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1â is a

ffiffiffi
n
p

-co
Statistics & Probability Letters 77 (2007) 1371–1376

www.elsevier.com/locate/stapro
Rate of convergence of k-step Newton estimators to
efficient likelihood estimators

Steve Verrill

Mathematical Statistician, USDA Forest Products Laboratory, 1 Gifford Pinchot Drive, Madison, WI 53726, USA

Available online 24 March 2007
Abstract

We make use of Cramér conditions together with the well-known local quadratic convergence of Newton’s method to

establish the asymptotic closeness of k-step Newton estimators to efficient likelihood estimators. In Verrill and Johnson

[2007. Confidence bounds and hypothesis tests for normal distribution coefficients of variation. USDA Forest Products

Laboratory Research Paper FPL-RP-638], we use this result to establish that estimators based on Newton steps from
ffiffiffi
n
p

-

consistent estimators may be used in place of efficient solutions of the likelihood equations in likelihood ratio, Wald, and

Rao tests. Taking a quadratic mean differentiability approach rather than our Cramér condition approach, Lehmann and

Romano [2005. Testing Statistical Hypotheses, third ed. Springer, New York] have outlined proofs of similar results.

However, their Newton step estimator results actually rely on unstated assumptions about Cramér conditions. Here we

make our Cramér condition assumptions and their use explicit.
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1. Introduction

Lehmann (1983, Theorems 3.1 and 4.2 of Chapter 6) demonstrates that efficient likelihood estimators, ĥn, in

ffiffiffi
n
p
ðĥn � h0Þ!

D
Nð0; Iðh0Þ

�1
Þ

can be replaced by Newton one-step estimators, hn;Newt, that are generated from
ffiffiffi
n
p

-consistent1 estimators,
hn;c, via

hn;Newt � �
q2 lnL

qyl qym

� ��1
s�s

�����
hn;c

q lnL=qy1

..

.

q lnL=qys

0
BB@

1
CCA
��������
hn;c

þ hn;c,

where h ¼ ðy1; . . . ; ysÞ
T and L is the likelihood.
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In this paper we establish that under Lehmann’s versions of the Cramér conditions, we have

ĥn � hn;Newt ¼ Opðn
�1Þ. (1)

An immediate corollary of our approach is that if hn;k;Newt denotes the result from the kth Newton step from affiffiffi
n
p

-consistent initial estimate then

ĥn � hn;k;Newt ¼ Opðn
�ð2k�1ÞÞ.

In Verrill and Johnson (2007) we have used result (1) to establish that estimators based on Newton steps
from

ffiffiffi
n
p

-consistent estimators may be used in place of efficient solutions of the likelihood equations in
likelihood ratio, Wald, and Rao tests. Taking a quadratic mean differentiability approach rather than our
Cramér condition approach, Lehmann and Romano (2005) outline proofs of results closely related to those of
Verrill and Johnson (2007). However, their Newton step estimator results actually rely on unstated
assumptions about Cramér conditions. Here we make our Cramér condition assumptions and their use
explicit.

Under regularity conditions, Janssen et al. (1985) demonstrate in the one-dimensional case that

ŷn � T ð1Þn ¼ Opðn
�1Þ,

where T ð1Þn � yn;Newt, and

ŷn � T ð2Þn ¼ Opðn
�3=2Þ,

where

T ð2Þn � �
q2 lnL

qy2

����
yn;Newt

 !�1
q lnL

qy

����
yn;Newt

þ yn;Newt.

That is, T ð2Þn is approximately equal to the result of a second Newton step.
Janssen et al.’s conditions are related to Lehmann’s (1983) version of the Cramér conditions. However,

neither set is strictly weaker than the other.

2. Lehmann’s (1983) versions of the Cramér conditions

Let the parameter space be denoted by Y � Rs. Let h0 2 Y denote the true parameter value.
(A0)
 The distributions PðhÞ of the observations are distinct. That is, distinct h’s cannot correspond to the same
distribution.
(A1)
 The distributions PðhÞ have common support.

(A2)
 The observations are X ¼ ðX 1 . . .X nÞ

T where the X i are iid with probability density f ðx; hÞ. (The X i may
be vector valued.)
(A)
 There exists an open subset T of Y that contains the true parameter value h0 such that for almost all x,
the density f ðx; hÞ has continuous third derivatives, q3f ðx; hÞ=qyl qym qyp for all h 2 T .
(B)
 For all h in T, the first and second logarithmic derivatives of f satisfy the equations

Ehðq ln f ðX ; hÞ=qylÞ ¼ 0

for l ¼ 1; . . . ; s and

I lmðhÞ � Ehðq ln f ðX ; hÞ=qyl � q ln f ðX ; hÞ=qymÞ ¼ Ehð�q
2 ln f ðX ; hÞ=qyl qymÞ

for l;m ¼ 1; . . . ; s. The I lmðhÞ are finite.

