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1. Introduction

The coefficent of variation (COV) of a distribution with mean � and variance �2 is
defined as the noise to signal ratio or �/�. (Sometimes this ratio is multiplied by 100
and reported as a percentage.) Building materials are often evaluated not only on
the basis of mean strength but also on relative variability. Laboratory techniques
are often compared on the basis of their COVs. Financial managers treat coefficients
of variation as measures of risk to return. Thus, scientists, engineers, and portfolio
managers are interested in obtaining confidence intervals on population COVs and
in testing for the equality of COVs.

For normally distributed populations, Vangel (1996) and Verrill (2003) focused
on techniques for obtaining confidence intervals on single coefficients of variation.
In this article, we use likelihood based methods to obtain large sample solutions to
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three additional problems:

1. Obtain a confidence interval on the ratio of two coefficients of variation.
2. Perform a test of the hypothesis that the coefficients of variation associated with

k populations are all equal.
3. Obtain a confidence interval on a coefficient of variation that is shared by k

populations.

A likelihood ratio test of the hypothesis that k coefficients of variation are
equal has previously appeared in the literature (Doornbos and Dijkstra, 1983;
Nairy and Rao, 2003). However, no rigorous demonstration of its asymptotic
distribution has previously appeared. In addition, several other tests of the equality
of k coefficients of variation have been proposed (Bennett, 1976; Feltz and Miller,
1996; Miller, 1991; Nairy and Rao, 2003; Shafer and Sullivan, 1986). Simulation
studies (Doornbos and Dijkstra, 1983; Fung and Tsang, 1998; Nairy and Rao, 2003;
Shafer and Sullivan, 1986) have suggested that the tests of Bennett (1976), Miller
(1991) (and their modifications—Feltz and Miller, 1996; Shafer and Sullivan, 1986),
and the ICV Wald test of Nairy and Rao (2003) have statistical sizes that are near
nominal for small sample sizes while the statistical size of the likelihood ratio test is
overly liberal. This has led some authors to recommend the tests of Bennett (1976)
and Miller (1991) over the likelihood ratio test. However, we provide Web-based
simulation tools that protect a user from an overly liberal test. We illustrate the use
of one of these tools in the next section.

In a subsequent article we will compare the power properties of the tests when
actual statistical sizes for all tests are near nominal.

A confidence interval on a ratio of two coefficients of variation has not
previously appeared in the literature. Tian (2005) has taken a Weerahandi (1993)
approach to obtain a generalized confidence interval on a coefficient of variation
that is shared by k populations.

We make use of likelihood ratio tests in Theorems A.2, A.4, and A.6. The
asymptotic distributions of our test statistics are given by Theorems H.1 and H.4
of Verrill and Johnson (2007). We establish the conditions that permit us to invoke
these theorems in Appendices B, E, and G of Verrill and Johnson (2007). These
conditions would also have permitted us to invoke Theorems H.2, H.3, H.5, and
H.6 of Verrill and Johnson (2007) to obtain the asymptotic distributions of the
corresponding Wald and Rao test statistics.

In Appendix H of Verrill and Johnson (2007) we also demonstrate that a
solution of the likelihood equations can be replaced in likelihood ratio, Wald,
and Rao tests by a Newton step refinement of a

√
n-consistent estimator. (â is a√

n-consistent estimator of a if
√
n�â − a� = Op�1�.)

An outline of an alternative proof of results closely related to our Theorems
H.1–H.3 is provided in Sec. 6e.3 of Rao (1973). Taking a quadratic mean
differentiability approach rather than the Cramér conditions approach that we
take, Lehmann and Romano (2005) outline the proof of results (see their Sect.
12.4.2–12.4.4) closely related to our Theorems H.1–H.6. However, their Newton step
estimator results actually rely on unstated assumptions about Cramér conditions.
In Verrill and Johnson (2007) we make our Cramér condition assumptions and
their use explicit. The original work on asymptotic tests of composite hypotheses
was due to Wilks (1938) and Wald (1943).
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2. Application of our Results to Laboratory Quality Control Data

In this section we illustrate the use of one of our programs to test the hypothesis
that five coefficients of variation are equal. The data set consists of quality
control measurements of the Xylan percentage (Xylan is a polysaccharide) in
a standard measured in the USDA Forest Products Laboratory’s Analytical
Chemistry Laboratory over the course of two years. (We thank Dr. Mark Davis for
providing this data.) The data are presented in Table 1. The measurements were time
sequential. For the purposes of illustration we have grouped observations 1–20 into
Group 1, observations 21–40 into Group 2, and so on. Ideally the quality control
measurements represent a steady state process so the coefficient of variation should
not be changing. We plot the data in Fig. 1. The line is a loess smooth.

From the top plot in Fig. 1, it is clear that for practical purposes, the Xylan
measurement is quite stable. However, the bottom plot in Fig. 1 suggests that at a
micro level, there might be statistically significant local trends in the data. (There
were 102 observations in the full data set. The dashed lines in the bottom plot of
Fig. 1 demarcate the 5 groups of 20.)

