moisture. On the other end where po­
rosity approaches 100% (no cell-wall material), 
thermal conductivity approaches that of 100% 
air, 100% water vapor, and 100% fully saturated 
free water at each of the MC conditions, respec­
tively. This indicates that the resistance model 
equations are predicting near realistic thermal 
conductivities for the MC conditions. 

Differences between the two circuit approaches 
are due to how they represent the equivalent 
thermal system. Both circuits as well as the FE 
model assume that uniform temperature exists at 
either side of the cell. The parallel circuit as­
sumes that horizontal paths through the cell do 
not interact with the adjacent flow path but are 
configured as independent paths, R1, R2, and 
R3, across the entire cell. These resistive circuits 
are then combined into one final resistance value 
using the parallel circuit equation, Appendix Eq 
(A1). If any one resistance path has significantly 
lower or higher resistance, it will significantly 
affect the final total value and hence effective 
thermal conductivity values. The cell conditions 
where air and water vapor represent most of the 
cross-sectional area in the lumen. Because they 
have significantly lower thermal conductivity, 
the calculated total effective thermal conductiv­
ity is below that of the FE results. The parallel 
flow also does not account for any flow across 
parallel boundaries. 

For the series circuit, the theory assumes uni­
form temperature at the boundaries of each com­
bination of resistances R4, R5, and R6. Heat 
flow is conducted uniformly through a section of 
similar geometry and material until it encounters 
a change (lumen without or with water). Then 
another equivalent resistive parallel circuit path 
is calculated but only across that new change. 
This assumption is incorrect, but recalculation of 
resistances at each change of cell configuration 
may account for some “two-dimensional” flow 
by changing equivalent resistances at midcell, 
thus slightly increasing or decreasing the effec­
tive thermal conductivity. Two-dimensional 
flow assumes that the path may have X and Y 
vector components that allow for “flow” around 

a higher resistance component of the cell struc­
ture. These resistive circuits are then combined 
into one final resistance value using the series 
circuit equation, Appendix Eq (A14). 

Neither resistive model accurately describes the 
2D thermal conductivity, but the series circuit 
(Fig 4b) better represents the FE thermal con­
ductivity characteristics. The series model was 
thus used to develop a curve fit equation that can 
be explicitly used to determine thermal conduc­
tivity for all MC conditions of the cell wall with­
out having to interpolate between values or re­
program an FE program to a particular set of 
conditions. 

Curve-fit thermal conductivity equation 

The series resistive-circuit model parameters 
(represented below by constants C4, C5, and C6) 
were estimated by nonlinear curve-fitting the FE 
model data (Keff) to the inverse of the resistive 
model data (1/Reff) at the same density and MC 
conditions. One set of parameters was developed 
for all MC conditions from 0% to a fully satu­
rated lumen. The fundamental equation for the 
series resistive circuit, Eq (2), was used to de­
termine the parameters. 

Reff = C4R4 + C5R5 + C6R6 
X2X3 

= C4X1 + C5 
X2 + X3 
X4X5X6 

+ C6 (2)
X4X5 + X4X6 + X5X6 

where 

R4 is the horizontal flow through the cell wall 
(with bound water) along the thickness of the 
cell wall (L-a) (Fig 4b). 

R5 is the parallel horizontal flow through the 
saturated cell wall and free water (depending 
on moisture content) along the thickness of 
the free water (a–b) (Fig 4b). 

R6 is the parallel horizontal flow through the 
saturated cell wall, free water, and water va­
por along for the thickness of the water vapor 
(b) (Fig 4b). 
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X1, X2, X3, X4, X5, and X6 are calculated re­
sistance values, see Appendix for details. 

Though the FE model is deterministic in nature, 
nonlinear least squares was used to obtain pa­
rameter estimates, which are derived iteratively 
by minimizing the squared error between the 
calculated FE Keff and the fitted conductance 
K̂ 

eff�((1̂)/(Reffs)). These were fit with the sta­
tistical package S-PLUS 6.1 (Insightful Corpo­
ration 2001). Fits were evaluated based on the 
residual plots and error statistics for the fitted 
data, see Table 2. 

