New Insights into the Ligninolytic Capability of a Wood Decay Ascomycete

Semarjit Shary, Sally A. Ralph, and Kenneth E. Hammel

Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, and USDA Forest Products Laboratory, Madison, Wisconsin 53726.

Received 19 June 2007/Accepted 18 August 2007

Wood-grown cultures of Daldinia concentrica oxidized a permethylated β-14C-labeled synthetic lignin to 14CO2 and also cleaved a permethylated α-13C-labeled synthetic lignin to give Cα-Cµ cleavage products that were detected by 13C nuclear magnetic resonance spectrometry. Therefore, this ascomycete resembles white-rot basidiomycetes in attacking the recalcitrant nonphenolic structures that predominate in lignin.

The degradation of lignocellulose by ascomycetes, a process generally called soft rot, is an important route for carbon cycling in plant litter and soils (2). Little is known about the decay mechanisms of these fungi, in contrast to those of the better-studied lignocellulolylolytic basidiomycetes that degrade wood. Nevertheless, it is clear that some soft-rot fungi can degrade lignin, because they erode the secondary cell wall and decrease the content of acid-insoluble material (Klason lignin) in angiosperm wood (13, 21). Some ascomycetes have also been shown to mineralize radiolabeled synthetic lignins (known as dehydrogenative polymerizes [DHPs]), but the low extents of 14CO2 production reported—invariably less than 10% of the lignin—indicate that the ligninolytic capabilities of ascomycetes are more limited than those of white-rot basidiomycetes (11, 17).

One possibility is that ascomycetes attack only the phenolic units in lignin, which comprise roughly 10% of the polymer and are chemically more labile than the ether-linked, nonphenolic units that make up the remainder (Fig. 1). Phenolic lignin structures are oxidized and directly cleaved by a variety of mild biological oxidants such as manganic chelates and phenol oxidases (7, 20). By contrast, the cleavage of nonphenolic lignin structures requires the action of stronger oxidants, including oxyradicals produced by the action of peroxidases or laccases on various redox mediators. The production of these more vigorous ligninolytic systems is typical of white-rot basidiomycetes (5, 12) and has not yet been convincingly shown in soft-rot ascomycetes. However, the production of phenol oxidases that could act directly on phenolic lignin is widespread among ascomycetes (11, 14, 19).

Mineralization of DHPs. To address this question, we compared the extents to which Daldinia concentrica mineralized phenolic and nonphenolic DHPs. D. concentrica is a xylaraceous ascomycete that produces phenol oxidase activity (14) and degrades angiosperm wood extensively (13). Because chemical analyses of wood degraded by this fungus have shown that it degrades syringyl lignin units faster than guaiacyl ones (Fig. 1) (13), we performed these experiments with a syringyl/guaiacyl DHP (i.e., a polymeric model of angiosperm lignin) that was 14C labeled at Cµ on the side chains of its syringyl units. The radiolabeled DHP, prepared as described earlier (4, 9), had a specific activity of 0.01 mCi/mmol of syringyl subunits and a syringyl/guaiacyl ratio of approximately 4:1. A portion of this phenolic syringyl/guaiacyl DHP was then permethylated with diazomethane as described earlier (8) to obtain a non-phenolic syringyl/guaiacyl DHP, i.e., a polymer in which all of the phenolic hydroxyl groups had been blocked as methyl ethers. In addition, a phenolic guaiacyl DHP (i.e., a polymeric model of gymnosperm lignin), prepared previously with 14C at Cµ of its side chains (0.01 mCi/mmol of guaiacyl subunits) (4), was included in the experiment for comparison.

Each DHP was fractionated by gel permeation chromatography (GPC) on Sephadex LH-20 in N,N-dimethylformamide, and the excluded fractions were taken to eliminate low-molecular-mass material (≤1 kDa) that might have been susceptible to uptake and intracellular metabolism. This step is essential in microbiological experiments with DHPs because ligninolysis is strictly an extracellular process (9). The excluded fractions were then subjected again to GPC on a 1.8- by 33-cm column of Sephacryl S-100 in N,N-dimethylformamide (15),...
and fractions eluting within the sieving range of the column were pooled so that the phenolic and nonphenolic DHPs had similar molecular mass distributions. We included this extra purification step in case the size of a DHP might influence its biodegradation. The results establish that this fungus can degrade guaiacyl lignin structures extracellularly, because the proportion of $^{14}$C with a molecular mass less than 1 kDa in our guaiacyl DHP was only about 2% (Fig. 2). Most interestingly, the data also show that blockage of the phenolic groups in the syringyl/guaiacyl DHP had no significant effect on its biodegradation. Therefore, contrary to our initial hypothesis, attack on nonphenolic lignin structures is a significant route for ligninolysis by D. concentrica.

