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Abstract 

This paper describes an effort to develop a global dynamic testing technique for 
evaluating the overall stiffness of timber bridge superstructures. A forced vibration 
method was used to measure the natural frequency of single-span timber bridges in 
the laboratory and field. An analytical model based on simple beam theory was 
proposed to represent the relationship between the first bending mode frequency and 
bridge stiffness (characterized as EI product). The results indicated that the forced 
vibration method has potential for quickly assessing superstructure stiffness of timber 
bridges, but improvements must be made in measurement system to correctly identify 
the first bending mode frequency in bridges in the field. The beam theory model was 
found to fit the physics of the superstructure of single-span timber bridges and could 
be used to correlate first bending frequency to globalstiffness if appropriate system 
parameters are identified. 

Introduction 

Deterioration, one of the most common damage mechanisms in wood structures, often 
inflicts damage internally, without visible signs appearing on the surface until load 
bearing capacity of the affected member is greatly reduced. Determining an 
appropriate load rating for an existing structure and establishing rational 



rehabilitation, repair, or replacement decisions can be achieved only after an accurate 
assessment of existing condition. Knowledge of the condition of the structure can 
reduce repair and replacement costs by minimizing labor and materials and extending 
service life. 

In general, structural condition assessment requires the monitoring of some indicating 
parameters that are sensitive to the damage or deterioration mechanism in question. 
Current inspection methods for wood structures are limited to evaluating each 
structural member individually, which is a labor-intensive, time-consuming process. 
For field assessment of wood structures, a more efficient strategy would be to 
evaluate structural systems or subsystems in terms of their overall performance and 
serviceability. From this perspective, examining the dynamic response of a structural 
system might provide an alternative way to gain insight to the ongoing performance 
of the system. Deterioration caused by any organism or any type of physical damage 
to the structure reduces the strength and stiffness of the materials and thus could 
affect the dynamic behavior of the system. For example, if one structural system or 
section of the system was found to respond to dynamic loads in a manner significantly 
different from that observed in previous inspections, then a more extensive inspection 
of that structure would be warranted. 

Recent cooperative research efforts of the USDA Forest Products Laboratory, 
Michigan Technological University, and University of Minnesota Duluth have 
resulted in significant progress in developing global dynamic testing techniques for 
nondestructively evaluating the structural integrity of wood structure systems. In 
particular, a forced vibration response system was developed and used to assess the 
global stiffness of wood floor systems in buildings (Soltis et al. 2002, Ross et al. 
2002, Wang et al. in press). In these studies, a series of laboratory-constructed wood 
floor systems and some in-place wood floor structures were examined. An electric 
motor with an eccentric rotating mass was built and attached to the floor decking to 
excite the structure. The response of the floor to the forced vibration was measured at 
the bottom of the joists using a linear variable differential transducer (LVDT). The 
damped natural frequencies of floor systems were identified by increasing motor 
speed until the first local maximum deflection response was observed. The period of 
vibration was then estimated from the cycles of this steady-state vibration. This 
forced vibration approach was investigated in these studies for tworeasons. First, the 
simplicity of this technique requires less experimental skill to perform field vibration 
testing. This fits the need of field inspectors who usually do not have much advanced 
training in structural dynamic testing. Second, the cost of testing a structure using the 
forced vibration method is very low compared with the use of a modal testing 
method. Furthermore, because this method is a pure time domain method, it 
eliminates the need for knowledge of modal analysis. Results from previous 
experimental studies showed that vibration generated through a forcing function could 
enable a stronger response in wood floor systems and give consistent frequency 
measurement. A decrease in natural frequency seems proportionate to the amount of 
decay, as simulated by progressively cutting the ends of some joists in laboratory 
floor settings (Soltis et al. 2002). It was also found that the analytical model derived 



from simple beam theory fits the physics of the floor structures and can be used to 
correlate the natural frequency (first bending mode) to EI product of the floor’s cross 
section (Wang et al. in press). 