Thermal conductivity equations 

The wood cell resistive variables X1, X2, X3, 
X4, X5, and X6 of Eq (2) can be described in 
terms of the geometrical terms shown in Fig 4 
and the fundamental thermal conductivity values 
in Table 1. Simplifying and substitution of terms 
in Eq (2), (details can be found in Appendix) one 
equation can describe the effective thermal con­
ductivity for a wood cell within all ranges of 
moisture contents and densities, Eq (3). 

Keff = 
�L − a�Kf 

a 
�a − L��� − 1�C4 + Kf
 

�a − b�C5 bC6
� + 

L 

���a − L�Kf − aKfw �a − L�Kf + �b − a�Kfw − bKv 

(3) 

The geometric variables a, b, L, (Fig 4) and ther­
mal variables Kf (Table 1) in Eq (3) are not 
constants but are dependent variables that are 
derived from the oven-dry density (ODD), �od, 
of a wood cell and its MC. To determine the 

TABLE 2. Parameter estimates for the series resistive 
model fit. 

Estimate Standard error 

MC 0% to fully saturated 
C4 1.00825 0.00663 
C5 0.9938 0.00792 
C6 1.07389 0.00911 

RMSE � 0.0088 

effective thermal conductivity, Keff, the follow­
ing equations need to be determined. 

First, based on the ODD of the cell wall, dry 
porosity Pd can be determined from Eq (4). 

�cw − �od
Pd = (4)

�cw − �air 

(Detail derivation of all the equations in this 
section can be found in the Appendix). 

If the wood cell has any moisture, then the vol­
ume percent of bound water in the cell wall 
needs to be determined using Eq (5). For MC � 
0.3, V%bw can be determined by Eq (5) assum­
ing MCf @ MC, where MCf is the moisture 
content in wood fiber cell wall and MC is the 
overall moisture content of wood. However, for 
MC > 0.3, MCf stays the same after reaching the 
FSP; thus V%bw is a constant and calculated at 
0.293. If the FSP is other than the assumed 30%, 
then Eq (5) can still be used to determine V%bw 

by changing MCf . The same assumptions still 
apply, that once the FSP has been reached, the 
volume of bound water within the cell wall does 
not increase as the overall MC increases. 

MCf�
V%bw ≅ 

cw (5)
MCf�cw + �bw 

With the addition of moisture into the cell, cell 
lumen a2 is assumed to remain constant, but the 
outside dimension L increases until fiber cell 
wall is saturated at MC � 0.3. The porosity 
value also changes from the dry porosity value 
to a new wet porosity value, Pw, determined us­
ing Eq (6). 

�1 − V%bw�Pd a2 

Pw = = (6)
1 − V%bwPd L2 

The variable L can then be determined either by 
rearranging the terms in Eq (6) in combination 
with Eq (4) or by using Eq (7) and inserting 
values determined for Pw and MCf. 

L2 
�bw + MCf�cw = (7)

�bw + MCfPw�cw 



175 Hunt et al—THEORETICAL THERMAL CONDUCTIVITY EQUATION FOR WOOD CELLS 

Then b can be determined. For MC < 0.3 there is 
no free water in the lumen and b � 0 (Fig 4). 
However, for MC above 0.3, there is assumed 
free water evenly distributed around the inner 
lumen that extends into the middle of the lumen 
dimension b. This dimension can be determined 
by Eq (8) and variable values a2, V%bw, and Pw 

from the previous equations and constants from 
Table 1. 

� 
a2��1 − Pw��V%bw�bw −
 

�1 − V%bw�MC�cw� + Pw�fw�
 
b = 

Pw��fw − �v� 
(8) 

The thermal conductivity of the cell wall with 
absorbed bound water changes depending on the 
MCf and can be determined using rules of mix­
tures as defined by Eq (9). 

Kf = Kcw�1 − V%bw� + KbwV%bw (9) 

Above FSP (for MC > 0.3) the cell wall is fully 
saturated with bound water and MCf stays un­
changed at 30%. Using the rule of mixtures, the 
fiber cell-wall thermal conductivity is deter­

mined to be Kf � 0.4891; Table 1, for MCf � 
0.3, and V%bw of 0.293 as calculated earlier (Eq 
(5)). 