**Identification of cleavage products in a nonphenolic DHP.** To address the question of how D. concentrica cleaves nonphenolic lignin structures, we supplemented aspen wafers with a nonphenolic DHP enriched with $^{13}$C at C$_n$ of its propyl side chain, extracted this DHP from the wood after decay, and then identified chemical changes at C$_n$ by $^{13}$C nuclear magnetic resonance (NMR) spectrometry. The [$\alpha$-$^{13}$C]DHP was a guaiacyl polymer prepared earlier (4) with a $^{13}$C content greater than 99% at C$_n$. It was first permethylated to block its phenolic structures and then fractionated on Sephadex LH-20 as described above to provide a high-molecular-mass fraction. The $^{13}$C NMR spectrum of this fraction was obtained, after which two sterile aspen wafers (dry weights: 334 mg and 350 mg) were each infused with 9 mg of it in acetone-water and then inoculated with D. concentrica as described above. At the same time, five replicate cultures were set up on aspen wafers (average dry weight: 334 mg and 350 mg) without [$\alpha$-$^{13}$C]DHP so that the contribution of endogenous lignin to the NMR spectra could be assessed. The cultures were covered with aluminum foil and incubated at 26°C and 70% relative humidity for 7 weeks.

At the conclusion of the experiment, the two supplemented wafers had a combined dry weight of 464 mg and showed weight losses of 31% and 33%, compared with a mean value of 46% $\pm$ 3% for the five control wafers without [$\alpha$-$^{13}$C]DHP. Apparently, the presence of DHP inhibited wood decay somewhat, but it is evident that a complete biodegradative system was nevertheless expressed in supplemented wafers. Two wafers, weighing a total of 461 mg, were chosen from the decayed set lacking [$\alpha$-$^{13}$C]DHP, and each pair was then ball milled. The milled wood samples were treated with a crude cellulase

![FIG. 2. Gel permeation chromatography of the radiolabeled DHPs used in mineralization experiments. The distributions shown, with their weight average molecular masses ($M_w$) and number average molecular masses ($M_n$), are as follows: phenolic syringyl/guaiacyl DHP (solid line), $M_w$ = 33 kDa, $M_n$ = 16 kDa; nonphenolic syringyl/guaiacyl DHP (long-dash line), $M_w$ = 25 kDa, $M_n$ = 14 kDa; phenolic guaiacyl DHP (short-dash line), $M_w$ = 21 kDa, $M_n$ = 5 kDa. Elution positions and masses of standards are shown for 35-kDa, 15-kDa, and 0.5-kDa benzaldehyde (0.17 kDa). $V_o$ indicates the excluded volume of the column.](image-url)

**TABLE 1. Mineralization of $\beta$-$^{14}$C-labeled synthetic lignins by D. concentrica on wood.**

<table>
<thead>
<tr>
<th>Polymer added</th>
<th>Amt mineralized ± SD (%) at:</th>
<th>Wt loss in wood ± SD (%) at 12 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 wk</td>
<td>8 wk</td>
</tr>
<tr>
<td>Nonphenolic syringyl/guaiacyl DHP ($n = 6$)</td>
<td>6.2 ± 2.7</td>
<td>10.4 ± 4.1</td>
</tr>
<tr>
<td>Phenolic syringyl/guaiacyl DHP ($n = 5$)</td>
<td>7.5 ± 2.4</td>
<td>12.3 ± 3.9</td>
</tr>
<tr>
<td>Phenolic guaiacyl DHP ($n = 5$)</td>
<td>2.1 ± 0.6</td>
<td>4.0 ± 1.1</td>
</tr>
</tbody>
</table>
mixture (Cellulysin; Calbiochem, San Diego, CA) for 48 h thrice as described elsewhere (16), after which the lignin-enriched fraction was extracted for 24 h thrice with dioxane-water (9:1) to solubilize as much lignin as possible. The two wafers originally supplemented with \([\alpha-^{13}C]\)DHP yielded 97 mg of solubles, whereas the two unsupplemented wafers yielded 82 mg.

Qualitative \(^{13}\)C NMR analyses of these samples were obtained, and the normalized spectra (Fig. 3) were inspected for signals indicative of ligninolysis. No significant changes were discernible in the alcohol and ether range (70 to 90 ppm), corresponding to C_6 in major structures (Fig. 1) of the undegraded DHP, but new structures were apparent in the carbonyl (190 to 205 ppm and 165 to 175 ppm) regions. Figure 3a shows the spectrum in these regions for the \([\alpha-^{13}C]\)DHP that was extracted from degraded wood, and Fig. 3b shows the spectrum in the same regions for the extract from degraded wood that had received no \([\alpha-^{13}C]\)DHP. Figure 3c shows the difference between these two spectra and is thus a spectrum of degraded \([\alpha-^{13}C]\)DHP that has been corrected for the small contribution made by material originating from the wood. To see the changes that \textit{D. concentrca} caused in the nonphenolic \([\alpha-^{13}C]\)DHP, the difference spectrum in Fig. 3c should be compared with Fig. 3d, which shows the spectrum of the original, undegraded, permethylated polymer.

