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A high quality draft genome sequence has been generated for the lignocellulose-degrading 
basidiomycete Phanerochaete chrysosporium (Martinez et al. 2004). Analysis of the genome in the 
context of previously established genetics and physiology is presented. Transposable elements 
and their potential relationship to genes involved in lignin degradation are systematically 
outlined. Our current understanding of extracellular oxidative and hydrolytic systems is 
described. Areas of uncertainty are highlighted and future prospects discussed in light of the 
newly available genome data. 

1.INTRODUCTION 
Numerous microorganisms participate in the global conversion of organic carbon to 

CO2 with the concomitant reduction of molecular oxygen. The most abundant source of 
carbon is plant biomass, composed primarily of cellulose, hemicellulose, and lignin. 
Many fungi and bacteria are capable of degrading and utilizing cellulose and 
hemicellulose as carbon and energy sources, but a much smaller group has evolved 
with the ability to breakdown lignin, the most recalcitrant component of plant cell 
walls. Collectively referred to as white rot fungi, these filamentous basidiomycetes 
possess the unique ability to degrade lignin completely to CO2 in order to gain access to 
the carbohydrate polymers of plant cell walls for use as carbon and energy sources. 
Suchwood-decayfungi are commoninhabitants offorestlitter and fallen trees. 

The enzymes from white rot fungi that catalyze degradation of lignin are 
extracellular and unusually nonspecific. A constellation of oxidases, peroxidases, and 
hydrogen peroxide are responsible for generating highly reactive and nonspecific free 
radicals that can affect depolymerization and degradation of lignin. The nonspecific 
nature and extraordinary oxidation potential of the enzymes from white rot fungi have 
attractedconsiderableinterestfor industrial applications suchas biological pulpingof 
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wood, fiber bleaching, and remediation of soils and effluents contaminated with a wide
range of organopollutants. 

Fig. 1.   Schematic illustration of wood tissue showing A. tracheid bundle; B. cell wall layers; and C.
arrangement of carbohydrates and lignin within the S2 layer of the secondary wall (based on (Goring,
1977)).  The bulk of the wall is in the S2 layer. In the model shown, lignin and hemicellulose form a matrix
encrusting cellulose.  The cellulose makes up approximately 45% of the weight of wood and is arranged
in microfibril spirals along the long axis of the cell.  Lignin is distributed throughout the S2 and middle
lamella (M.L.).  On th basis of their catalytic domains, enzymes hydrolysing the glycosidic bonds of
cellulose and  hemicellulose were assigned  to glycosyl hydrolase (GH) families (http:://afmb.cnrs-
mrs.fr/CAZY/index.). Within families, the number of sequences detected by Martinez et al (2004) is
indicated parenthetically. The precise function of genes within families is often unclear. Certain families,
e.g. GH3, GH5, GH31 are quite diverse with respect to the biological function of members. Lignin
depolymerization is believed to involve free radicals generated through the combined action of
peroxidases, possibly small molecular weight mediators, and peroxide-generating oxidases (see Figure 2).
P, primary wall; S1-S3, secondary wall layers.

The most intensively studied white rot organism is P. chrysosporium.  Using a pure
whole genome shotgun strategy, a high quality draft genome sequence has been
assembled (www.jgi.doe.gov/whiterot). Initial analysis (Martinez et al. 2004) of the P.
chrysosporium genome revealed features of importance to our understanding of lower
eukarotic gene structure and organization, identified hundreds of genes involved in 
lignocellulose   degradation,    and   provided    a   framework   for   achieving  a   deeper 
understanding of degradative processes. In the following pages, we briefly summarize
the   microbiology  and   physiology  of  ligniocellulose degradation.     For  more  detail,
readers are  referred to previous  reviews (Blanchette, 1991; Eriksson et al. 1990; Kirk and
Farrell, 1987; Kirk and Cullen, 1998).    Emphasis will be on the molecular genetics of P.
chrysosporium. Other fungi are mentioned only as points of reference.
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2. MICROBIOLOGY AND PHYSIOLOGY OF WOOD DECAY 
The hyphae of white rot fungi rapidly invade wood cells and from within the lumen 