(C)
 IðhÞ � ½I lm�s�s is positive definite for all h in T.

(D)
 For all l;m; p, q3 ln f ðx; hÞ=qyl qym qyp is a continuous function of h for h 2 T . Further, there exist

integrable functions MlmpðxÞ such that

jq3 ln f ðx; hÞ=qylqymqypjpMlmpðxÞ
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for all h 2 T , and

mlmp � Eh0ðMlmpðX ÞÞo1,

for all l;m; p.
Given conditions (A0) through (D), Lehmann (1983, Theorem 4.1, Chapter 6) establishes that there exists a
solution of the likelihood equations, ĥn, that satisfiesffiffiffi

n
p
ðĥn � h0Þ!

D
Nð0; Iðh0Þ

�1
Þ. (2)

3. The theorem

Assume that conditions (A0) through (D) hold. Let hn;c be a
ffiffiffi
n
p

-consistent estimator of h0. That is, assume
that ffiffiffi

n
p
ðhn;c � h0Þ ¼ Opð1Þ (3)

Then with probability approaching one as n!1, the Newton estimator,

hn;Newt � �
q2 lnL

qyl qym

� ��1
s�s

�����
hn;c

q lnL=qy1

..

.

q lnL=qys

0
BB@

1
CCA
��������
hn;c

þ hn;c (4)

is well defined (that is the partials exist and the matrix is invertible), and

hn;Newt � ĥn ¼ Opðn
�1Þ, (5)

where ĥn is an asymptotically efficient solution of the likelihood equations guaranteed by Lehmann’s theorem.

Proof. We will be making use of the fact that the Newton method yields quadratic convergence. In particular,
we will verify the conditions of Theorem 5.2.1 in Dennis and Schnabel (1983).

By assumption (D) we can define

JnðhÞ � �
q2 lnL

qyl qym

�
s�s

� ����
h

 !,
n.

We have

JnðĥnÞ � Jnðh0Þ ¼ �
Xn

i¼1

q2 ln f ðX i; hÞ

qyl qym

����
ĥn

�
q2 ln f ðX i; hÞ

qyl qym

����
h0

 !,
n

" #
s�s

and, making use of assumption (D), by Taylor’s theorem

q2 ln f ðX i; hÞ

qyl qym

����
ĥn

�
q2 ln f ðX i; hÞ

qyl qym

����
h0

¼
q3 ln f ðX i; hÞ

qyl qym qy1
; . . . ;

q3 ln f ðX i; hÞ

qyl qym qys

� �����
h�lm;n

ðĥn � h0Þ,

where h�lm;n lies on the line segment between ĥn and h0.
Thus, by assumption (D), for ĥn 2 T (an open neighborhood of h0), the absolute value of the lmth element

of JnðĥnÞ � Jnðh0Þ is bounded by

Xn

i¼1

Xs

p¼1

MlmpðX iÞjŷpn � yp0j=n. (6)
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Since (by assumptions (A2) and (D) and the strong law of large numbers)

Xn

i¼1

MlmpðX iÞ=n!
a:s:

mlmpo1

for l;m; p 2 f1; . . . ; sg, results (2) and (6) imply that

kJnðĥnÞ � Jnðh0ÞkF!
p
0, (7)

where kMkF denotes the Frobenius norm of the matrix M.
Now by assumptions (A2) and (B) and the strong law of large numbers, we know that

Jnðh0Þ!
a:s:

Iðh0Þ. (8)

Results (7) and (8) imply that

kJnðĥnÞ � Iðh0ÞkF!
p
0. (9)

By assumption (C), Iðh0Þ is positive definite. Since the inverse and norm of a matrix are continuous
functions of the elements of the matrix, this implies that given any d40, we can find an Nd;1 such that n4Nd;1

implies that

ProbðkJnðĥnÞ
�1
kFo2kIðh0Þ

�1
kFÞ41� d. (10)

Since (see, for example, Dennis and Schnabel, 1983, Theorem 3.1.3)

kMs�skF=
ffiffi
s
p

pkMs�sk2pkMs�skF,

where kMk2 denotes the l2 induced matrix norm of M (see, for example, Dennis and Schnabel, 1983, pp. 43
and 44), result (10) implies that for n4Nd;1

ProbðkJnðĥnÞ
�1
kFo2

ffiffi
s
p
kIðh0Þ

�1
k2Þ41� d

or

ProbðkJnðĥnÞ
�1
kFobÞ41� d, (11)

where b � 2
ffiffi
s
p
=l and l is the smallest eigenvalue of Iðh0Þ.