Using Eqs (4) through (9), we can calculate Keff 

values as Eq (3), and plot as a function of both 
ODD and MC. A more thorough development of 
the equations is provided in the Appendix. Fig­
ure 6 shows an improved fit with the FE values 
for the calculated resistive-series circuit equa­
tion with the addition of the appropriate param­
eters. 

Other wood cell conditions 

While the conditions outlined in this paper are 
30°C and FSP � 30%, other conditions may 
need to be evaluated. We believe this equation 
can be used to determine thermal conductivity 
estimates for other wood cell conditions as a 
function of temperature or FSP. It is possible to 
input new values for the cell-wall material. 
Bound water, free water, and water vapor could 
be determined and the equations used to estimate 
thermal conductivity. A more rigorous effort 

FIGURE 6. The calculated resistive-series circuit equation with the appropriate parameters improves the fit with the FE 
values. 
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could include equations that characterize the 
changes to density and thermal conductivity val­
ues for the cell-wall material, bound water, free 
water, and water vapor described as a function 
of temperature. These could then be inserted into 
the appropriate equations listed above. The 
trends for the new thermal conductivity esti­
mated values should follow the same basic 
trends for the FE analysis. However, if a more 
rigorous approach is needed and thermal con­
ductivity for extreme temperature conditions is 
wanted, then it may be necessary to rerun the FE 
model to verify the shape of the curves and ad­
just the fit parameters. 

A simple approach to determining the estimated 
changes to wood cell thermal conductivity 
would be to use Siau’s K-Temp relationship Eq 
(5.23) (1995). It assumes a simple relationship 
with temperature. 

It is also possible that for some wood cells or 
conditions, the FSP is not 30%. In the same way, 
the equations can be used to estimate thermal 
conductivity values where FSP is higher or 
lower. Calculations and plots of results were ex­
amined (not shown) to determine the shape of 
the thermal conductivity curves for FSPs of 20 
and 40%. The FE thermal conductivity estimates 
followed the same curves as those shown, only 
shifted slightly up or down from that of FSP at 
30%. The curves still approached the pure sub­
stance values at 0 or 100% porosity conditions, 
but based on the new set of conditions. 

SUMMARY AND CONCLUSIONS 

One explicit equation was developed that 
matches the FE model data so that thermal con­
ductivity information on a cell level can be de­
termined across the full range of density and 
moisture conditions without the need for FE 
software. Having thermal conductivity values of 
actual cellular characteristics of the wood can 
help in studying the heat transfer effects in wood 
boards where earlywood and latewood densities 
(porosity), ring orientation, growth rate, and ear­
lywood/latewood ratio are significantly differ­
ent. The thermal conductivity equation or values 

developed in this study are for uniform density 
wood cells only. We will model and report in the 
next paper effective thermal conductivity values 
for wood boards across multiple bands of high/ 
low density or earlywood/latewood bands in the 
structure. 

The equation can also be used to determine es­
timated thermal conductivity values at tempera­
tures other that 30°C by either using tempera-
ture-dependent relationships of individual input 
variables or by using the equation for a simple 
K-Temp relationship given by Siau’s Eq (5.23) 
(1995). 

Similarly, the equation can be used to determine 
estimated thermal conductivity values where 
FSP is other than 30%. By changing the volume 
percent of bound water, V%bw, (Eq (5)) and re­
calculating the values, the equation will calcu­
late values that follow the same general trends 
and approach “pure” substance thermal conduc­
tivity values at either 0 or 100% cell-wall po­
rosity. 

If significant material property changes were de­
termined or unusual conditions existed. it may 
be necessary to reevaluate thermal conductivity 
using a finite element approach and then new 
parameters determined for those specific condi­
tions. The benefit here is that an equation has 
been developed that is independent of any spe­
cific software and could be easily used to help 
estimate the thermal conductivity of wood cell 
material. 