(Figure 1) secrete an array of enzymes and metabolites that depolymerize 
hemicelluloses, cellulose, and lignin. Constituting approximately 40% of the weight of 
wood, cellulose is a linear polymer of cellobiose units linked by β-1,4-glycosidic bonds. 
Individual cellulose molecules are arrayed in bundles known as microfibrils. The bulk 
of the cell wall is within the secondary wall (Figure 1; S1, S2 and S3 layers), and within 
these layers microfibrils have different parallel orientations with respect to the axis of 
the cell. Cellulose appears highly crystalline in diffraction measurements. Like 
cellulose, hemicelluloses are linear β-1,4-linked monosaccharide polymers. However 
hemicelluloses have mono-, di- or trisaccharides branches that may include sugars, 
sugar acids, acetylated sugars and sugar acid esters. Hemicellulose makes up 25 to 30% 
of the weight of wood and is covalently bound through infrequent linkages to lignin. 

In contrast to the glycosidic linkages within cellulose and hemicellulose, lignin is 
comprised of carbon-carbon and ether bonds between phenylpropanoid residues 
(Higuchi, 1990; Lewis and Sarkanen, 1998). Consequently, lignin degradation involves 
oxidative mechanisms, as opposed to hydrolytic mechanisms. The polymer is 
stereoirregular, and the ligninolytic agents are generally assumed to be less specific 
relative to cellulases and hemicellulases. Extracellular peroxidases and oxidases are 
thought to play an important role in the initial depolymerization of lignin, and small 
molecular weight fragments are subsequently metabolized intracellularly, ultimately to 
water and carbon dioxide. It is generally believed that lignin depolymerization is 
necessary to gain access to cellulose and hemicellulose. No microbe, including any 
white rot species, is known to utilize lignin as a sole carbon source. 

Only white rot basidiomycetes have been convincingly shown to efficiently 
mineralize lignin, although gross patterns of decay can differ substantially among 
species and strains (for review see Blanchette, 1991; Daniel, 1994; Eriksson et al. 1990). 
Microscopic analysis show P. chrysosporium strains simultaneously degrade cellulose, 
hemicellulose and lignin, whereas others such as Ceriporiopsis subvermispora tend to 
remove lignin in advance of cellulose and hemicellulose. How such selective 
degradation occurs is puzzling because enzymes are too large to penetrate sound, intact 
wood (Blanchette et al. 1997; Cowling, 1961; Flournoy et al. 1993; Srebotnik et al. 1988b; 
Srebotnik and Messner, 1991) Blanchette et al. (1997) have shown that during decay of 
pine by C. subvermispora, the walls gradually become permeable to insulin (5.7 kDa), 
and then to myoglobin (17.6 kDa), but not to ovalbumin (44.3 kDa), even in relatively 
advanced stages of decay. Because lignin-depolymerizing enzymes and many 
cellulases are in the same size range as ovalbumin, it has been proposed that small 
molecular weight oxidants penetrate from the lumens into the walls. Various diffusible 
oxidative species have been proposed. 

Brown rot fungi, another category among homobasidiomycete wood decay fungi, do 
not degrade lignin but may be relevant to lignocellulose degradation by P. 
chrysosporium. These fungi rapidly depolymerize cellulose but only slowly modify 
lignin. Brown rot fungi are a major component of forest soils and litter, and they are 
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responsible for most of the destructive decay of wood ´in service´ (for review see 
Gilbertson, 1981; Worral et al. 1997). Recent molecular phylogeny suggests they have 
been repeatedly derived from white rot fungi (Hibbett and Donoghue, 2001). 
Depolymerization of crystalline cellulose proceeds long before wood porosity would 
admit cellulases, suggesting the participation of small molecular weight oxidants. 

Hydroxyl radical, generated via the Fenton reaction (H2O2 + Fe2+ + H+ → H2O + Fe3+ 