In \([\alpha-^{13}C]\)DHP recovered from degraded wood, a signal in the region characteristic of benzaldehyde carboxyls was apparent (Fig. 3a and 3c, signal 1) and was confirmed to be from a protonated (i.e., aldehyde as opposed to ketone) carbonyl in a distortionless enhancement with polarization transfer (DEPT) experiment (18) (Fig. 3e). This benzaldehyde signal was absent from the lignin extracted from degraded wood that had received no \([\alpha-^{13}C]\)DHP (Fig. 3b) and therefore must have originated from the DHP. Benzaldehyde residues were also present in the original, undegraded \([\alpha-^{13}C]\)DHP (Fig. 3d), as also found in earlier research on another DHP (3), but they occurred at a much higher level in the degraded sample.

Similarly, the \([\alpha-^{13}C]\)DHP from degraded wood exhibited benzoic acid carboxyl signals (Fig. 3a and c, signal 2) that were detectable neither in the lignin from wood without \([\alpha-^{13}C]\)DHP (Fig. 3b) nor in the original undegraded \([\alpha-^{13}C]\)DHP (Fig. 3d). The undegraded \([\alpha-^{13}C]\)DHP did originally contain benzoic acid residues, in agreement with earlier work (3), but they all appear in our spectra as methyl benzoates (Fig. 3d, signal 3) because the \([\alpha-^{13}C]\)DHP had been permethylated before the experiment. Since these preexisting methyl benzoates were unaffected by fungal decay (Fig. 3a and c) they cannot have been the source of the new benzoic acid residues.

There are two possible sources for new benzaldehydes and benzoic acids in a biodegraded lignin. First, if the polymer originally contained primary benzyl alcohols, these might simply become oxidized at C_6. Such reactions would not be ligninolytic, but we can rule them out as an explanation for our data because a two-dimensional \(^1H-^{13}\)C heteronuclear spin quantum correlation (HSQC) NMR spectrum of the original permethylated \([\alpha-^{13}C]\)DHP showed that it lacked the \(^1H_2-^{13}C_2\) cross-peak at a δ of 4.6, 65 ppm, that is expected for primary benzyl alcohols (data not shown; for typical NMR chemical shifts of lignin-related structures see the U.S. Dairy Forage Research Center NMR Database of Lignin and Cell Wall Model Compounds at http://ars.usda.gov...
come the tendency that guaiacyl lignin fragments have to re-
quantity of ligninolytic oxidants and consequently fail to over­
easier to oxidize than syringyl structures (6). We consider it
lytic oxidants (13), but this inference is contradicted by the
of ascomycetes to depolymerize guaiacyl lignin structures has
been found to elicit their production on any medium except
for advice on sample preparation for NMR analysis.

We thank Carl Houtman for calculating the DHP molecular mass
distributions, Hoon Kim for milling the wood samples, and John Ralph
for advice on sample preparation for NMR analysis.

This study was supported by U.S. Department of Energy grants
DE-FG02-94ER20140 and DE-AL02-07ER64480 to K.E.H.

REFERENCES
spectroscopic study of spruce lignin degraded by Phanerochaete chrysospo­
don, United Kingdom.
selectively labeled at benzylic positions—synthesis and NMR study. Makro­
4. Hammel, K. E., K. A. Jensen, M. D. Mozuch, L. L. Landucci, M. Tien, and
268:12274–12281.
oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol.
30:445–453.
etic oxidation of nonphenolic lignin models by Mn(III). New observations
on the oxidizability of guaiacyl and syringyl substructures. Arch. Biochem.
Biophys. 270:404–409.
24:3379–3390.
Mineralization of 14C-labelled synthetic lignin and extracellular enzyme ac­
microscopy of wood decay by some higher ascomycetes. Holzforschung 43:
11–18.
Res. 104:1473–1479.
and cleavage of lignin structures by fungal chloroperoxidases. Appl. Environ.
Microbiol. 69:5015–5018.
3-hydroxylase down-regulation on lignin structure. J. Biol. Chem. 281:8843–
8853.
17. Regalado, V., A. Rodríguez, F. Perestelo, A. Carnicero, G. de la Fuente,
and M. A. Falcón. 1997. Lignin degradation and modification by the soil-inhab­
19. Torres y Torres, J. L., and J. P. N. Rosazza. 2001. Microbial transformations of
p-coumaric acid by Bacillus megaterium and Cupulalaria brunnae. J. Nat.
Prod. 64:1408–1414.
of phenolic arylglycerol β-aryl ether lignin model compounds by manganese
peroxidase from Phanerochaete chrysosporium. Oxidative cleavage of an