NOMENCLATURE 

a� lumen dimension 
b� vapor dimension inside the lu­

men 
C� constant parameter 
K� thermal conductivity 
L� full width and height of the cell 
P� porosity 
R� thermal resistance 

V%� volume percent 
Subscript air � pure air 
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Subscript CW � pure cell-wall substance (no 
water) 

Subscript d � dry 
Subscript eff � effective 

Subscript f � fiber or cell wall with bound 
water 

Subscript FW � free water 
Subscript od � oven-dry
 
Subscript V � water vapor
 
Subscript w � wet
 

Subscript BW � bound water 
�� density 
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APPENDIX 

The use of resistive circuits to determine thermal 
conductivity is well documented in elementary 
heat transfer textbooks (Incropera and DeWitt 
1981). The arrangement of the resistive elements 
that describe the heat flow can vary depending 
on the description of the path and may result in 
slightly different end values. To evaluate the ef­
fective thermal conductivity in a wood cell using 

the resistive-circuit models, several assumptions 
were made in the geometry and for the moisture 
distribution within the cell. The assumptions are 
as follows: 

STRUCTURAL ASSUMPTIONS 

The cell and associated geometry are square as 
shown in Fig 4. 

Unit dimensions are for cells at oven-dry condi­
tions. 

All moisture absorbed by the cell wall (bound 
water) is added as a dimension change to the 
outside of the unit cell (L-1), and the change 
to the outside of the cell is used for simple 
flow path defined in the resistive models. 

The temperature for all the materials is 30°C. 

Maximum expanded dimension to the unit cell is 
at the FSP of 30% MC. 

Assumptions for MC conditions from 0% 
to FSP 

At 0% MC, the lumen has 100% air in the lu­
men. 

At MC conditions from 0% to FSP, the initial 
moisture goes to the lumen first to create a 
vapor-saturated lumen condition with the re­
maining moisture going into the cell wall. 

With an increase in moisture, the lumen size 
remains the same and all dimensional change 
because of the increase in MC is added to the 
outside of cell-wall dimension. 

Thermal conductivity of the cell wall is deter­
mined using the rule of mixtures. 

Assumptions for MC conditions from FSP 
to FS 

The lumen contains a combination of saturated 
vapor and free-water in the lumen. 

For MCs above FSP, the vapor in the lumen is at 
saturated vapor conditions; the cell wall has a 
constant weight ratio for bound water to cell-
wall substance (MCf) at 0.3; and the remain­
ing moisture goes to free water in the lumen. 

Free water in the lumen is bound uniformly to 
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the inner surfaces of the lumen due to capil­
lary forces, and gravity does not have an ef­
fect. 

The lumen size remains the same and the maxi­
mum expanded dimension of the cell remains 
the same because of the constant MC in the 
cell wall after reaching FSP. The addition of 
free water in the lumen does not increase the 
size of the unit cell. 

Thermal conductivity of the cell wall is constant 
after the FSP and is determined by the rule of 
mixtures with bound water and cell-wall sub­
stances. 

PARALLEL RESISTIVE MODEL 

The representative effective resistance (Eq 
(A1)), Reffp, for the parallel model (Fig 4a) is: 

C1C2C3R1R2R3 
Reffp = 

C1C2R1R2 + C1C3R1R3 + C2C3R2R3 
(A1) 

where C1, C2, and C3 are experimental con­
stants. 

Resistances R1, R2, and R3 through for the full 
length of the cell were calculated using the fol­
lowing equations: 

L 
R1 = Y1 = 

Kf�L − a� 
(A2) 

L − a a 
R2 = Y2 + Y3 = 

Kf�a − b� 
+ 

Kfw�a − b� 
(A3) 

L − a a − b b 
R3 = Y4 + Y5 + Y6 = + +

Kf�b� Kfw�b� Kv�b� 
(A4) 

L is full width and height of the cell.
 

a is lumen dimension.
 

b is vapor dimension inside the lumen.
 

Kf is thermal conductivity for the fiber (or bound
 
water saturated cell wall), determined by the 
rule of mixtures using volume percent of both 
bound water and cell-wall substance. 

Kfw is thermal conductivity for free water. 

K is thermal conductivity for water vapor. 