We plot box plots of the data in Fig. 2. The sample means and standard
deviations are presented in Table 2. Normal probability plots and formal tests
of normality indicated that Groups 1, 2, and 5 do not violate the normality
assumption. Group 3 appears to be bimodal and nonnormal. Group 4 appears to
have two outliers that cause the normality assumption to be violated. We have
performed three analyses. For the first we accepted all of the data. For the second
we removed two “outliers.” For the third we removed all “outliers.” The Web
program that we used to analyze the three cases is available at http://www1.fpl.fs.
fed.us/covtestk.html; See Fig. 3. As indicated in Fig. 3 a user need only provide
the program with the number of groups, the sample sizes, means, and standard
deviations of the groups, and an integer starting value for the random number
generator that is used in the small sample simulation. The program returns the p-
value calculated from the asymptotic test, and a simulation based estimated p-value.
For the data presented in Table 1, the asymptotic p-value is 0.144, and the small
sample simulation test is not significant at a 0.10 level. However, if the two “outliers”
of Group 4 are removed, the asymptotic p-value is 0.016 and the estimated p-value
from the small sample simulation is 0.025. If all “outliers” in all groups are removed,
the asymptotic p-value is 0.006 and the estimated p-value from the small sample
simulation is 0.012. A user should give greater credence to the results of the small
sample tests (see Sec. 3).

We emphasize that we have presented this example solely for the purpose of
illustrating the use of the program. A fully defensible analysis in this case would
have to consider issues of serial correlation, non normal data, and the legitimacy of
discarding outliers.

We have also developed two additional Web-based programs. A program that
calculates a confidence interval on a ratio of two coefficients of variation can
be found at http://www1.fpl.fs.fed.us/covratio.html. A program that calculates
a confidence interval on a coefficient of variation that is shared by k normally
distributed populations can be found at http://www1.fpl.fs.fed.us/covconfk.html.

In Appendix A we present the statistical theory that underlies these programs.
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Table 1
Measurement order and Xylan percent

Order Xylan percent Order Xylan percent Order Xylan percent

1 6.34 46 6.22 91 6.42
2 6.35 47 6.37 92 6.43
3 6.37 48 6.24 93 6.28
4 6.55 49 6.19 94 6.38
5 6.28 50 6.39 95 6.32
6 6.30 51 6.38 96 6.36
7 6.39 52 6.39 97 6.25
8 6.29 53 6.37 98 6.35
9 6.26 54 6.40 99 6.34
10 6.11 55 6.37 100 6.41
11 6.25 56 6.43 101 6.24
12 6.22 57 6.23 102 6.33
13 6.25 58 6.45
14 6.36 59 6.36
15 6.30 60 6.28
16 6.33 61 6.33
17 6.41 62 6.35
18 6.48 63 6.25
19 6.38 64 6.30
20 6.31 65 6.31
21 6.28 66 6.35
22 6.31 67 6.35
23 6.37 68 6.28
24 6.15 69 6.34
25 6.45 70 6.48
26 6.25 71 6.59
27 6.18 72 6.22
28 6.36 73 6.37
29 6.26 74 6.26
30 6.26 75 6.20
31 6.30 76 6.28
32 6.27 77 6.34
33 6.19 78 6.37
34 6.31 79 6.25
35 6.28 80 6.33
36 6.23 81 6.34
37 6.28 82 6.34
38 6.34 83 6.34
39 6.31 84 6.33
40 6.22 85 6.43
41 6.22 86 6.19
42 6.27 87 6.40
43 6.14 88 6.28
44 6.13 89 6.34
45 6.17 90 6.36
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Figure 1. Plots of Xylan percentage vs. time order.

3. Small Sample Tools and Further Research

The theory that underlies the theorems presented in Appendix A is asymptotic
theory. That is, it yields good approximations for large data sets but poorer
approximations for small data sets. In particular, for small data sets, it leads to
confidence intervals that are too narrow and to tests of hypotheses that reject
true null hypotheses too frequently. We are currently engaged in research that

Figure 2. Boxplots of the data from the five groups.
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Table 2
Sample means and standard deviations of the Xylan

data

“Outliers” in “Outliers” out

Group Mean SD Mean SD

1 6.3265 .09477 6.3261 .06590
2 6.2800 .06996 6.2711 .05896
3 6.3000 .10167 6.3000 .10167
4 6.3275 .08813 6.3044 .05193
5 6.3445 .06134 6.3526 .05075

should lead to improved small sample approximations. In the interim, however,
we have provided a simulation-based fix to the problem. Our Web-based programs
(see http://www1.fpl.fs.fed.us/covconfk.html) perform the theoretical calculations
needed to obtain confidence intervals or to test hypotheses. However, they also
perform tests and calculate confidence intervals that are based on simulations. In

Figure 3. Web page for a test of the equality of k coefficients of variation.
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particular, small sample critical values are obtained via simulations in which 10,000
samples are generated from the normal distributions estimated from the original
data. The value of the appropriate likelihood ratio statistic is calculated for each
of these samples. Empirical estimates of the 90th, 95th, and 99th percentiles of the
distribution of the likelihood ratio statistic are then obtained from these 10,000
values, and used to perform small sample tests and to calculate small sample
confidence intervals.

These simulations might be suspect because they make use of estimated
population parameters rather than the true (and unknown) population parameters.

