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ABSTRACT 

Wood properties in transverse compression are difficult to determine because of such factors as anatom- 
ical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, consid- 
ered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the 
reference coordinate system changes its orientation. In this paper, we used our verified shear modulus 
model to estimate compressive modulus of elasticity in the radial direction by means of certain established 
tensor transformation rules. The obtained basic engineering constants form a viable set that agrees with re- 
liable test data and the anisotropic elasticity theory. 
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INTRODUCTION 

Wood is frequently assumed to be an or- 
thotropic material with independent mechanical 
properties in three mutually perpendicular direc- 
tions: longitudinal ( L ), radial ( R ), and tangential 
( T ). In reality, wood is a cylindrically orthotropic 
material, and an orthogonal approximation may 
introduce bias. The mechanical properties of 
wood are known to be greatly influenced by its 
anatomical structure. In tangential compression, 
for example, Bodig (1965) suggested a spaced 
column theory assuming that springwood (early- 
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wood) and summerwood (latewood) bands func- 
tion as parallel columns that transmit the load 
from the loading surface to the supporting base. 
Most of the load is taken by the stronger late- 
wood; the weaker earlywood functions mainly 
as a lateral support for the latewood. Bodig 
(1965) has successfully used this theory and the 
concept of the slenderness ratio of the column to 
explain failure mechanisms observed in experi- 
mental studies. 

A weak band theory was proposed for radial 
compression (Bodig 1965; Kennedy 1967). In 
the radial direction, earlywood and latewood 
bands are arranged in series, perpendicular to 
the applied load. Both bands carry the same 
load, but the latewood deforms much less than 
does the earlywood. The first failure occurs in 
the weakest earlywood band, with subsequent 
failures occurring in other earlywood bands and 
then latewood bands as compression pro- 
gresses. 
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However, it is generally difficult to generalize 
the behavior of softwoods or hardwoods in trans- 
verse compression because of the complex inter- 
actions of various anatomical influences. For 
instance, the earlywood/latewood ratio and den- 
sity differences between earlywood and late- 
wood are common variables, even within the 
same species. For hardwoods, the wide variation 
of ray volume introduces yet another variable 
(Kennedy 1967; Reiterer et al. 2002). 

In most types of loading, specimen size also 
influences test results. The contact stress distri- 
bution is very complex as a result of frictional 
forces at the contact areas between the specimen 
and the loading and support plates, due to Pois- 
son’s effect (Bodig 1966; Kobayashi 1962; 
Norris 1955). The influence of these forces di- 
minishes with distance from the contact areas, 
making it necessary to increase the height of the 
specimen. Studies on the influence of height in 
radial compression indicate that various proper- 
ties are affected to different degrees. For in- 
stance, Bodig (1 966) reported that specimen 
height affected the following properties, in de- 
creasing order: modulus of elasticity, strain at 
proportional limit, strain at ultimate stress, unit 
work at proportional limit, Poisson’s ratio, pro- 
portional limit stress, and ultimate stress. 

The present ASTM D143 standard test for 
transverse compression of wood (ASTM 1996) 
specifies a 50.8- by 50.8- by 152.8-mm clear 
specimen with the long dimension in the longitu- 
dinal direction resting on a support. Using a 
50.8-mm-wide metal bearing plate, the specimen 
is loaded over the central third of the wood sur- 
face in the tangential direction; hence, this test is 
designated the partial-plate compression test 
(Bodig 1969; Pellicane et al. 1994). Design val- 
ues for perpendicular-to-grain compression are 
based on the stress associated with 2.5 mm of 
deformation. The test provides no other informa- 
tion. The procedure was developed to evaluate 
the reaction force supporting capacity of solid 
wood joists. 

The ASTM partial-plate compression test 
gives a higher strength value than does the full 
surface compression test because of the added 

“edge effect” (Bodig 1969). Following the 
ASTM standard (with the exception of specimen 
dimension and no special attention given to the 
direction of annual rings with respect to load- 
ing), Bodig (1969) found the edge effect contri- 
bution, based on bearing area, could be as much 
as 5 to 9 times that of full surface compression. 
The added load-carrying capacity is the result of 
the shear effect along the perimeter of the com- 
pression plate. These results were verified by the 
plane-stress finite element model of Pellicane et 
al. (1994), which also showed a complex stress 
state in members even when the load is distrib- 
uted over the entire specimen surface. In particu- 
lar, numerically determined stresses nearly 3.5 
times the nominal stress were found for certain 
combinations of input parameter—specimen 
geometry, loading geometry, and material prop- 
erties (Pellicane et al. 1994). All of these results 
serve to verify that there is no standard testing 
method for regulating the exploration of or- 
thotropy in transverse compression (Lang et al. 
2002). 

The mechanical properties of anisotropic 
composites are known to be strongly dependent 
on the orientation of the reference coordinate 
system. These properties are related by certain 
tensor transformation rules when the reference 
coordinate system changes from one orientation 
to another (Wu et al. 1973). 