Let r40 be such that Dðh0; 2rÞ � T , the open neighborhood of h0 in assumptions (A) through (D). (Here,
Dðh0; 2rÞ denotes the open ball of radius 2r centered at h0.) Since (result (2)) ĥn!

p
h0, given any d40, we can

find an Nd;2 such that n4Nd;2 implies that Probðĥn 2 Dðh0; rÞÞ41� d.
Now, provided that h1; h2 2 Dðh0; 2rÞ,

kJnðh1Þ � Jnðh2ÞkF ¼ k½alm�s�skF,

where

alm �
Xn

i¼1

q2 ln f ðX i; hÞ

qyl qym

����
h1

�
q2 ln f ðX i; hÞ

qyl qym

����
h2

 !,
n

¼
Xn

i¼1

q3 ln f ðX i; hÞ

qyl qym qy1
; . . . ;

q3 ln f ðX i; hÞ

qyl qym qys

�� ����
h�lm;n

ðh1 � h2Þ

,
n,

where h�lm;n lies in the line segment between h1 and h2.
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Thus, by assumption (D), if h1, h2 are within r of ĥn, then for n4Nd;2, with probability greater than 1� d,
we have

kJnðh1Þ � Jnðh2Þk
2
F ¼

Xs

l¼1

Xs

m¼1

a2
lmp

Xs

l¼1

Xs

m¼1

jalmj

 !2

p
Xs

l¼1

Xs

m¼1

Xn

i¼1

Xs

p¼1

ðMlmpðX iÞ=nÞjyp1 � yp2j

 !2

. ð12Þ

Since (by assumption (D))

Xn

i¼1

MlmpðX iÞ=n!
a:s:

mlmpo1

for l;m; p 2 f1; . . . ; sg, result (12) implies that given any d40, we can find an Nd;3 such that n4Nd;3 implies
that, with probability greater than 1� d, if h1, h2 are within r of ĥn, then

kJnðh1Þ � Jnðh2Þk
2
Fp

Xs

l¼1

Xs

m¼1

Xs

p¼1

ðmlmp þ 1Þjyp1 � yp2j

 !2

pg2kh1 � h2k
2,

where

g �
Xs

l¼1

Xs

m¼1

Xs

p¼1

ðmlmp þ 1Þ

 !
o1.

That is, for n4Nd;3, with probability greater than 1� d,

Jn 2 LipgðDðĥn; rÞÞ. (13)

Results (11) and (13) permit us to invoke Dennis and Schnabel’s (1983) Theorem 5.2.1 to conclude that
given any d40, we can find an Nd;4 such that n4Nd;4 implies that with probability greater than 1� d

hn;Newt � �
q2 lnL

qyl qym

� ��1�����
hn;c

q lnL=qy1

..

.

q lnL=qys

0
BB@

1
CCA
��������
hn;c

þ hn;c

is well defined (that is the partials exist and the matrix is invertible), and

khn;Newt � ĥnkpb� g� khn;c � ĥnk
2, (14)

provided that

khn;c � ĥnko� � min r;
1

2bg

� �
.

But by result (2) and the fact that hn;c is a
ffiffiffi
n
p

-consistent estimator of h0, we have
ffiffiffi
n
p
ðhn;c � ĥnÞ ¼ Opð1Þ so

given any d40 we can find a Kd and an Nd;5 such that n4Nd;5 implies

Probð
ffiffiffi
n
p
khn;c � ĥnkpKdÞX1� d. (15)

If we require that Nd;54K2
d=�

2, then n4Nd;5 also implies

Probðkhn;c � ĥnko�ÞX1� d. (16)
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Results (14)–(16) imply that given any d40, we can find an N such that n4N implies that with probability
greater than 1� d,

khn;Newt � ĥnkpb� g� K2
d=n, (17)

which completes the proof of the theorem. &

Corollary. Assume that conditions (A0) through (D) hold. Let hn;c be a
ffiffiffi
n
p

-consistent estimator of h0. That is,
assume thatffiffiffi

n
p
ðhn;c � h0Þ ¼ Opð1Þ. (18)

Define hn;0;Newt � hn;c. Then with probability approaching one as n!1, the kth Newton estimator,

hn;k;Newt � �
q2 lnL

qyl qym

� ��1
s�s

�����
hn;k�1;Newt

q lnL=qy1

..

.

q lnL=qys

0
BB@

1
CCA
��������
hn;k�1;Newt

þ hn;k�1;Newt (19)

is well defined (that is the partials exist and the matrix is invertible), and

hn;k;Newt � ĥn ¼ Opðn
�ð2k�1ÞÞ, (20)

where ĥn is an asymptotically efficient solution of the likelihood equations guaranteed by Lehmann’s theorem.

Proof. The proof is essentially the same as that of the main theorem. We simply replace hn;c with hn;k�1;Newt

and hn;Newt with hn;k;Newt. Result (17) then becomes

khn;k;Newt � ĥnkpb� g� K2
d=ðn

2k�2

� n2k�2

Þ ¼ b� g� K2
d=n2k�1

: &
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