Table 3
Confidence interval coverage of the ratioa of two coefficients of variation

(based on Theorem A.2), n = n1 = n2

Asymptotic procedure Simulation procedure

Nominal Estimateb 95% CIb Estimateb 95% CIb

COV n coverage of coverage on coverage of coverage on coverage down

0.05 5 0.90 0.8372 �0�8299� 0�8444� 0.8985 �0�8925� 0�9043�
0.95 0.9007 �0�8948� 0�9065� 0.9490 �0�9446� 0�9532�
0.99 0.9723 �0�9690� 0�9754� 0.9885 �0�9863� 0�9905�

10 0.90 0.8732 �0�8666� 0�8796� 0.9033 �0�8974� 0�9090�
0.95 0.9314 �0�9264� 0�9363� 0.9518 �0�9475� 0�9559�
0.99 0.9830 �0�9804� 0�9854� 0.9908 �0�9888� 0�9926�

20 0.90 0.8863 �0�8800� 0�8924� 0.8990 �0�8930� 0�9048�
0.95 0.9403 �0�9356� 0�9449� 0.9484 �0�9440� 0�9526�
0.99 0.9853 �0�9828� 0�9876� 0.9892 �0�9871� 0�9911�

0.15 5 0.90 0.8288 �0�8214� 0�8361� 0.8990 �0�8930� 0�9048�
0.95 0.9009 �0�8950� 0�9067� 0.9504 �0�9461� 0�9546�
0.99 0.9718 �0�9685� 0�9750� 0.9913 �0�9894� 0�9930�

10 0.90 0.8715 �0�8649� 0�8780� 0.9009 �0�8950� 0�9067�
0.95 0.9294 �0�9243� 0�9343� 0.9490 �0�9446� 0�9532�
0.99 0.9825 �0�9798� 0�9850� 0.9911 �0�9892� 0�9928�

20 0.90 0.8869 �0�8806� 0�8930� 0.9001 �0�8941� 0�9059�
0.95 0.9427 �0�9381� 0�9472� 0.9507 �0�9464� 0�9549�
0.99 0.9868 �0�9845� 0�9889� 0.9902 �0�9882� 0�9920�

0.25 5 0.90 0.8349 �0�8276� 0�8421� 0.8956 �0�8895� 0�9015�
0.95 0.8974 �0�8914� 0�9033� 0.9496 �0�9452� 0�9538�
0.99 0.9700 �0�9666� 0�9733� 0.9900 �0�9880� 0�9919�

10 0.90 0.8670 �0�8603� 0�8736� 0.8966 �0�8906� 0�9025�
0.95 0.9257 �0�9205� 0�9308� 0.9491 �0�9447� 0�9533�
0.99 0.9828 �0�9802� 0�9853� 0.9900 �0�9880� 0�9919�

20 0.90 0.8896 �0�8834� 0�8957� 0.9039 �0�8980� 0�9096�
0.95 0.9439 �0�9393� 0�9483� 0.9538 �0�9496� 0�9578�
0.99 0.9855 �0�9831� 0�9877� 0.9886 �0�9864� 0�9906�

aRatio = 1 in these trials.
bBased on 10,000 trials (and 10,000 trials within each of these to determine the simulation-

based critical values used to construct small-sample confidence intervals).
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However, we have performed “simulations of simulations” that indicate that this
small sample approach works quite well. For a variety of cases, we have performed
10,000 trial simulations in which we generated a sample data set from known
normal distributions, estimated population parameters, drew 10,000 samples from
the estimated populations, calculated estimates of the percentiles of the likelihood
ratio statistic, and then used these to perform tests and obtain confidence intervals.
Test sizes and confidence interval coverages were very near nominal for the small
sample simulation approach. A subset of results from this simulation of simulations
appears in Tables 3–5. For these three tables, k = 2 and n = n1 = n2. An expansion
of these tables to include COVs equal to .01 and .40 appears in Verrill and Johnson
(2007). The tables suggest that the small sample approach works well.

Table 4
Size of a test that k coefficients of variation are equal

(based on Theorem A.4), k = 2, n = n1 = n2

Asymptotic procedure Simulation procedure

Nominal Estimateb 95% CIb Estimateb 95% CIb

COV n size of size on size of size on size

0.05 5 0.10 0.1639 �0�1567� 0�1712� 0.0981 �0�0923� 0�1040�
0.05 0.0961 �0�0904� 0�1020� 0.0477 �0�0436� 0�0520�
0.01 0.0291 �0�0259� 0�0325� 0.0112 �0�0092� 0�0134�

10 0.10 0.1334 �0�1268� 0�1401� 0.1054 �0�0995� 0�1115�
0.05 0.0742 �0�0691� 0�0794� 0.0520 �0�0477� 0�0564�
0.01 0.0184 �0�0159� 0�0211� 0.0113 �0�0093� 0�0135�

20 0.10 0.1163 �0�1101� 0�1227� 0.1009 �0�0951� 0�1069�
0.05 0.0589 �0�0544� 0�0636� 0.0503 �0�0461� 0�0547�
0.01 0.0148 �0�0125� 0�0173� 0.0119 �0�0099� 0�0141�

0.15 5 0.10 0.1678 �0�1605� 0�1752� 0.1026 �0�0967� 0�1086�
0.05 0.1009 �0�0951� 0�1069� 0.0514 �0�0472� 0�0558�
0.01 0.0290 �0�0258� 0�0324� 0.0094 �0�0076� 0�0114�

