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ABSTRACT 

A hierarchical algorithmic and computational scheme 
based on a staggered design optimization approach is 
presented. This scheme is structured for unique characterization 
of many continuum systems and their associated datasets of 
experimental measurements related to their response 
characteristics. This methodology achieves both online (real-
time) and offline design of optimum experiments required for 
characterization of the material system under consideration, 
while also achieving a constitutive characterization of the 
system. The approach assumes that mechatronic systems are 
available for exposing specimens to multidimensional loading 
paths and for the acquisition of data associated with stimulus 
and response behavior. Material characterization is achieved by 
minimizing the difference between system responses that are 
measured experimentally and predicted based on model 
representation. The performance metrics of the material 
characterization process are used to construct objective 
functions for the design of experiments at a higher-level 
optimization. The distinguishability and uniqueness of 
solutions that characterize the system are used as two of many 
possible measures adopted for construction of objective 
functions required for design of experiments. Finally, a 
demonstration of the methodology is presented that considers 

the best loading path of a two degree-of-freedom loading 
machine for characterization of the linear elastic constitutive 
response of anisotropic materials. 
 
Keywords: design optimization, material characterization, 
design of experiments, mechatronic systems, constitutive 
response, anisotropic materials, composites.  

INTRODUCTION 
Automated mechatronic systems capable of applying 

multidimensional loading and collecting specimen response 
data present two unique opportunities with respect to data 
driven inverse modeling. The first and more well-known 
opportunity is the exploitation of experimental data for 
parameter estimation associated with models describing 
material constitutive behavior. The second and certainly less 
explored opportunity is the dynamic-data-driven identification 
of the optimum design of experiments required for achieving 
best exploitation of data for parameter estimation. The goal of 
this paper is to describe a methodology that is structured for 
consideration of both opportunities. Accordingly, the ultimate 
goal of the effort described here is to demonstrate online and 
offline exploitation of data relative to its effect on model 
formation and design of experiments within the context of 
dynamic data driven application systems (DDDAS) adopted for 
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structural health monitoring and critical event prediction [1-3]. 
It should be mentioned here that the present effort is different 
from all other DDDAS efforts in that is formulated for a 
multidimensional loading (data-space) and is the only one 
known to the authors that is presented for material systems and 
their corresponding parameter identification experiments. 

Utilization of data-driven design optimization practices in 
order to determine constitutive behavior parameters of 
materials under mechanical loadings has been based 
traditionally on experimental procedures having rigid 
architectures and no consideration of the influence of 
experimental design on the quality of the material parameter 
estimation. The advent of mechatronic systems, however, 
characterized by multiple degrees of freedom, and thus capable 
of multidimensional mechanical loading [4-5], has introduced 
the potential of multiple designs of experiments for the 
acquisition of behavioral data essential for parameter 
estimation.  

The work presented in this paper is motivated by the goal 
of demonstrating that it is possible to dynamically affect the 
manner by which data are gathered in multidimensional data 
and model spaces. The contribution of the present work that 
departs from other DDDAS efforts is based on the presentation 
of a hierarchical design optimization methodology that 
interrelates two successive design optimization subprocesses 
for the case of material property identification and its 
corresponding optimal experiments. One of these subprocesses 
is responsible for the traditional parameter estimation 
associated with either linear or nonlinear material constitutive 
behavior; the other subprocess is responsible for the 
nontraditional parameter estimation associated with the 
characterization of the loading path followed by a 
multidimensional loading frame. In particular, this approach 
allows for the development of a DDDAS that adapts such that 
two sets of objectives are satisfied. The first set of objectives 
contains those related to determining the material parameters 
and is based solely on physical performance measures of the 
parameterization or model selected to represent the constitutive 

behavior of a given material. The second set of objectives 
contains those related to determining the online parametric 
characteristics of an experimental sequence as controlled by a 
multiple degree of freedom loading machine.  It is significant to 
note that one can extend this optimization methodology to 
include determination of offline characteristics of experiments. 

The concept of a meta-objective function is constructed to 
determine performance of a given constitutive model having 
been employed in the previous optimization cycle iteration. 
Thus, the experimental design is generated dynamically as data 
are being acquired in a fashion that optimizes the performance 
of the lower level optimization employed for the material 
parameter estimation. 