Cooperative research to date has provided a reasonable scientific base upon which to 
build an engineering application of vibration response as part of a wood structure 
inspection program. The purpose of this study is to extend global dynamic testing 
methods, specifically the forced vibration testing technique, to timber bridges in the 
field. It is to be used as a first pass method, identifying timber bridges that need more 
thorough inspection. To simplify the method as much as possible (from field 
application consideration), we focus only on the first bending mode of the bridge 
vibration. Specifically, we correlate the frequency of the first bending mode to the 
stiffness characteristics of single-span girder-type timber bridges. 

Analytical Model 

The indicator of global structure stiffness that has been chosen is the fundamental 
natural frequency. For practical inspection purpose, an analytic model is needed for 
this method to relate the fundamental natural frequency to the global stiffness 
properties of a bridge. Continuous system theory has been chosen as the means for 
developing an analytical model that is based on general physical properties of bridges, 
such as length, mass, and cross-sectional properties. 

The superstructures of single-span timber girder bridges are typically constructed of 
wood beams (stringers), cross bridging, deck boards, and railing systems. It is 
observed that the stiffness of the stringers predominates over that of the transverse 
deck sheathing because the thickness of the decking boards is relatively small 
compared with the height of the stringers. In addition, the deck is not continuous and 
the deck boards are nailed perpendicular to the stringers, reducing the stiffness that 
would be provided in the case of simple bridge bending. The cross bridging also does 
not contribute to the bending stiffness of the bridge because it mainly provides lateral 
bracing to the beams. Thus, we assumed that a single-span wood girder bridge 
behaves predominately like a beam with resisting moments in the vertical direction. 
The total mass of the deck and railing system is distributed into the assumed mass of 
the stringers. 

The partial differential equation governing the vertical vibration for a simple flexure 
beam is 
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The solution of this partial differential equation is generally accomplished by means 
of the separation of variables and is largely dependent on boundary conditions at each 
end of the beam. Blevins (1993) showed that a general form for the natural frequency 
for any mode can be derived as 
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where fi is natural frequency (mode i), λi a factor dependent on the boundary 
conditions of the beam, L beam span, ρ mass density of the beam, A cross-sectional 
area of the beam, and EI stiffness (modulus of elasticity E × moment of inertia I) of 
the beam. 

Consider the vibration of a beam supported at the ends. If vibration is restricted to the 
first mode, Equation (2) can be rearranged to obtain an expression for the stiffness 
(EI) as 
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where f1 is the fundamental natural frequency (first bending mode), k is defined as a 
system parameter dependent on the boundary conditions of the beam (pin–pin 
support: k = 2.46; fix–fix support, k = 12.65), W is weight of the beam (uniformly 
distributed), and g is acceleration due to gravity. 

Experimental Methods 

Timber Bridge Structures. Five timber bridges currently in service, all of similar 
design (timber stringer plus plank deck), on the Kenton Ranger District of the Ottawa 
National Forest in Michigan’s Upper Peninsula were examined in October 2002 
(Table 1). These bridges were all built in the early 1950s, and their initial designs 
were based upon American Association of State Highway Transportation Officials 
(AASHTO) standard truck loading. Bridge length measured on site ranged from 20 to 
44 ft (6.1 to 13.4 m) (out–out), and width (out–out) was measured as 15 to 16 ft (4.6 
to 4.9 m). The superstructure of each span bridge consists of 10 creosote-treated sawn 
lumber stringers (6 by 12 in. (15.2 by 30.5 cm) to 6 by 16 in. (15.2 by 40.6 cm)) 
with 3-in.- (7.6-cm-) thick transverse plank decks nailed perpendicular to the 
stringers. Running planks nailed in two strips parallel to the direction of the stringers 
served as a wearing surface for the single-lane bridges. 