10 0.10 0.1287 �0�1222� 0�1353� 0.0964 �0�0907� 0�1023�
0.05 0.0675 �0�0627� 0�0725� 0.0498 �0�0456� 0�0541�
0.01 0.0169 �0�0145� 0�0195� 0.0109 �0�0090� 0�0130�

20 0.10 0.1128 �0�1067� 0�1191� 0.0996 �0�0938� 0�1055�
0.05 0.0587 �0�0542� 0�0634� 0.0497 �0�0455� 0�0540�
0.01 0.0146 �0�0123� 0�0170� 0.0101 �0�0082� 0�0122�

0.25 5 0.10 0.1643 �0�1571� 0�1716� 0.1010 �0�0952� 0�1070�
0.05 0.0994 �0�0936� 0�1053� 0.0515 �0�0473� 0�0559�
0.01 0.0298 �0�0266� 0�0332� 0.0103 �0�0084� 0�0124�

10 0.10 0.1275 �0�1210� 0�1341� 0.0984 �0�0926� 0�1043�
0.05 0.0701 �0�0652� 0�0752� 0.0497 �0�0455� 0�0540�
0.01 0.0167 �0�0143� 0�0193� 0.0094 �0�0076� 0�0114�

20 0.10 0.1101 �0�1040� 0�1163� 0.0966 �0�0909� 0�1025�
0.05 0.0580 �0�0535� 0�0627� 0.0467 �0�0427� 0�0509�
0.01 0.0121 �0�0101� 0�0143� 0.0090 �0�0072� 0�0109�
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Our current Web programs report both asymptotic results and simulation
results. As we have noted, simulation works well even for small samples. However,
for larger samples, simulations can become quite time consuming. (For 10 samples
of size 60, the hypothesis test program takes approximately 6.9 s to report. The
confidence interval program takes about 7.3 s to report.) Hence the need for
asymptotic results. We are currently engaged in performing a wide-ranging set
of size/power studies. These studies suggest that for nj > 30, the two approaches
essentially coincide. After we have become convinced that this holds generally, we
will modify the Web program so that simulations are not performed for larger
sample sizes. Instead, for these larger sample sizes, only the asymptotic results will
be reported. This will improve the program’s performance.

Table 5
Confidence interval on a coefficient of variation shared by k normally
distributed populations (based on Theorem A.6), k = 2, n = n1 = n2

Asymptotic procedure Simulation procedure

Nominal Estimateb 95% CIb Estimateb 95% CIb

COV n coverage of coverage on coverage of coverage on coverage

0.05 5 0.90 0.8134 �0�8057� 0�8210� 0.9026 �0�8967� 0�9083�
0.95 0.8889 �0�8827� 0�8950� 0.9506 �0�9463� 0�9548�
0.99 0.9653 �0�9616� 0�9688� 0.9912 �0�9893� 0�9929�

10 0.90 0.8574 �0�8505� 0�8642� 0.8984 �0�8924� 0�9042�
0.95 0.9197 �0�9143� 0�9249� 0.9496 �0�9452� 0�9538�
0.99 0.9799 �0�9771� 0�9826� 0.9893 �0�9872� 0�9912�

20 0.90 0.8789 �0�8724� 0�8852� 0.8973 �0�8913� 0�9032�
0.95 0.9331 �0�9281� 0�9379� 0.9477 �0�9433� 0�9520�
0.99 0.9848 �0�9823� 0�9871� 0.9887 �0�9865� 0�9907�

0.15 5 0.90 0.8146 �0�8069� 0�8222� 0.9012 �0�8953� 0�9070�
0.95 0.8883 �0�8821� 0�8944� 0.9499 �0�9455� 0�9541�
0.99 0.9650 �0�9613� 0�9685� 0.9900 �0�9880� 0�9919�

10 0.90 0.8596 �0�8527� 0�8663� 0.9010 �0�8951� 0�9068�
0.95 0.9238 �0�9185� 0�9289� 0.9517 �0�9474� 0�9558�
0.99 0.9826 �0�9799� 0�9851� 0.9909 �0�9889� 0�9927�

20 0.90 0.8853 �0�8790� 0�8915� 0.9035 �0�8976� 0�9092�
0.95 0.9391 �0�9343� 0�9437� 0.9516 �0�9473� 0�9557�
0.99 0.9875 �0�9852� 0�9896� 0.9908 �0�9888� 0�9926�

0.25 5 0.90 0.8163 �0�8086� 0�8238� 0.8985 �0�8925� 0�9043�
0.95 0.8883 �0�8821� 0�8944� 0.9479 �0�9435� 0�9522�
0.99 0.9658 �0�9621� 0�9693� 0.9904 �0�9884� 0�9922�

10 0.90 0.8603 �0�8534� 0�8670� 0.8987 �0�8927� 0�9045�
0.95 0.9231 �0�9178� 0�9282� 0.9512 �0�9469� 0�9553�
0.99 0.9804 �0�9776� 0�9830� 0.9890 �0�9869� 0�9910�

20 0.90 0.8888 �0�8826� 0�8949� 0.9070 �0�9012� 0�9126�
0.95 0.9422 �0�9375� 0�9467� 0.9540 �0�9498� 0�9580�
0.99 0.9877 �0�9854� 0�9898� 0.9911 �0�9892� 0�9928�
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4. Summary

We have developed asymptotic theory that permits us to address three normal
distribution coefficient of variation estimation or testing problems: obtain a
confidence interval on the ratio of two coefficients of variation, perform a test of
the hypothesis that the coefficients of variation associated with k populations are all
equal, and obtain a confidence interval on a coefficient of variation that is shared by
k populations. We have developed Web-based computer programs that implement
these large sample techniques, and also provide simulation results that are valid
for small samples. These programs can be accessed at the following web addresses:
http://www1.fpl.fs.fed.us/covratio.html, http://www1.fpl.fs.fed.us/covtestk.html,
and http://www1.fpl.fs.fed.us/covconfk.html.