 The paper continues with a section that defines the 
methodology presented here. Subsequently, an application 
related to characterizing the elastic response of a composite 
material is described where the performance of the 
characterization process is defined in terms of the uniqueness 
and distinguishability of the parameter set that has been 
deduced as solution of a singular value decomposition (SVD) 
problem. Finally, an example of the methodology is described, 
which is followed by a discussion of results and future 
research. 

HIERARCHICAL FRAMEWORK  
The hierarchical nature of the methodology presented here 

is based on the observation that there are at least two layers of 
design optimization activities that can be involved in using data 
obtained from experiments for the characterization of a system.  

 As shown in Fig. 1 the lower level (i.e., level-1) is 
assigned with the more traditional task of identifying the 
parameters associated with the behavior of a model in general, 
and the material constitutive model in particular. A performance 
specification for that model and an instantaneous snapshot of 
its behavior, as instantiated from the previous set of material 
model parameters, are used for specification of the optimizer’s 
objectives (in terms of the related objective functions) and 
associated equality or inequality constraints. In this 

 
Figure 1:  Design Optimization Hierarchy 
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performance specification of the material system model, it is 
usually required that the output of the tentative 
parameterization or model be within a given tolerance relative 
to experimental data characterizing the behavioral response of 
the system.  

 At the higher level (i.e., level 2) of this hierarchy, 
essentially all the components discussed in the lower level still 
exist. For this level, however, instead of designing the material 
model, optimization is utilized for the design experimental 
procedures. This optimization is achieved by determining 
parameters that characterize design of experiments in 
particular. This second level can be further subdivided into 
sublevels. One sublevel involves characterizing the experiment 
dynamically online with the material characterization itself 
(i.e., level 2a). The other involves characterizing the features of 
the experiment in an offline fashion prior to execution of the 
experiment (i.e., level 2b). The blocks shown in Fig. 1 
designated by the labels “model of online experimental system” 
do in fact correspond to the model approximating the 
experimental procedure itself.  The blocks in Fig. 1 designated 
by the labels including “performance specification” correspond 
to the performance specification of this experimental model for 
both online and offline cases. 

The performance specifications of level-2a and level-2b 
can be defined in terms of objectives that maximize the quality 
of the determined model at the lower level and also maximize 
its computational performance. The necessary and sufficient 
condition for this to be possible, requires the creation of 
objective functions at this level, that are expressed in terms of 
design variables that express quality features of model 
determination at level-1. These objective functions can further 
be endowed with measures of computational performance such 
as speed of calculation, computational cost of algorithm, level 
of accuracy, etc. Thus multi-objective function determination is 
implied here with at least two different partitions. One partition 
expresses the numerical performance of the lower level model 
while the other expresses its computational efficiency. For each 
acceptable determination of a model (establishment of a set of 
material model parameters) there is a set of values expressing 
the quality of the numerical and computational operations that 
depend on various decisions made (codified as design variable 
instantiation) directly related to the procedure according to 
which experiments are to be conducted. The fact that the 
overall performance of the lower level is adopted for 
performance specification at the higher level implies that 
indeed the higher level represents the design meta-level of the 
lower level. 

Figure 2 shows a restructuring of the design optimization 
levels such that the ordering is from the perspective of applying 
initially the offline design optimization and subsequently the 
online optimization. In the case of this restructuring the online 
optimization includes the determination of both the material 
constitutive parameters and the experimental parameters. This 
representation utilizes information theoretic semantics and 
clearly indicates that the offline optimization must be 

performed by means of finite element analysis (FEA) of the 
specimen. Accordingly, it is necessary to adopt a parameterized 
model representation of the constitutive response. 