In our study of shear modulus variation with 
grain slope of wood (Liu and Ross 1997), we de- 
rived a formula that shows that, in any principal 
material plane, if the values of shear modulus at 
two different orientations are known, the value 
at any other orientation in the plane is known. 
The formula was verified with high accuracy 
using the Arcan shear test on Sitka spruce speci- 
mens. In the process of deriving this formula, we 
identified an expression for elasticity modulus in 
the radial direction in terms of other more easily 
obtainable parameters. Just as off-axis tension 
tests (Tsai 1965) are used to supplement shear to 
determine anisotropic moduli, we will show how 
the Arcan shear test can be used to supplement 
the compression test in the radial direction to 
serve the same purpose. 
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METHODS 

Derivation of shear modulus and modulus of 
elasticity in radial direction 

Let the 1-2 coordinate system represent the 
principal material axes and the x-y coordinate 
system the geometrical axes with angle θ from 
the x axis to the 1 axis, as shown in Fig. 1. The 
transformed engineering constants can be ex- 
pressed in terms of the four basic engineering 
constants: E 1 and E 2, elasticity moduli in the 1 
and 2 axes; G 12, shear modulus in the 1-2 plane; 
and v 12, Poisson's ratio, with 1 referring to direc- 
tion of applied stress and 2 referring to direction 
of strain. In a two-dimensional analysis of Sitka 
spruce, we identify the 1 axis with the L axis and 
the 2 axis with the R axis. 

The transformed shear modulus in the x-y 
plane is (Jones 1975) 

(1) 

which can be reduced to the following form with - 
Gxy replaced by G ( θ ): 

FIG. 1. Positive rotation of principal material axes (1  and 
2) from geometric axes ( x and y  ) .  

in which 

203 

(3) 

At θ =0° in Eq. (2), 

(4) 

at θ = 45°, 

(5) 
Substituting Eqs. (4) and (5) into Eq. (2) yields 

(6) 

or 

(7) 

Equation (7) indicates that in the range 0° ≤ θ ≤ 
90°, the variation of G ( θ ) is symmetrical with re- 
spect to 8 = 45°. Knowing G° (0) and G (45)°, we 
can calculate any G ( θ ). Conversely, when we 
know G ( θ 1) and G ( θ 2) with θ 1 ≠ θ 2, we can also 
calculate G (0°) and G (45°) using the following 
relations: 

and 

(9) 

Equations (8) and (9) permit arbitrary selection 
of θ 1 and θ 2 in a test program. 

From Eq. (3) and (5), we obtain 

(10) 

(2) 

(8) 
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which requires that > G (45°) since v 12 > 0. Eq. 
(10) can be put in the following form: 

(11) 

in which E 1 and v 12 are known to be relatively 
stable (Bodig 1966; Bodig and Goodman 1969; 
Doyle et al. 1956) and, in addition, any variation 
of v 12 can only be small compared to 1. There- 
fore, the one parameter that is most sensitive to 
E 2 is G (45°). 

Modified Arcan shear test and specimen 
The Arcan shear test (Arcan et al. 1978) and 

its modified versions (Liu and Ross 1997; 
Daniel and Ishai 1994) are based on the fact that 
a shear force transmitted through a section be- 
tween two edge notches produces nearly uni- 
form shear stress along the section. The original 
Arcan shear test fixture has two anti- 
symmetrical portions forming a circular device, 
with a specimen located in the center and 
bonded to the fixture by adhesive. In a modified 
version reported by Daniel and Ishai (1994), the 
specimen is attached to the fixture by a bolted 
specimen holder. Liu and Ross (1997) adopted 
a six-sided configuration, which simplified 
the testing procedures without compromising 
the stress condition at the critical section of the 
specimen . 

The geometrical dimensions of the specimen 
are shown in Fig. 2. The grain of the specimen is 
parallel to the surface, making an angle of θ with 
the critical section AB. The thickness of the 
specimen is parallel to the tangential direction, 
such that the specimen can be tightly clamped 
between the restraining plates. 

A board of Sitka spruce ( Picea sitchensis ) of 
unknown history but of the desired grain and an- 
nual ring orientations was selected from storage 
at the Forest Products Laboratory. Fifteen speci- 
mens in three equal groups, each with a specified 
θ value 0°, 22.5°, and 45°, were cut from the 
board. The specimens were stored in a condi- 
tioning room at 20°C and 50% relative humidity 
for several weeks before testing. The average 

moisture content was 9.4%, and the average spe- 
cific gravity was 0.33. 

The shear modulus of each specimen was de- 
termined by using two side-by-side shear gauges 
(Ifju 1994) on both faces of a specimen. The 
strain gauge had a nominal length of 19.35 mm, 
which closely matched the critical section length 
of the specimen. Tensile loading was applied 
with a universal test machine, as shown in Fig. 
2. Crosshead speed was 1.27 mm/min. Dis- 
placement and load data for shear modulus cal- 
culations were recorded electronically. 

RESULTS AND DISCUSSION 

The results of the Arcan shear test on Sitka 
spruce specimens are shown in Table 1. Note 
that the data dispersion decreased quickly as the 
grain slope increased and the highest coefficient 
of variation at the grain slope of 0° was 8.96%, 
well below the usual range of about 20% for 
wood mechanical properties (Schniewind 1979). 
Although the data look impressive, we cannot 

Fig. 2 Geometric dimensions of specimen. 
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ignore the fact that they were obtained from a 
relatively small sample. 