Appendix A—The Theorems

A1. Confidence Interval on the Ratio of Two Coefficients Of Variation

We assume that we have n1 observations, x11� � � � � xn11, from a N��1� �
2
1� population,

and n2 observations, x12� � � � � xn22, from a N��2� �
2
2� population, and that �1� �2 > 0.

We assume that all of these observations are statistically independent. Let n ≡ n1 +
n2. We further assume that n1/n → 	1 > 0 and n2/n → 	2 > 0 as n → �. We denote
the coefficient of variation of the first population by

c ≡ �1/�1

so

�1 = �1/c�

We denote the ratio of the coefficient of variation of the second population to the
coefficient of variation of the first population by r. Thus

r ≡ ��2/�2�/c

and

�2 = �2/�rc��

Then, we have the following theorem.

Theorem A.1.

√
n





�̂1

�̂2

ĉ

r̂


−



�1

�2

c

r




 D→ N�0� I���−1�
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where � ≡ ��1� �2� c� r�
T ,

�̂j ≡
√√√ nj∑

i=1

�xij − x̄·j�2/nj for j = 1� 2

x̄·j ≡
nj∑
i=1

xij/nj for j = 1� 2

ĉ ≡ �̂1/x̄·1

r̂ ≡ ��̂2/x̄·2�/ĉ

and Fisher’s information matrix is given by

I��� = 	1I1���+ 	2I2���

where

I1��� =



�2+ 1/c2�/�2

1 0 −1/�c3�1� 0

0 0 0 0

−1/�c3�1� 0 1/c4 0

0 0 0 0




I2��� =



0 0 0 0

0 �2+ 1/�rc�2�/�2
2 −1/�r2c3�2� −1/�r3c2�2�

0 −1/�r2c3�2� 1/�r2c4� 1/�r3c3�

0 −1/�r3c2�2� 1/�r3c3� 1/�r4c2�


 �

Proof. The proof is a standard application of Theorem 6.1 of Ch. 6 of Lehmann
(1983). In Appendix A of Verrill and Johnson (2007), we establish the conditions
needed to invoke Lehmann’s theorem. �

Based on Theorem A.1, an approximate 1− 
 confidence interval on r is
given by

r̂ ± z
/2

√
d̂44/n

where z
/2 is the appropriate critical value from a standard normal distribution, d̂44

is the 4th diagonal element of I��̂�−1, and I��̂� is I��� with �1, �2, c, and r replaced
by �̂1, �̂2, ĉ, and r̂.

A2. Likelihood Ratio Based Confidence Interval on the Ratio
of two Coefficients of Variation

In Sec. A1 we obtained a confidence interval on the ratio of two coefficients
of variation by establishing the asymptotic normality of the estimated parameter
vector. In this section we take a likelihood ratio approach to this problem.
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We make the same assumptions as those made in Sec. A1. Then, in the notation
of Sec. 18.3 of Appendix H of Verrill and Johnson (2007), we have the following
theorem.

Theorem A.2. Provided that the ratio of coefficients of variation, r, equals r0,

2�lnL��̂n�− lnL�g��̂n���
D→ �21

where � ≡ ��1� �2� c� r�
T , � ≡ ��1� �2� c�

T , up to a constant

lnL��� = −n1 ln��1�−
n1∑
i=1

�xi1 − �1/c�
2/�2�2

1�− n2 ln��2�−
n2∑
i=1

�xi2 − �2/�rc��
2/�2�2

2�

�̂n = ��̂1� �̂2� ĉ� r̂�
T is the solution of the unconstrained likelihood equations described

in connection with Theorem A.1,

g��� =



g1��1� �2� �3�

g2��1� �2� �3�

g3��1� �2� �3�

g4��1� �2� �3�


 =



�1

�2

�3

r0


 =



�1

�2

c

r0




and �̂n is the solution to the likelihood equations obtained in Appendix B of the current
article.

Proof. Because two probability density functions are involved, Theorem A.2 is a
slight extension of a standard likelihood ratio result. The details of the proof are
provided in Appendix B of Verrill and Johnson (2007).

We have written a FORTRAN program that uses Theorem A.2 to perform a
test of the hypothesis that r = r0. The program uses this test to obtain a confidence
interval for r—those r0 that are not rejected at a 
 significance level constitute a
1− 
 confidence interval for r. A user of the program need only supply n1, n2, x̄·1,
x̄·2�

√∑n1
i=1�xi1 − x̄·1�2/�n1 − 1�, and

√∑n2
i=1�xi2 − x̄·2�2/�n2 − 1�. The program can be

run over the Web at http://www1.fpl.fs.fed.us/covratio.html.

A3. Confidence Interval on a Coefficient of Variation That
Is Shared by Two Normally Distributed Populations

We assume that we have n1 observations, x11� � � � � xn11, from a N��1� �
2
1� population,

and n2 observations, x12� � � � � xn22, from a N��2� �
2
2� population, and that �1� �2 > 0.