Y1 is resistance of the top and bottom cell wall 
with the full length of the cell, L, and across 
the effective area (L-a) (Fig 4). 

Y2 is resistance of the cell wall along the hori­
zontal path of the cell wall, L-a, across the 
effective area (a-b) with b � a at the fiber 
saturation point (FSP) (Fig 4). 

Y3 is resistance of the free water along horizon­
tal path of the lumen, a, across the effective 
area (a-b) with b � a at the FSP (Fig 4). 

Y4 is resistance of the cell wall along the hori­
zontal path, L-a, across the effective area (b) 
with b � a at the FSP (Fig 4). 

Y5 is resistance of the free water along the hori­
zontal path, a-b, across the effective area (b) 
with b � a at the FSP (Fig 4). 

Y6 is resistance of the water vapor along the 
horizontal path, b, across the effective area (b) 
with b � a at the FSP (Fig 4). 

The experimental constants C1, C2, and C3 were 
not determined in this study because efforts were 
focused on determining the experimental con­
stants for the series model because the series 
circuit’s better representation of the FE model 
results, which is discussed in the next section. 

SERIES RESISTIVE MODEL 

For series flow model, the cell was divided into 
vertical sections, Fig 4b. The representative ef­
fective resistance, Reffs for the series model is 

Reffs = C4R4 + C5R5 + C6R6 
X2X3 

= C4X1 + C5 
X2 + X3 
X4X5X6 

+ C6 
X4X5 + X4X6 + X5X6 

(A5) 

The series resistance components were com­
bined using the parameter weights C4, C5, and 
C6 for the respective resistances R4, R5, and R6. 

where 
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R4 is the horizontal flow through the cell wall 
along the thickness of the side cell wall (L-a) 
(Fig 4b). 

R5 is the parallel horizontal flow through the top 
and bottom cell wall and free water (depend­
ing on moisture content) along the thickness 
of the free water (a-b) (Fig 4b). 

R6 is the parallel horizontal flow through the top 
and bottom cell wall, free water, and water 
vapor along for the thickness of the water va­
por (b) (Fig 4b). 

The individual resistances X1, X2, X3, X4, X5, 
and X6 were calculated using the following 
equations: 

L − a 
X1 = (A6)

Kf�L� 

a − b 
X2 = (A7)

Kf�L − a� 

a − b 
X3 = (A8)

Kfw�a� 

b 
X4 = (A9)

Kf�L − a� 

b 
X5 = (A10)

Kfw�a − b� 

b 
X6 = (A11)

Kv�b� 

INPUT VARIABLES FOR THE
 

RESISTIVE-CIRCUIT MODELS
 

The FE models that were developed (Hunt and 
Gu 2006; Gu and Hunt 2006) to determine Keff 

values under geometrical conditions (% cell po­
rosity) and known moisture content conditions 
(FSP, 50–50% water vapor/free water in the lu­
men, and FS) were used as input values for the 
resistive models. The goal of this paper was to 
describe thermal conductivity of the wood cell in 
terms of oven-dry density (ODD and MC). The 
following equations were used to describe the 
basic geometry of the wood cell in terms of 
ODD and MC. The initial description is based 
on the cell porosity Pd or lumen area a2 to unit 

cell ratio 12 (Fig 4) at 0% MC. The ODD or �OD, 
of the cell is described by density of the cell 
wall, �cw, density of the air, �air, and the oven-
dry porosity, Pd, in Eq (A12). 

�OD = �cw�1 − Pd� + �airPd (A12) 

Pd is determined by rearranging Eq (A12), Eq 
(A13). 

�cw − �od
Pd = (A13)

�cw − �air 

Dry porosity can also be described in geometri­
cal terms, Eq (23). 

2a
Pd = (A14)

12 

With the addition of moisture into the cell, the 
volume percent of bound water, V%bw, in the  
cell wall needs to be described. By definition, 
fiber moisture content MCf is calculated by di­
viding bound water weight by the oven-dry cell 
weight, which is the cellulose material weight, 
when assuming UNIT (1 × 1 volume dimen­
sions) volume for the wood cell. The MC in the 
fiber cell wall (MCf) can be calculated using Eq 
(A15). 