Substituting the related data from Table 1 in 
Eq. (7) for different values of θ , we obtained the 
curve in Fig. 3. Note that the predicted shear mod- 
ulus at θ = 22.5° is 1,179 MPa, very close to the 
measured average of 1,194 MPa, which demon- 
strates the reliability of the test data in Table 1. 

Kubojima et al. (1996) performed torsion tests 
on Sitka spruce specimens and obtained an aver- 
age value of 884 MPa for G (0°). The G (0°) value 
listed in Kollmann and Côté (1968) is 745 MPa, 
which was obtained using the method of March et 
al. (1942) or ASTM Standard D3044-76. This 
method, which is called the plate twist test, was 
designed for plywood plates and requires a square 
specimen with a ratio of length of edge to thick- 
ness to lie between 25:1 and 50:1. Considerable 
errors are introduced when the wood grain is 
markedly inclined to the specimen faces or edges 
in portions of the plate. Since the results in the lit- 
erature are not consistent and our data in Table 1 
are more complete than any known to us, we will 
use the data in Table 1 in the following discussion. 

From Kubojima et al. (1996), we find E 1 = 
11,800 MPa. Kollman and Côté ( 1968) gave E 1 = 
11,600 MPa, E 2 = 902 MPa, and v 12 = 0.37. As 
stated earlier, these E, values are very stable, but 
since E 2 = 902 MPa is less than G (45°) = 1,670 
MPa, it cannot satisfy Eq. (10). The data for E 2 in 
Kollman and Côté (1 968) were obtained using the 
compression test by Doyle at al. (1956), which 
specifies a 50.8- by 50.8- by 203.2-mm specimen 
with the long dimension in the radial direction. To 
obtain the required length and to avoid excessive 
annual ring curvature, four blocks were glued to- 
gether to construct a specimen. The sources of 
error in Bodig (1966) and Pellicane et al. (1994) 

TABLE 1. Shear modulus test dura for Sitka spruce a 

Slope of grain Average shear modulus Coefficient of variation 
(degree) (MPa) (%) 

0 910 8.96 
22.5 
45 

1,194 
1,670 

5.16 
2.72 

Fig. 3 Variation of shear modulus G with grain slope θ 

are seen to converge in this test procedure. With 
G (45°) = 1,670 MPa, E, = 11,800 MPa, and v 12 

= 0.37, Equation (11) gives E 2 = 2,216 MPa, 
which is about 2.5 times the value of 902 MPa in 
Kollman and Côté (1968). Note that v 12 has little 
effect on E 2 in Eq. (11). When v 12 increases by 
20% from 0.37 to 0.44, E 2 = 2,279 MPa, an in- 
crease of less than 3%; when v 12 decreases by 
20% from 0.37 to 0.30, E 2 = 2,159 MPa, a de- 
crease of less than 3%. Therefore, based on the 
anisotropic elasticity theory, our predicted value 
for E 2 = 2,2 16 MPa. 

To lend additional support for the reliability of 
the four basic engineering constants thus ob- 
tained, i.e., E, = 11,800 MPa, E 2 = 2,216 MPa, 
G 12 = 910 MPa, and v 12 = 0.37, all these con- 
stants satisfy the equations derived in the analysis 
of the off-axis tension test of wood specimens, 
where the principal stress components expressed 
in terms of the applied tensile stresses, mechani- 
cal properties, and grain orientation in anisotropic 
theory are the same as those in terms of only the 
applied tensile stresses and grain orientation (Liu 
2002). This implies that the four basic engineer- 
ing constants are correct as a set. If any one of 
them should change, the others should change ac- 
cordingly (Wu et al. 1973). 

CONCLUSIONS 

Based on the tensor transformation rules, we 
derived a formula for shear modulus at any ori- 

a Specimens stabilized in conditioning room at 20°C and 50% relative hu- 
midity: five tests for each group; 9.4% average moisture content: 0.33 average 
specific gravity. 
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entation in a principal material plane of wood in 
terms of the shear modulus values for two speci- 
fied orientations at θ = 0° and 45° in the same 
plane. The formula was verified using a modi- 
fied Arcan shear test on Sitka spruce specimens. 
In the process of deriving the formula, we also 
established a formula for elasticity modulus in 
the radial direction as a function of the shear 
modulus at θ = 45°, the elasticity modulus in the 
longitudinal direction, and the Poisson's ratio as- 
sociated with the principal material plane. The 
modulus of elasticity in the radial direction 
based on this formula can satisfy certain practi- 
cal equations of anisotropic elasticity theory 
with which wood specimens are supposed to 
comply. The current testing methods for wood 
properties in radial compression cannot yield re- 
liable results because of stress concentrations 
caused by anatomical structures, specimen 
geometry, and loading conditions. Since the de- 
rived formula needs to be satisfied, we find the 
determination of elasticity modulus in the radial 
direction by means of the proposed shear test a 
convenient and reliable approach to solve an oth- 
erwise complicated problem. 
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