GENERAL SYSTEM PRELIMINARIES 
In the general case of the lower level plane on Fig. 1, it is 

expected that a system under identification is described by 
some general form of the type: 

                                                                        (1) ( ; )=y p xf

where ,y y x xq q qY X∈ ⊆ ∈ ⊆y x\ \q represent output, yq xq  input 
state variables, respectively. The vector represents 
p unknown parameters characterizing the system  (i.e., design 
variables within a design optimization context). The vector 
function represents the behavior of the 
system. 

pP∈ ⊆p \ p

yq( ; ) yqY∈ ⊆p x \f

 
Figure 2:  Design Optimization Hierarchy 

 
Determination of this vector function is equivalent to a 
determination of all  components yq uy  of the vector y. This is 
equivalent to the identification of  systems yq ( ; )u uy f= p x . 
Assuming that one exercises the corresponding physical system 
l times, incrementally, one is then able to construct the 
experimental pairs , where E E E

,( , ) ( , )u k u k ky y=x x l1, ,k = … , and the 
superscript “E” indicates the experimental character of a given 
quantity. At this stage it is advantageous to construct a 
decomposable factorization of .  This can be achieved 
in general using a formalism that follows a Taylor-series 
expansion [7] according to 

( ; )uf p x
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                            1 2
1 2( ; ) [ ] m

x

mm m
u u qf p x x x= ∑

m
p x m … .                     (2) 

The index vector  is an m-tuple of 
nonnegative integers that identifies the term in the series, or 
equivalently, the order of each variable in each of the monomial 
terms of the series. This implies that the total order of each 
monomial term will be 

1 2[ , , , ]mm m m=m …

1 2 mm m m= = + + +m … m . Thus, the 
number of terms in the series is computed by the binomial 
coefficient 

                                          x
up

m q
p

m
+⎛

= ⎜
⎝ ⎠

⎞
⎟ ,                               (3)         

which essentially defines the dimensionality of the column 
parameter vector . The components of this vector or the 
coefficients of the series in Eq. (2) can now be considered as 
design variables of an optimization problem that requires the 
minimization of the quantity 

p

u u u−A p b  that expresses the 
error between the experimentally observed output behavior 

and that which is estimated analytically as expressed by the 
product . Here , and is an 

ub

u uA p 1( , , , , )T
u u uk uly y y=b … … uA upl p×  

array whose elements are evaluations of the combinations 
1 2

1 2
m

x

mm m
qx x x…  of terms from the series given in Eq. (2). When 

this minimization is defined with respect to the  norm, one is 
able to construct [8] an objective function for minimization of 
the form 

2L

    
2

2 2

1
( ) ( ) (

l
E E T E

u u u u u u u u u uk u ukL
k =

− = − − = −∑A p y A p y A p y A p y )E     (4) 

This formulation suggests that linear least squares methods can 
be used to determine the vector of the system parameters 

that represent the coefficients of the generally non-linear 
system model with respect of the input vector x. This fact has 
generated confusion within the literature and therefore requires 
some emphasis for purposes of clarity. Consequently,  
can be determined through a determination of its 
components . This is equivalent, however, to a 
determination of  parameters, and is therefore equivalent 
to solving optimization problems, where each problem is 
associated with system parameters. 

up

( ; )f p x

( ; )u uf p x

yp q×

yq

p
In order to reduce the complexity of the general problem, 

as stated until this stage of our development, and to ensure that 
each  is evaluated using a formalism that is consistent 
with respect to all components, we focus on a class of problems 
that is characterized by a particular mathematical representation 
that has its foundation in potential theory and continuum 
mechanics [8].  This particular representation of systemic 
behavior is in fact popular within continuum mechanics and 
has its origins in the development of hyperelasticity. 
Accordingly, it is postulated that there exists a potential 
function  such that  

( ; )u uf p x

( ; )Ψ p x

                                ( ; )( ; )u u
u

y f
x

∂Ψ
= =

∂
p xp x .                            (5) 

This formulation effectively equips the systemic representation 
with a structure for determining all components uy  of the 
vector  from a single scalar potential functiony ( ; )Ψ p x . An 
often forgotten assumption enabling this formulation is that the 
input and output variables can actually form a correspondence 
through interrelationship as conjugate pairs { , },  1, ,u uy x u q= … , 
where x yq q q= = ( and therefore, this approach is not applicable 
for systems with mismatching cardinality of the input and 
output sets.) In this case the design optimization problem for 
level-1 optimization is reduced to that of a determination of the 
function ( ; )Ψ p x . A standard technique for determining this 
function involves its construction as an additive linear 
combination of basis functions , weighted by the unknown 
coefficients according to  