In addition to field bridges, two bridges were constructed in laboratory settings so that 
controlled experiments could be conducted. The first laboratory bridge (designated as 
Lab 1) was actually a field bridge (Onion Creek Bridge) that was removed from 
service and relocated to the laboratory. The bridge measures 9 ft (2.7 m) wide and 
16 ft (4.9 m) long. The superstructure consists of six 6- by 12-in. by 16-ft. (15.2- by 
30.5-cm by 4.9-m) stringers and 3- by 10-in. (7.6- by 25.4-cm) deck boards and 
running planking. The second laboratory bridge (designated as Lab 2) was built with 
six 6- by 12-in. (15.2- by 30.5-cm) Douglas-fir and eastern white pine timbers and 3­
by 8-in. (7.6- by 20.3-cm) plank deck with known material properties. Both 
laboratory bridges were rested on 12- by 12-in. (30.5- by 30.5-cm) sill plates that 



Table 1. Summary information for field timber bridgesa 

Bridge Bridge No. of 
length width simple Live load 

Bridge name/ out–out out–out spans Initial Current Year 
crossing (ft) (ft) design posting built 

Stony Creek 20 15 1 HS20 15 ton 1954 
Dead Stream 44 15 2 HS20 20 ton 1954 
E.B.O. River 26 15 1 H15 None 1950 
Jumbo River 24 16 1 H15 None 1950 
Beaver Creek 43 15 2 H15 None 1954 

a 1 ft = 0.3048 m. 

were anchored to the floor of the lab with angle iron. This approximates a simply 
supported boundary condition. 

Moisture Content Determination. At the time of bridge testing, the moisture content 
of wood in each bridge was measured with an electrical-resistance-type moisture 
meter and 3-in.- (76-mm-) long insulated probe pins in accordance with ASTM D 
4444 (ASTM 2000). Moisture content data were collected at pin penetrations of 1, 2, 
and 3 in. (25, 51, and 76 mm) from the underside (tension face) of three different 
timber beam girders at each bridge. All field data were corrected for temperature 
adjustments in accordance with Pfaff and Garrahan (1984). 

Forced Vibration Testing. A forced vibration technique was used to identify the first 
bending mode frequency of the bridge structures. This method is a purely time 
domain method and was proposed because it eliminates the need for modal analysis. 
This method uses an electric motor with a rotating unbalanced wheel to excite the 
structure (Fig. 1). This creates a rotating force vector proportional to the square of the 
speed of the motor. Placing the motor at midspan ensured that the simple bending 
mode of structure vibration was excited. A single piezoelectric accelerometer (PCB 
U353 B51), also at midspan, was used to record the response in the time domain. To 
locate the first bending mode frequency, the motor’s speed was slowly increased from 
rest until the first local maximum response acceleration was located. The period of 
vibration was then estimated from 10 cycles of this steady-state motion. 

Static Load Testing. Because the primary goal of this work is to relate the 
vibrational characteristics of these timber bridge structures to a measure of structural 
integrity, the bridges were also evaluated with the established method of load-
deflection analysis. This provided a more direct measure of the structure’s EI product. 

Static load tests were conducted at each field bridge using a live load testing method. 
A test vehicle was placed on each bridge deck and the resulting deflections were 
measured from calibrated rulers suspended from each timber girder along the midspan 
cross section using an optical surveying level (Fig. 2). The test vehicle consisted of a 
fully loaded, tri-axle gravel truck with a gross vehicle weight of 47,740 lb 
(212.37 kN) (individual axle weights were 13,420, 17,160, and 17,160 lb (59.70, 



Figure 1. Forced vibration testing of field Figure 2. Static load testing of field 
bridges with a forcing function. bridges with a fully loaded gravel truck. 

76.33, and 76.33 kN)) and were spaced at 13.4- and 4.4-ft (4.1- and 1.3-m) intervals, 
respectively). Deflection readings were recorded prior to testing (unloaded), after 
placement of the test truck for each load case (loaded), and at the conclusion of 
testing (unloaded). For each load test, the test vehicle was straddling the bridge 
centerline with the bridge midspan bisecting the real dual truck axles. Measurement 
precision was ±0.04 in. (±1.0 mm) with no movements detected at the bridge 
supports. The static EI product of each bridge was then estimated from load-
deflection data based upon conventional beam theory. 