We assume that all of these observations are statistically independent. Let
n ≡ n1 + n2. We further assume that n1/n → 	1 > 0 and n2/n → 	2 > 0 as n → �.
We denote the shared coefficient of variation of the two populations by

c = �1/�1 = �2/�2

Then, we have the following theorem.
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Theorem A.3.

√
n





�̂1

�̂2

ĉ




−





�1

�2

c




 D→ N�0� I���−1�

where � ≡ ��1� �2� c�
T , �̂1, �̂2, ĉ are derived in Appendix B (set r0 in Appendix B to 1)

of the current article,

I��� = 	1I1���+ 	2I2���

and

I1��� =


�2+ 1/c2�/�2

1 0 −1/�c3�1�

0 0 0

−1/�c3�1� 0 1/c4




I2��� =


0 0 0

0 �2+ 1/c2�/�2
2 −1/�c3�2�

0 −1/�c3�2� 1/c4


 �

Proof. The proof is a standard application of Theorem 6.1 of Ch. 6 of Lehmann
(1983). In Appendix C of Verrill and Johnson (2007), we establish the conditions
needed to invoke Lehmann’s theorem. �

Based on Theorem A.3, an approximate 1− 
 confidence interval on c is
given by

ĉ ± z
/2

√
d̂33/n

where z
/2 is the appropriate critical value from a standard normal distribution, d̂33

is the third diagonal element of I��̂�−1, and I��̂� is I��� with �1, �2, and c replaced
by �̂1, �̂2, and ĉ. In Appendix I of Verrill and Johnson (2007), we establish that
d33 = c4 + c2/2.

A4. Likelihood Ratio Test of the Hypothesis That k Normally
Distributed Populations Share the Same Coefficient of Variation

We assume that we have n1 observations, x11� � � � � xn11, from a N��1� �
2
1� population,

n2 observations, x12� � � � � xn22, from a N��2� �
2
2� population, � � � , and nk observations,

x1k� � � � � xnkk, from a N��k� �
2
k� population, and that �1� � � � � �k > 0. We assume that

all of these observations are statistically independent. Let n ≡ n1 + · · · + nk. We
further assume that nj/n → 	j > 0 as n → � for j = 1� � � � � k. We denote the shared
coefficient of variation of the k populations by

c = �1/�1 = · · · = �k/�k

Then, in the notation of Sec. 18.3 of Appendix H of Verrill and Johnson (2007),
we have the following theorem.
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Theorem A.4. Provided that �1/�1 = · · · = �k/�k,

2�lnL��n�− lnL�g��n�Newt���
D→ �2k−1

where � ≡ ��1� �1� � � � � �k� �k�
T , � ≡ ��1� � � � � �k� c�

T [note that in this section the
parameter vector is given by � ≡ ��1� �1� � � � � �k� �k�

T while in Sec. A3, A5, and A6 � ≡
��1� � � � � �k� c�

T], up to a constant

lnL��� =
k∑

j=1

(
−nj ln��j�−

nj∑
i=1

�xij − �j�
2/�2�2

j �

)
�

�̂n is the standard solution of the unconstrained likelihood equations, that is,

�̂n =




x̄·1
s1
���

x̄·k
sk




where

sj =
√√√ nj∑

i=1

�xij − x̄·j�2/nj

g��� =




�1/�k+1

�1
���

�k/�k+1

�k




=




�1/c

�1

���

�k/c

�k



�

�n�Newt is the Newton estimator of ��1� � � � � �k� c�
T given by

�n�Newt = −
[

2 lnL

�l�m

]−1

��n�c





 lnL/
�1
���


 lnL/
�k+1


 ��n�c + �n�c (1)

where �n�c is any
√
n-consistent estimator of ��1� � � � � �k� c�

T [such as �s1� � � � � sk� ĉ�
T

where 1/ĉ =
(∑k

j=1 njx̄·j/sj
)
/
(
n1 + · · · + nk

)
]. The partial derivatives in Eq. (1) are

listed in Appendix C of Verrill and Johnson (2007), and a simple technique for solving
the equation is provided in Appendix I of Verrill and Johnson (2007).

Proof. Because k probability density functions are involved, and because we are
dealing with a Newton one-step estimator, Theorem A.4 is a slight extension of a
standard likelihood ratio result. The details of the proof are provided in Appendix E
of Verrill and Johnson (2007). �
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We have written a FORTRAN program that uses Theorem A.4 to perform
a test of the hypothesis that �1/�1 = · · · = �k/�k. The user need only supply
n1� � � � � nk, x̄·1� � � � � x̄·k,

√∑n1
i=1�xi1 − x̄·1�2/�n1 − 1�� � � � �

√∑nk
i=1�xik − x̄·k�2/�nk − 1�.

The program can be run over the Web at http://www1.fpl.fs.fed.us/covtestk.html.
We note that in this program, we start with the

√
n-consistent estimator given

by �s1� � � � � sk� ĉ�, perform a limited number of backtracking Newton steps (which
still leaves us with a

√
n-consistent estimator), and then do a final full Newton step.