( )β x
p

                                        ( ; ) ( )Ψ = ⋅p x p β x ,                            (6) 
where 1 2[ , , , ]pp p p=p …  and . Another 
approach for construction of the function 

1 2[ ( ), ( ), , ( )]T
nβ β β=β x x x…

( ; )Ψ p x is based on 
thermodynamics. This approach, which assumes that 

( ; )Ψ p x represents an internal energy density function for many 
continuum systems, permits a Taylor-series expansion about the 
origin =x 0  with respect to the state variables represented by 
the components forming the basis set of the input state 
subspace . Accordingly, a second order expansion with 
respect to the variables 

qX

ux  results in a first order constitutive 
theory following Eq. (5). Clearly when terms of higher than 
second order are employed, the resulting systemic behavior will 
be nonlinear.  Another important and frequently forgotten fact 
is that Eq. (6) is actually Eq. (2) expressed in vector notation, 
with the subtle difference, however, that the basis functions 

are arbitrary and therefore can be selected such that their 
structure is more convenient for a particular system analysis. 
Accordingly, the structure of the basis functions can be 
selected such that Eq. (6) is expressed by fewer terms relative 
to Eq. (2). 

( )β x

( )β x

Substitution of Eqs. (5) and (6) into Eq. (1) yields the 
systemic behavior model 
                                      ( )= ∇xy p β xi  .                                   (7) 
Within the context of continuum systems and their 
corresponding constitutive responses, Eqs. (1,5-7) represent the 
behavior of the medium for all random volume elements 
(RVEs) within the geometry that encloses it, and is independent 
of shape. However, for the sake of identifying the components 
of the parameter vector p , experimental measurements are to 
be made at discrete locations  on the specimen, or in 
general, the system. At the same time excitation and response is 
measured in terms of input-output pairs for various magnitudes 
of excitation indexed by  for a total of m different 
magnitudes.  Accordingly, one can construct a vector 
expressing the behavior of the system as calculated analytically 
according to  
   Y ,   (8) 

[1, , ]i∈ … l

m

)) , ,  ( ( ; ), , ( ; )) ] T
n l ky y y y=p x p x p x p x p x… … …

[1, , ]k ∈ …

1 1 1( ; ) [( ( ; ), , ( ;k n
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and correspondingly, the behavior of the system as measured 
experimentally according to  
                                      (9) 1 1 1[( , , ) , ,  ( , , ) ]e e e e e

k ny y y y=Y … … … T
n l k

The quantity  

                            2 2

1
( ( ; ) )

m
e e

k k kj kj
j=

− = −∑Y Y Y p x Y  ,              (10) 

which expresses the square of the L2 norm of the residual 
difference of Yk and Ye

k in terms of the least square difference 
of their respective magnitudes for each excitation increment. 
The equality expressed by Eq. (10), however, must be satisfied 
for all excitation levels m and must be extended to include all 
discrete measurement positions l. This condition combined  
with the substitution of Eqs. (4-6) into Eq. (10) yields the 
generalized form,  

      (11) 1 2
0

1 1 1 1
( ( ; ) )  = ( ( ) )

l m l m
lev e e

jt jt p jt jt
t j t j

J y y p−

= = = =

= − ⋅∇ −∑∑ ∑∑ xp x β x 2y

Since this expression provides the definition of the residual 
error it can be used to define the objective function 1

0
levJ −  that 

when minimized yields the unknown parameter vector p , and 
therefore, the design optimization process that is performed at 
level-1. As expected, the individual objectives folded in Eq. 
(11) that are related with the each individual output are satisfied 
as they are affected by the simultaneous presence of the rest of 
them. 

If one assumes that linear constitutive behavior can 
approximate the behavior of a given system, it then follows 
from Eq. (4) that must be a second order function of the 
components of . In that case it is trivial to show that 
determination of Eq. (8) is reducible to a problem involving the 
determination of the scalar function 

( )β x
x

( ; )Ψ p x  according to 

               
2

1
0

1 1
( ) ( )= (

m l n
lev e T e e

st t s
s t

2)J B p y
+ =

−

= =

= − − −∑ ∑Bp y Bp y ,           (12) 

where the overbar quantities correspond to the experimental 
values of the generalized work function corresponding to the 
inner product of the input and output vectors of the original 
system. 