Estimation of Bridge Weight. As known from the theoretical model shown in 
Equation (3), bridge weight is needed in predicting the structure stiffness using this 
vibration response method. In this study, bridge weights were estimated based upon 
actual dimensions along with an estimated unit weight for the timber components. A 
conservative unit weight of 50 lb/ft3 (801 kg/m3) is required for computing dead loads 
in the design of timber bridges according to AASHTO Standard Specifications for 
Highway Bridges. A less conservative unit weight of 35 lb/ft3 (561 kg/m3), which 
may more closely represent the actual density of creosote-treated Douglas-fir bridge 
components, was assumed in computing bridge weights for all five field bridges. 
Douglas-fir was most likely the wood species because visual evidence of incising 
typically associated with Douglas-fir (and other difficult-to-treat species) was 
observed at all field bridges. 

Results and Discussion 

Physical Characteristics of Timber Bridges. The physical characteristics of two 
laboratory bridges and five field timber bridges are summarized in Table 2. Of the 
five field bridges tested, two (Dead Stream and Beaver Creek) actually consist of two 
spans. Because access to the bridge underside for these two bridges did not permit 
static load testing on both spans, we did field testing on only one span for each bridge. 
The tested bridge spans of these two bridges were treated as single-span 



Table 2. Physical characteristics and measured natural frequency of timber bridgesa 

Measured bending 
mode frequency (Hz) 

Bridge 
spanb 

Size of 
stringers 

Avg. MC of 
stringersc Forced Modal 

Bridge name (ft) (in.) (%) vibration analysis 
Laboratory bridges 

Lab 1 (Onion Creek) 
Lab 2 (Sands) 

Field bridges 
Stony Creek 
Dead Stream 
(one span) 
E.B.O. River

Jumbo Creek

Beaver Creek

(one span)


16 
21 

18.5 

21.5 
24.0 
24.2 

21.5 

6×12 
6×12 

5.25×13 

5.38×15.25 
6×16 

5.88×15.75 

5.50×15.25 

n/a 
22 

18 

15.5 
18.9 
21.8 

18.2 

19.50 
9.63 

17.85 

17.70 
12.30 
14.15 

19.90 

19.70 
9.82 

23.75 

17.96 
14.43 
13.37 

17.31 
a 1 ft = 0.3048 m, 1 in. = 2.54 cm.

b Only one span was tested for Dead Stream Bridge and Beaver Creek Bridge. The tested span length

of these two bridges is one-half the total span length of the bridges.

c Average of the moisture content readings collected at pin penetrations of 3 in. (76 mm) deep from

the underside (tension face) of three different timber beam girders.


bridges. The span length of tested bridges therefore ranged from 16 to 24.2 ft (4.9 to 
7.4 m). 

The moisture contents of the timbers in the field bridges ranged from 13 to 
25 percent, but most members remained below 20 percent. Average moisture contents 
also remained below 20 percent, with the exception of the Jumbo River Bridge, where 
some beams had a moisture level of 23 to 25 percent. 

Measured Natural Frequency. To verify the bending mode frequency measured by 
the forced vibration method, the modal testing results of these bridges were also 
obtained. Modal testing and modal analysis were conducted in a parallel study that 
focused on investigating the use of impact-generated frequency response functions 
(FRFs) for bridge evaluation (Morison 2003, Morrison et al. 2002). Both forced 
vibration frequency and first bending mode frequency identified by modal analysis 
technique are shown in Table 2. 

Figure 3 compares measured natural frequency from forced vibration testing and 
bending mode frequency from standard modal testing. It shows that under laboratory 
conditions, frequencies measured using the forced vibration method matched quite 
closely to the bending mode frequencies found from modal analysis techniques, with 
a difference of less than 2 percent. In the field, however, much more disparity was 
noticed. The Jumbo Creek and Dead Stream bridges had errors of 5% or less. This 
corresponded to the bridges where the lowest mode was the bending mode, and it was 
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Figure 3. Comparison of measured natural frequency 
from forced vibration method and the first bending 
mode frequency from standard modal testing. 

clearly separated from other modes of the structure (Morison 2003). Error for the 
Stony Creek and E.B.O. River bridges was larger because the forced vibration results 
corresponded to a mode other than the bending mode. The modal analysis indicated 
that the 3rd mode frequency for the Stony Creek and the 2nd mode frequency for the 
E.B.O. River are actually the true bending mode. It seems that closely spaced modes 
of the bridges made finding the peak amplitude of the bending mode difficult. This 
could be caused by the boundary conditions and material properties of the bridges not 
being uniform across the width of the bridge and their much higher modal density 
compared with other bridges tested. 