V%bw�cw
MCf = (A15)

�cw�1 − V%bw� 

By rearranging Eq (A15), V%bw can be deter­
mined for MC < 0.3. For MC > 0.3 V%bw is a 
constant at 0.293. For MC from 0–0.3 then MCf 

@ MC. For MC > 0.3 MCf � 0.3 

MCf�cw
V%bw ≅ (A16)

MCf�cw + �bw 

With the addition of moisture into the cell, wet 
porosity, Pw, is introduced and can be described 
using Eq (A17). 

�1 − V%bw�Pd
Pw = (A17)

1 − V%bwPd 

Wet porosity can also be described in geometri­
cal terms, Eq (A18). 



�� � + 

180 WOOD AND FIBER SCIENCE, APRIL 2008, V. 40(2) 

2a
Pw = (A18)

L2 

The outer dimension, L, and area of the wet cell, 
L2, changes with increasing moisture up to the 
FSP and can be described using Eq (A19). 

�bw + MCf�cw
L2 = (A19)

�bw + MCfP �w cw 

The specific equation for MC at all moisture 
conditions is described in Eq (A20). 

MC = 
b2�vb2Pw 

cwV%bw��1 − Pw + �fw� 1 − �Pw2 2a a

��cw�1 − V%bw���1 − Pw� 
(A20) 

Free water is assumed to be evenly distributed 
around the inner lumen that extends into the 
middle of the lumen. For MC � 0.3, there is 
assumed no free water, and b � a (Fig 4). For 
MC > 0.3, it is assumed the cell wall is saturated 
and the remaining water goes into the lumen as 
free water. The extent to which free water fills 
the lumen can be determined by rearranging Eq 
(A19) and solving for b, Eq (A21). The area 
defined by b, inside the free water, is assumed to 
be filled with saturated vapor. 

a2��1 − Pw��V%bw�bw − 
�1 − V%bw�MC�cw� + Pw�fw� 

b = � Pw��fw − �v� 
(A21) 

Thermal conductivity for the fiber cell-wall ma­
terial, Kf, needs to also be determined before 
calculating the effective thermal conductivity. 
Using rules of mixtures for MC < 0.3 then, Kf 

can be determined by Eq (A22). 

Kf = Kcw� 1 − V%bw� + KbwV%bw 

(A22) 
For MC > 0.3 the fiber cell wall is fully saturated 
with water and is assumed not to change. Using 

the rule of mixtures for MCf � 0.3, then the 
fiber cell-wall thermal conductivity is a constant 
at Kf � 0.4891 (Table 1). 

The effective thermal conductivity, Keff, for the 
entire range of moisture contents and densities 
can be determined by only knowing the ODD 
and MC conditions for the sample by substitut­
ing Eqs (A6–A11) into Eq (A5) and simplifying 
the equation as Eq (A23). 

Keff = 
�L − a�Kf 

a 
�a − L��� − 1�C4 + Kf
 

�a − b�C5 bC6
� + 

L 

���a − L�Kf − aKfw �a − L�Kf + �b − a�Kfw − bKv 

(A23) 

By solving for and substituting the appropriate 
values for variables a, b, L, Kf and substituting 
the appropriate C4, C5, and C6 parameters from 
Table 2, the entire range of thermal conductivi­
ties can be determined. 

If FSP is other than the assumed 30%, the same 
set of equations can be used to determine esti­
mated thermal conductivity values. By changing 
the volume percent of bound water, V%bw, (Eq 
(A16)) and recalculating the values in the sub­
sequent equations, a Keff (Eq (A23)) can be de­
termined. 

It is also possible to input new or improved val­
ues for the cell-wall material, bound water, free 
water, and water vapor and the equations used to 
estimate new thermal conductivity estimated 
values. Or a more rigorous effort could include 
equations that characterize the changes to den­
sity and thermal conductivity values for the cell-
wall material, bound water, free water, and wa­
ter vapor described as a function of temperature. 
These could then be inserted into the appropriate 
equations listed above. 