The problem expressed by Eq. (12) can be solved by 
methods based on the solution of normal equations (Normal-
Equations method), QR factorization, or Singular Value 
Decomposition (SVD) [9]. Selecting one of these methods to 
determine the unknown model parameters can be a process that 
depends on ranking these methods with regard to their 
performance in terms of attributes or metrics that are important 
to the user. It has been documented for example that the 
Normal Equation method is computationally fast and requires 
less resources, but is less accurate. In contrast, it is well known 
that SVD requires substantial computational resources, but is 
more reliable than other methods. It is natural therefore, to ask 
the question of how these attributes might vary given that there 
exists user control of the characteristics that determine the 
particular choice of experimental data adopted for population 
of all column arrays having superscript “e”, denoting 
experimental value, in the relations presented above. 

COMPOSITE MATERIAL SYSTEM 
For demonstration purposes we consider a linear 

anisotropic material with the four moduli representing its 
constitutive parameters.  We have already demonstrated [10,11] 
that this problem can be reduced to the following linear (with 
respect to the unknown parameter vector) relation 

                                  ( ) M kθ =G q w   ,                           (13) 

where ( ) ( ) ( )1ˆ ˆ,...,
T

nθ θ θ= ⎡ ⎤⎣ ⎦G g g is a -dimensioned array 
that contributes to the finite element approximation of the 
internal energy stored in the system from an increment of strain 
from point 

4m×

1k −  to point  in a manner that does not contain 
the material moduli since this quantity is contributed by the 4x1 
array 

k

Mq of unknown parameters on the left hand side of Eq. 
(13). The right side the m-dimensional array 

contains the external work that is applied as 
excitation into the system for all loading increments. In Eq. 
(13) the right side represents the measured output of the 
system, while the left side represents the corresponding change 
inside the system due to all possible excitation inputs. This 
equation is a special case for application of the more general 
Eq. (7). Its solution can be approached as a special case of the 
problem presented by Eq. (12) and can be achieved by using 
any of the three methods available for implementation of least 
squares approximation. 

[ 1 / ,..., / T
k W t W t=w ]n

While selecting among the various methods may implicitly 
suggest the idea of yet another optimization level, here we will 
focus on SVD for the purpose of determining the parameters of 
the material model associated with level-1. We will also neglect 
additional computational performance criteria and focus only 
on potential measures of performance of SVD implementation 
from an algorithmic perspective. 

Thus, the solution containing the identified parameters 
according to Eq. (13) can be written in the form  

                           ( )M kθ +=q G w                                      (14) 
where 
                          ( ) ( ) ( ){ } ( )

1T Tθ θ θ θ
−+ =G G G G                       (15) 

is the pseudoinverse of ( )θG  and it exists uniquely only when 
or when the system of linear equations represented by Eq. 

(14) is overdetermined. 
4n ≥

LEVEL-1 PERFORMANCE MEASURES 
What determines the quality of solving Eq. (13) is now 

reduced to determining the quality of applying Eq. (14) and 
therefore the quality of the process associated with establishing 
the pseudoinverse array defined by Eq. (15). We have identified 
in the past [10,11] that the concepts of “uniqueness” and 
“distinguishability” of the obtained solution can be used as 
performance metrics for the determination of the parameter 
column array Mq . In order to define these two concepts it is 
necessary to focus on a few preliminaries relating the singular 
values of the SVD process to the problem at hand. In particular, 
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the uniqueness of the solution depends not only on the size of  
( )θG  but also on whether  ( ) ( )Tθ θG G  in Eq. (12) has an 

inverse matrix (or this matrix is fully ranked ( )). In order 
to guarantee the uniqueness and further prepare for designing 
optimal experiments via level-2 optimization, the proposed 
technique obtains the singular values of the matrix as a result of 
singular value decomposition (SVD) [9] as they are expressed 
by the factorization:  
                                                                         (16) 

4r =

( ) Tθ =G USV

where   and   are orthogonal to each other and  
 is a diagonal array with real, non-negative singular 

values 

n n×∈U \ 4 4×∈V \
4n×∈S \

{ }, 1,...,4is i∀ ∈ . These singular values can be used to 
define two measures characterizing parameter identification, 
i.e., distinguishability and uniqueness of the solution, which are 
described as follows. 