A5. Confidence Interval on a Coefficient of Variation That
Is Shared by k Normally Distributed Populations

We make the same assumptions as those made in Sec. A4. However, here
the parameter vector is given by � ≡ ��1� � � � � �k� c�

T (as opposed to the vector
��1� �1� � � � � �k� �k�

T of Sec. A4).
Then, we have the following theorem.

Theorem A.5.

√
n��n�Newt − ��

D→ N�0� I���−1�

where �n�Newt is the Newton estimator of ��1� � � � � �k� c�
T given by

�n�Newt ≡ −
[

2 lnL

�l�m

]−1

��n�c





 lnL/
�1
���


 lnL/
�k+1


 ��n�c + �n�c� (2)

�n�c is any
√
n-consistent estimator of ��1� � � � � �k� c�

T [such as �s1� � � � � sk� ĉ�
T where

1/ĉ = (∑k
j=1 njx̄·j/sj

)
/�n1 + · · · + nk�], and

I��� =
k∑

j=1

	jIj���

where the j� jth element of Ij��� is �2+ 1/c2�/�2
j , the j� k+ 1 th and k+ 1� j th elements

of Ij��� are −1/�c3�j�, the k+ 1� k+ 1th element is 1/c4, and the remaining elements
are 0. The partial derivatives in Eq. (2) are listed in Appendix C of Verrill and Johnson
(2007), and a simple technique for solving the equation is provided in Appendix I of
Verrill and Johnson (2007).

Proof. Because k probability density functions are involved, and because we are
dealing with a Newton one-step estimator, Theorem A.5 is a slight extension of a
standard efficient likelihood estimator result. The details of the proof are provided
in Appendix F of Verrill and Johnson (2007). �

Based on Theorem A.5, an approximate 1− 
 confidence interval on c is
given by

ĉ ± z
/2

√
d̂k+1�k+1/n
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where ĉ is the k+ 1th element of �n�Newt, z
/2 is the appropriate critical value from a
standard normal distribution, d̂k+1�k+1 is the k+ 1th diagonal element of I��̂�−1, and
I��̂� is I��� with ��1� � � � � �k� c�

T replaced by �n�Newt. In Appendix I of Verrill and
Johnson (2007), we establish that dk+1�k+1 = c4 + c2/2.

A6. Likelihood Ratio Based Confidence Interval on a Coefficient
of Variation That Is Shared by k Normally Distributed Populations

In Sec. A5, we obtained a confidence interval on the coefficient of variation by
establishing the asymptotic normality of the Newton one-step estimator of the
parameter vector. In this section we take a likelihood ratio approach to this
problem.

We make the same assumptions as those made in Sec. A5. Then, in the notation
of Sec. 18.3 of Appendix H of Verrill and Johnson (2007), we have the following
theorem.

Theorem A.6. Provided that c = c0,

2�lnL��n�Newt�− lnL�g��̂n���
D→ �21

where � ≡ ��1� � � � � �k� c�
T , � ≡ ��1� � � � � �k�

T , up to a constant

lnL��� =
k∑

j=1

(
− nj ln��j�−

nj∑
i=1

�xij − �j/c�
2/�2�2

j �

)
�

�n�Newt is the Newton estimator of ��1� � � � � �k� c�
T given by

�n�Newt ≡ −
[

2 lnL

�l�m

]−1

��n�c





 lnL/
�1
���


 lnL/
�k+1


 ��n�c + �n�c (3)

where �n�c is any
√
n-consistent estimator of ��1� � � � � �k� c�

T [such as �s1� � � � � sk� ĉ�
T

where 1/ĉ = (∑k
j=1 njx̄·j/sj

)
/�n1 + · · · + nk�], and �̂n is the solution of the constrained

likelihood equations obtained in Appendix G of Verrill and Johnson (2007). (The
constraint is c = c0.)

The partial derivatives in Eq. (3) are listed in Appendix C of Verrill and Johnson
(2007), and a simple technique for solving the equation is provided in Appendix I
of Verrill and Johnson (2007).

Proof. Because k probability density functions are involved, and because we are
dealing with a Newton one-step estimator, Theorem A.6 is a slight extension of a
standard likelihood ratio result. The details of the proof are provided in Appendix
G of Verrill and Johnson (2007). �

We have written a FORTRAN program that uses Theorem A.6 to perform
a test of the hypothesis that c = c0. The program uses this test to obtain a
confidence interval for c — those c0 that are not rejected at a 
 significance level
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constitute a 1− 
 confidence interval for c. A user of the program need only supply
n1� � � � � nk, x̄·1� � � � � x̄·k,

√∑n1
i=1�xi1 − x̄·1�2/�n1 − 1�� � � � �

√∑nk
i=1�xik − x̄·k�2/�nk − 1�.

The program can be run over the Web at http://www1.fpl.fs.fed.us/covconfk.html.
We note that in this program, we start with the

√
n-consistent estimator given

by �s1� � � � � sk� ĉ�, perform a limited number of backtracking Newton steps (which
still leaves us with a

√
n-consistent estimator), and then do a final full Newton step.