Measured Bridge Stiffness. Table 3 shows static live load deflections from field load 
tests. No permanent deflections were noted on the stringers monitored, and no support 
movements were detected during truck loading tests. Due to the nature of bridge 
structure and live truck loading, the deflection of stringers was uneven across the 
width of each bridge. Maximum deflections typically occurred in the center stringers, 
ranging from 0.39 in. (9.9 mm) for Beaver Creek Bridge to 0.75 in. (19.0 mm) for 
Jumbo River Bridge. The average live load deflections ranged from 0.27 in. (6.9 mm) 
for Stony Creek Bridge to 0.41 in. (10.4 mm) for E.B.O. River Bridge. 

To correlate the first bending mode frequency of bridges to load testing results, 
following assumptions were made as an initial attempt to compute the EI product of 
the bridges: (1) the superstructure of timber bridges is similar to a beam-like structure 
with symmetrically placed loads; (2) the bridges are close to being simply supported 
(for the purpose of static deflection analysis only); (3) the average deflection of each 
bridge is equivalent to the value that characterized the deflections of all stringers if 
the load had been applied evenly across the width of the bridge. For a beam-like 



Table 3. Summary of static load testing deflections and measured bridge 
stiffnessa 

Measured bridge 
Maximum live Average live load stiffnessa 

Bridge name/ 
crossing 

load deflection 
(in.) 

deflection 
(in.) 

(EI product) 
(×106 lb-in.2) 

Stony Creek 0.45 0.27 26268 
Dead Stream 0.49 0.28 34801 
E.B.O. River 0.55 0.41 42369 
Jumbo River 0.75 0.34 38708 
Beaver Creek 0.39 0.28 32665 

a 1 in. = 2.54 cm, 1 lb-in2 = 2.87 × 103 N-m2. 

structure with these assumptions, the static beam deflection theory provides following 
relationship: 

2EI = Pa 
3( L2 − 4a ) (4) 

24 δ 

where P is static load of individual axle, δ average midspan deflection, L the span 
length of the bridge, and a the distance from bridge support to nearest loading point. 

The calculated EI products of the field bridges are shown in Table 3 and are hereafter 
referred to as the measured EI because they are derived from measured static data. 
Based on static load testing results, the structure stiffness (EI product) of the field 
bridges ranged from 26,268 × 106 lb-in.2 (75.39 × 106 N-m2) (Stony Creek Bridge) to 
42,368 ×106 lb-in.2 (121.60 × 106 N-m2) (for E.B.O. River Bridge). 

Prediction of Bridge Stiffness 

Figure 4 shows theoretical prediction for two extreme supporting conditions (free– 
free and fixed–fixed) and experimental data obtained from field bridges. Here, 
EI/WL3 is treated as the independent variable and natural frequency as the dependent 
variable. The natural frequency is predicted over a range of EI/WL3 assuming both 
simply supported and fixed boundary conditions. The measured data are then 
superimposed on the same set of axes. It is noted that measured results lie between 
simple support and rigidly fixed boundary conditions, with a bias toward the simply 
supported prediction. To characterize the boundary condition of each bridge, a system 
parameter k was determined based on experimental data of the field bridges. The 
average system parameter that best describes the all field bridges tested was found to 
be k = 4.20, with a standard deviation of 0.690. 

With newly developed system parameter k, the model in Equation (3) could be used 
to predict the EI product of bridges using measured natural frequency. Figure 5 
compares the predicted EI product from the forced vibration method and measured EI 



0 

5 

i i
l i

Fi i

0 

6 
2 ) 

10 

15 

20 

25 

30 

35 

40 

45 

50 

f 
(H

z)
 

Forced v brat on 
Moda test ng 
Free-free support 

x-f x support 

10,000 

20,000 

30,000 

40,000 

50,000 

Stony Dead E.B.O. Jumbo Beaver 

E
I P

ro
du

ct
 (x

10
lb

-i
n 

Predicted EI 
Measured EI 

0.0 0.1 0.2 0.3 0.4 0.5 Creek Stream River Creek Creek 

EI/WL3 (1/in.) Field timber bridges 

Figure 4. Theoretical predictions and 
experimental data. 