From a conceptual perspective distinguishability can be 
defined as the property of the obtained solution to provide the 
largest possible variation of the measured response of two 
systems when their material parameters are very close to each 
other. It has been demonstrated that when two material systems 
exhibit a small difference in their properties, then the difference 
in the values of their corresponding responses (observed 
experimentally) depend linearly on S [9]. Accordingly, any 
expression of the combined effect of the elements of S as it 
increases has the ability to distinguish two materials that are 
seemingly close to each other from a properties perspective, by 
producing exaggerated energy responses that are scaled values 
of these property variations. 

From a quantitative perspective we have defined 
distinguishability as the product of all singular values as, 

                                       .                               (17) 
1

n
d

i
i

F
=

=∏ s

From a conceptual perspective uniqueness has been 
defined as the measure of whether  ( ) ( )Tθ θG G  in Eq. (15) has 
an inverse matrix or not, is equivalent to the existence of 

( ) 1T −
S S  as shown by substituting Eq. (16) into Eq. (15) that 

yields 
                               ( ) { } 1T Tθ

−+ =G V S S S TU                      (18) 

The necessary and sufficient condition for this to occur is given 
by  

                                  2 2 2 2
1 2 3 4 0T s s s s=S S ≠ ,                     (19) 

i.e., { }0, 1,...,4is i≠ ∀ ∈ . In addition to helping identify the 
uniqueness, singular values can also be used to quantify the 
degree of uniqueness of the solution. This is because a non-
zero but near-zero singular value, if it exists, dominates the 
elements of the pseudoinverse matrix given by Eq. (18) and 
makes the parameters having the other singular values difficult 
to identify uniquely. Accordingly, the degree of uniqueness can 
be quantified by the fact that the greater the differences of the 
singular values, the more unique (i.e. higher uniqueness) the 
solution. 

One way to define uniqueness quantitatively requires the 
introduction of the concepts of maximum and minimum 
singular values 

                             
{ }{ }
{ }{ }

max

min

max | 1,...,4

min | 1,...,4
i

i

s s i

s s i

= ∀ ∈

= ∀ ∈
                (20) 

and evaluation of deviation from uniqueness in terms of the 
condition number c, which is commonly used in sensitivity 
analysis as: 

                                   min

max

1 1u sF
c s

≡ = ≤                            (21) 

It is important to note that distinguishability increases as any of 
the is  increase, while uniqueness increases as the condition 
number decreases to unity.  

LEVEL-2 OPTIMIZATION 
If in addition to determining the material parameters we 

require that this is achieved such as distinguishability and 
uniqueness are as high as possible, then we have instantly 
defined the goals of the level-2 optimization regardless of 
whether we are referring to the online (level-2a) or offline 
(level-2b) versions. The design variables at level-2 have to 
therefore be connected with what is controllable in an 
experimental setup used to acquire experimental data for 
identification of the material parameters at level-1.  Such 
parameters can be those that define the evolution of the loading 
path, such as total number of increments, loading path 
increment magnitude, and loading path increment orientation. 
For the case of a displacement controlled two degree of 
freedom (2-DoF) testing machine, used for experimentation, 
the parameter vector to be identified per loading increment 
could be formed by the measure of displacement increment 

                              1k k ku +Δ = −u u                                 (22) 
and the angle denoting the change in orientation of the loading 
path between to successive increments defined as  

                         11
, 1

1

tan ( )y k y k
k k

x k x k

u u

u u
+−

+
+

−
Λ =

−
                        

(23) 
where the total boundary displacement vector is defined by its 
components along the two axes according to the usual 
definition [ , ] [ , ]k x y k x k y ku u u u≡ =u . In the subsequent analysis 

we will assume constant displacement increment of a chosen 
magnitude and the parameter to be optimized is the load path 
directional change , 1k k +Λ  for all increments. Since increased 
uniqueness and distinguishability both express a sense of 
reliability of the SVD process used for determining the material 
parameters in level-1, we can define a vectorial objective 
function that needs to be maximized for maximum reliability. It 
is constructed such as 