Appendix B—The Solution to the Likelihood Equations
in the Two Population Case

Recall that c ≡ �1/�1 and r0 ≡ ��2/�2�/c.
Up to a constant, the log likelihood in this case is

lnL = −n1 ln��1�−
n1∑
i=1

�xi1 − �1/c�
2/
(
2�2

1

)− n2 ln��2�−
n2∑
i=1

�xi2 − �2/�r0c��
2/
(
2�2

2

)
�

We have


 lnL

c

= −
n1∑
i=1

�xi1 − �1/c�/�c
2�1�−

n2∑
i=1

�xi2 − �2/�r0c��/
(
r0c

2�2

)
�

Setting 
 lnL

c

= 0, we obtain

n1∑
i=1

�xi1 − �1/c�/�1 +
n2∑
i=1

�xi2 − �2/�r0c��/�r0�2� = 0

or

(
n1x̄·1/�1 + n2x̄·2/�r0�2�

)
/
(
n1 + n2/r

2
0

) = 1/c� (4)

Next,


 lnL

�1

= −n1/�1 +
n1∑
i=1

�xi1 − �1/c�/�c�
2
1�+

n1∑
i=1

�xi1 − �1/c�
2/�3

1�

Setting 
 lnL

�1

= 0, we obtain

�2
1 =

n1∑
i=1

�xi1 − �1/c���1/c�/n1 +
n1∑
i=1

�xi1 − �1/c�
2/n1

= �x̄·1 − �1/c���1/c�+
n1∑
i=1

xi1
2/n1 − 2x̄·1�1/c + ��1/c�

2

= −x̄·1�1/c +
n1∑
i=1

xi1
2/n1

so

n1∑
i=1

x2i1/n1 − �2
1 = x̄·1�1/c
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or (assuming that x̄·1 �= 0)

( n1∑
i=1

x2i1/n1 − �2
1

)
/�x̄·1�1� = 1/c� (5)

Similarly, setting 
 lnL

�2

= 0, we obtain (assuming that x̄·2 �= 0)

( n2∑
i=1

x2i2/n2 − �2
2

)
/�x̄·2�2/r0� = 1/c� (6)

From Eqs. (4)–(6), we have

( n1∑
i=1

x2i1/n1 − �2
1

)
/�x̄·1�1� = �n1x̄·1/�1 + n2x̄·2/�r0�2��/

(
n1 + n2/r

2
0

)
(7)

and ( n2∑
i=1

x2i2/n2 − �2
2

)
/�x̄·2�2/r0� = �n1x̄·1/�1 + n2x̄·2/�r0�2��/

(
n1 + n2/r

2
0

)
� (8)

Now define

y ≡ �1/�2

so

�2 = �1/y� (9)

Equation (7) becomes

n1∑
i=1

x2i1/n1 − �2
1 =

(
n1x̄

2
·1 + n2x̄·1x̄·2y/r0

)
/
(
n1 + n2/r

2
0

)
or

n1∑
i=1

x2i1/n1 − n1x̄
2
·1/
(
n1 + n2/r

2
0

)− �n2x̄·1x̄·2y/r0�/
(
n1 + n2/r

2
0

) = �2
1� (10)

Equation (8) becomes

n2∑
i=1

x2i2/n2 − �2
1/y

2 = (
n1x̄·1x̄·2/�r0y�+ n2x̄

2
·2/r

2
0

)
/
(
n1 + n2/r

2
0

)
or

y2
( n2∑

i=1

x2i2/n2 −
(
n2x̄

2
·2/r

2
0

)
/
(
n1 + n2/r

2
0

))− y�n1x̄·1x̄·2/r0�/
(
n1 + n2/r

2
0

) = �2
1� (11)
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From Eqs. (10) and (11) we have

ay2 + by + d = 0

(we use d here rather than the standard c because we have already used c to denote
the coefficient of variation) where

a ≡
n2∑
i=1

x2i2/n2 − n2

(
x̄2·2/r

2
0

)
/
(
n1 + n2/r

2
0

)
(12)

b ≡ (
�n2 − n1�x̄·1x̄·2/r0

)
/
(
n1 + n2/r

2
0

)
(13)

d ≡ −
(

n1∑
i=1

x2i1/n1 − n1x̄
2
·1/
(
n1 + n2/r

2
0

))
� (14)

The possible solutions for y = �1/�2 are, of course,
(− b ±√

b2 − 4ad
)
/�2a�.

Now note that

a =
n2∑
i=1

x2i2/n2 − n2

(
x̄2·2/r

2
0

)
/
(
n1 + n2/r

2
0

) ≥ n2∑
i=1

x2i2/n2 − x̄2·2 ≥ 0

with a = 0 only if all of the xi2’s are zero. Similarly, d ≤ 0 with equality only if all
the xi1’s equal zero. Thus, unless all the xi1’s equal 0 or all the xi2’s equal 0,

−4ad > 0 and
√
b2 − 4ad > �b��

So if b > 0,

(
− b −

√
b2 − 4ad

)
/�2a� < 0

and (
− b +

√
b2 − 4ad

)
/�2a� > �−�b� + �b��/�2a� = 0�

If b < 0,

(
− b −

√
b2 − 4ad

)
/�2a� < ��b� − �b��/�2a� = 0

and (
− b +

√
b2 − 4ad

)
/�2a� > 0�

Thus,
(− b +√

b2 − 4ad
)
/�2a� is the unique solution for y = �1/�2. The estimates

of �2
1 and �2

2 can then be obtained from Eqs. (10) and (9). (See Appendix D of Verrill
and Johnson, 2007 for a proof that the estimate of �2

1 obtained from Eq. (10) is
positive.)
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