Figure 5. Comparison of predicted 
measured EI of field bridges. 

EI and 

product from static load testing. Although the EI predictions for Dead Stream and 
Jumbo Creek bridges are quite close to measured EI (with less than 7 percent 
difference), the overall performance of the prediction model suffers from a significant 
error. It appears that prediction of bridge stiffness has a significant variation, from 
2 percent minimum to 37 percent maximum difference (in absolute value). Several 
factors contributed to this prediction error. First, one source is obviously the forced 
vibration method itself. As we indicated in previous discussion, the estimates of first 
bending mode frequency from forced vibration testing contain significant errors in 
some cases. The error is a direct result of the bending mode not being the lowest in 
natural frequency, so that other modes (typically torsion) were misidentified as the 
bending mode. In the case where first bending mode frequency was properly 
identified (such as Dead Stream and Jumbo Creek bridges), the predicted EI shows 
much less difference from measured EI. The second error source in EI prediction is 
most likely the inaccurate estimate of bridge weight. Bridge weight information is 
essential in calculating EI product based on beam theory model. In this study, bridge 
weights were estimated based upon actual dimensions along with an estimated unit 
weight for the timber components. The true wood density of each bridge might be 
significantly different from the assumed unit weight. Other factors could also affect 
bridge weight, which make estimation difficult (such as species and moisture 
difference, wood deterioration, dirt or debris collected on the deck). Third, in spite of 
structure similarities, the boundary condition of each field bridge is unique due to the 
construction variability, load history, and road and soil conditions. The overall system 
parameter k used for EI prediction here is the average value of the system parameter ki 

of each bridge, which describes the entire population. The small sample size (five 
field bridges) is therefore a contributing factor. If more field bridges had been 
available, a more representative average could have been obtained. 



Conclusion 

A forced vibration method was used to measure the natural frequency of single-span 
timber bridges in the laboratory and in the field. An analytical model based on beam 
theory was proposed to represent the relationship between the first bending mode 
frequency and bridge stiffness characterized as EI product. From the results of this 
study, we conclude following: 

1. The forced vibration method has the potential to be used in the field to quickly 
assess timber bridge superstructure stiffness. However, improvements need to be 
made in testing procedure and measurement system to correctly identify the first 
bending mode frequency as a forcing function is applied. 

2. The weight of timber bridges is essential for predicting bridge stiffness based on 
beam theory model. Weight estimation based on wood volume and estimated unit 
weight for the timber components seems inadequate to obtain reliable results. 

3. The analytical model generated from simple beam theory fits the physics of single-
span girder bridges, but more representative system parameters need to be developed 
to better correlate measured bending mode frequency to EI product. 

Future Research 

The experimental data collected from this study are still limited given the structural 
complexity of timber bridges in the real world. More analytical and experimental 
work is needed to fully understand the physics and structural conditions in terms of 
vibration response and load capacity. A new joint timber bridge research project is 
now underway at University of Minnesota Duluth and the USDA Forest Products 
Laboratory to further investigate some key issues in vibration modes and boundary 
conditions and to refine field testing techniques and instrumentation systems. More 
field timber bridges in northern Minnesota with various structural conditions will be 
tested with improved forced vibration response methods. To eliminate or reduce error 
in estimating the bending mode frequency, two accelerometers will be placed on 
opposite sides of the bridge superstructure. Bending mode frequency will be 
determined by examining both maximum accelerations and phase information from 
two simultaneous vibration response signals. Field vibration measurements will also 
be coupled by condition evaluation using traditional inspection techniques and 
standard live load tests using a loaded truck. To improve the reliability of vibration 
response methods, more comprehensive mathematical models will be developed to 
quantify the sensitivity of bridge response to various environmental, experimental, 
and architectural factors. 
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