                        
, 1

, 1 , 1 , 1,
K K

d u
K K K K K KJ J max

+
+ + + Λ

⎡ ⎤= ⎣ ⎦J →  ,              (24) 
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where the objective function components , 1 , 1,d u
K K K KJ J+ +  

represent the corresponding  increments of  distinguishability 
and uniqueness along an increment of loading according to 

                        , 1 0, 1 , 1 0,

, 1 0, 1 , 1 0,

( )

( )

d d d
K K K K K

u u

K

u
K K K K K K

J F F

J F F
+ + +

+ + +

= Λ −

= Λ −

�

�                      (25) 

Distinguishability and uniqueness are computed through the 
derivation of the matrix ( )θG  in Eq. (18). In order to compute 

( )
0,KF i  , the matrix ( )θG is assembled for the sensor readings at 

load increment k, through the derivation of the alternate form 
of Eq. (13)  [10,11]: 

                                       (26) ( ) ,  {1, , }T
k M kt W kθ = Δ ∀ ∈g q

�� … K

Distinguishability and uniqueness of ( )
0, 1 , 1(K K KF + +Λi ) for steps less 

than 1K +  are predicted from the matrix with the additional 
row: 

                          1 1( ) ( ),  T
K M K K Kt Wθ+ += Δ Λg q , 1+

��                 (27) 

where 1( )T
K θ+g�  and 1 , 1(K K KW + +Δ Λ )

�
 are computed via Finite 

Element Analysis (FEA) with the controllable boundary 
displacements/forces governed by  and using the 
material parameters (elastic moduli for this case) identified up 
to this stage. This represents a 1-step look-ahead computation 
relative to the activities of level-1 as they relate to those of 
level-2. 

, 1K K +Λ

Throughout the paper the symbolic representation ( )�i is 
used to represent the quantity  as it is associated with FEA. ( )i
As expected, the solution of the two objective functions 
problem is not given by a single point but by a space satisfying 
the Pareto-optimality, which is often referred to as Pareto-
optimal front [10-12]. This formulation requires the derivation 
of a Pareto-optimal front prior to the determination of a single 
solution and this is extremely time-consuming from a 
computational perspective. For this reason and assuming that 
the Pareto-optimal front is convex or near-convex, the problem 
can be reformulated in a manner such that a single scalar 
objective function is constructed according to the generalized 
form 
                               (28) 

,
, 1 , ,(1 ) max

n n
K K Kn

d u
K K K K K K K KJ J Jμ μ

+
+ + + Λ
≡ − + →

where each objective function is given by the scaled increment: 

                      0,
, ,  { , }n

n

K K K
K K K

K

F F
J d u

F

α α
α

α α+
+

−
≡ ∀ ∈                    (29) 

and [0,1]μ ∈ is a weighting factor that controls the bias towards 
one or the other component of the objective function. The 
formulation expressed by Eqs. (28-29) avoids the derivation of 
the Pareto-front. 

NUMERICAL EXAMPLES 
For the sake of numerical demonstration of the proposed 

concepts the material selected for generating the necessary 
simulated experimental  data is a typical laminate constructed 
from an epoxy resin/fiber laminae system of type AS4/3506-1 
with a balanced +/- 30 degrees stacking sequence. The elastic 
moduli of this material are listed in Table 1. 

 
Table 1 Moduli of AS4/3506-1 laminae 

Lamina Laminate 
Prop. Value Parm. Value 
E11 114x109 Pa Q11 1.1485x108 Pa 

E22 9.6x109 Pa Q22 9.7452x106 Pa 

G12 5.99x109 Pa Q66 5.9986x106 Pa 

ν12 0.334 Q12 3.2549x106 Pa 
 

All subsequent computational results have been produced by 
the implementation of the analysis presented earlier within 
MATLAB [13]. Figure 3 shows the deformed stages of a 
simple rectangular plate made from the specified material and 
displaced under the influence of an undulating loading path for 
a sequence of 20 increments in this path (a). Distinguishability 
and uniqueness are increasing with increasing load step 
increments in Fig. 3(b) and 3(c) respectively. We have already 
discussed elsewhere [10-12] the fact that an undulating path (ux 
displacement component is non monotonic), maximizes 
distinguishability and uniqueness more efficiently than a 
uniaxial loading path along the y-direction (that cannot actually 
determine all unknown material parameters) or a linear path 
with monotonic u  and ux y displacement components. This 
represents the results achieved during level-1 optimization.   
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(a) Deformation by FEA (b) Distinguishability (c) Uniqueness 

Figure 3.  Undulating loading path 
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Figure 4 presents the results of performing the level-2 
optimization as described earlier, in terms if the evolution of 
the pareto front as defined in terms of distinguishability and 
uniqueness for a the entire range of the weighting factor 

- 1 - 0.8 - 0.6 - 0.4 - 0.2 0- 0.15

- 0.1

- 0.05

0

0.05

0.1

ux

u y

[0,1]μ ∈ . Figure 5 depicts the results of the material moduli 
determination as a function of loading steps for the loading 
path represented by Fig. 3(a). The choice of the optimal 
solution has no physical basis and corresponds to setting 

because this  0.5μ =

choice balances the contribution of each one of the original 
objective functions on the global one as expressed by Eq. (25). 
The resulting solution for level-2 optimization is expressed in  
terms if the loading path defined on the ux- uy plane as shown in 
Fig. 6. 

CONCLUSIONS AND DISCUSSION 
The preliminary framework of a general hierarchical 

methodology was proposed. This methodology can succeed in 
both the determination of parameters characterizing the 
response of a system, and characterizing the design parameters 
of an experiment required to collect data necessary for the 
systemic characterization.  The approach was applied in the 
context of an anisotropic material system. The systemic 
constitutive response of linear anisotropic behavior to be 
identified was selected to be that of an elastic system defined 
from its four elastic moduli. These were the design variables 

adopted for the first hierarchical level of optimization (level-1). 
The experimental model that was required for the second level 
of optimization (level-2) was chosen to represent the loading 
path within a 2-dimensional loading space. Implied here is the 
existence of a 2-degree of freedom loading frame, capable of 
applying such a loading path and of measuring both the path 
and mechanical load characteristics for each increment. 

 
Figure 6. Final design of loading path chosen for  0.5μ =

 
In order to achieve a definition of the objective function at 
level-2, the quantities of distinguishability and uniqueness were 
introduced as performance metrics of the design optimization 
process at level-2, thus quantifying the performance of the 
SVD process employed. Accordingly, a two-component meta-
objective function was constructed for maximization. 
Maximization of this dual objective function leads to the 
creation of a Pareto-optimal front that ultimately contains the 
loci of all acceptable solutions that can be used to determine 
dynamically the experimental design specification in terms of a 
loading-path direction parameter. Numerical simulation of the 
entire process was performed in order to demonstrate its 
feasibility. We demonstrated that the material moduli unknowns 
can be determined in conjunction with the loading path 
characteristics needed to design an appropriate experiment for 
collecting data required for level-1. Clearly, the question of 
“how good the design optimization for level-n is” from the 
perspective of the optimization of level-(n+1) is valid for all 
subsequent levels a user wishes to employ. This effectively 
extends the hierarchy upward. Practicality and total 
computational cost will eventually have to appear in these 
objective functions and the hierarchy’s extension will 
eventually have to stop. This will also determine the throughput 
capability of the entire process from a DDDAS perspective. 
Various extensions of this type will be considered for further  
investigation, while simulation as the activity of exercising the 
determined model, will also be added for completion the triad 
(dynamic and simultaneous physical model identification, 
design of experiments and design of simulation) of activities 

 
Figure 4. Pareto-optimal solutions as a function of 

distinguishability, uniqueness and bias factor. 
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associated with a DDDAS [14]. Finally it is planned that 
actually experimental data with their natural uncertainty 
sources will be used to reinforce the validity of the proposed 
procedure. 
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