+ ·OH), has been strongly implicated as a diffusible oxidant in brown rot (Cohen et al. 
2002; Cohen et al. 2004; Xu and Goodell, 2001), and to a lesser extent, in white rot wood 
degradation. The possibility of such a reactive oxygen species was long ago suggested 
in P. chysosporium (Bes et al. 1983; Evans et al. 1984; Forney et al. 1982; Kirk and 
Nakatsubo, 1983; Kutsuki and Gold, 1982), but subsequent studies showed that Fenton 
reactions with lignin model compounds yielded products unlike those produced in 
ligninolytic cultures or by isolated peroxidases (Kirk et al. 1985). Still, some evidence 
supports Fenton system involvement in lignocellulose depolymerization by P. 
chysosporium (Henriksson et al. 1995; Tanaka et al. 1999; Wood, 1994). particularly via 
cellobiose dehydrogenase (see below; for review see Henriksson et al. 2000a; 
Henriksson et al. 2000b). Current models for hydroxyl radical participation have been 
reviewed (Goodell, 2003) and typically involve generation of the highly reactive oxidant 
at or near the substrate. This might include small molecular weight chelators 
transferring iron along extracellular pH gradients (Xu and Goodell, 2001) or through 
cellulose binding as in the case of cellobiose dehydrogenase (Henriksson et al. 2000a; 
Henriksson et al. 2000b). 

3. 	EXPERIMENTAL SYSTEMS 
3.1. Experimental Tools 

Advances on the molecular genetics of white rot fungi have been made possible by 
an array of experimental tools. For P. chysosporium, methodology has been established 
for auxotroph production (Gold et al. 1982), recombination analysis (Alic and Gold, 
1985; Gaskell et al. 1994; Krejci and Homolka, 1991; Raeder et al. 1989a). rapid DNA and 
RNA purification (Haylock et al. 1985; Raeder and Broda, 1985), differential display 
(Birch, 1998; Kurihara et al. 2002). pulsed field electrophoretic karyotyping (D'Souza et 
al. 1993; Gaskell et al. 1991; Orth et al. 1994). and genetic transformation by auxotroph 
complementation (Akileswaran et al. 1993; Alic et al. 1989; Alic et al. 1990; Alic et al. 
1991; Alic, 1990; Randall et al. 1991; Zapanta et al. 1998) and by drug resistance markers 
(Gessner and Raeder, 1994; Randall et al. 1989; Randall et al. 1991; Randall and Reddy, 
1992). Transformation efficiencies are relatively low and gene disruptions are difficult 
(Alic et al. 1993), but reporters for studying gene expression have been described (Birch 
et al. 1998; Gettemy et al. 1997; Ma et al. 2001). One of the most promising experimental 
approaches currently being adapted to P. chysosporium is the use of two dimensional 
gel electrophoresis followed by mass spectrometry-based protein identification (Abbas 
et al. 2004; Shimizu et al. 2004). 

As is common for basidiomycetes, the vegetative mycelium of P. chrysosporium is 
dikaryotic. However, clamp connections are absent and the cells are coenocytic 



319 

(Burdsall and Eslyn, 1974; Stalpers, 1984). The most widely studied strain, BKM-F-1767, 
produces abundant asexual spores, all of which are multinucleate and dikaryotic. 
Difficulties differentiating allelic variants from closely related genes and the lack of an 
accepted standardized nomenclature has complicated studies of gene families (Gaskell 
et al. 1994). Pulsed field gel electrophoresis identified 7-9 chromosomes with a haploid 
genome size of approximately 30 Mbp. Most allelic chromosomes differ in length 
(Gaskell et al. 1991; Gaskell et al. 1994; Kersten et al. 1995; Orth et al. 1994; Stewart et al. 
1992). The underyling structure of such chromosome length polymorphisms (CLPs) is 
unknown although they are a common feature of fungal genomes (Zolan, 1995). 

Single basidiospores of P. chrysosporium are fully viable and generally homokaryotic. 
Analyses of single basidiospore cultures have been used to differentiate alleles, and to 
create genetic and physical maps of P. chrysosporium (Covert et al. 1992a; Gaskell et al. 
1992; Gaskell et al. 1994; Kersten et al. 1995; Li et al. 1997; Li and Renganathan, 1998; 
Raeder et al. 1989b; Schalch et al. 1989; Stewart et al. 1992; Stewart and Cullen, 1999). 
However, single basidiospore strains typically exhibit reduced sporulation, growth rate, 
and enzyme yields relative to the parental strain (Raeder et al. 1989b; Wyatt and Broda, 
1995). Further, CLPs and other aspects of genome organization are not maintained 
through meiotic recombination, limiting the experimental value of basidiospores 
(Covert et al. 1992a; Gaskell et al. 1991; Kersten et al. 1995; Stewart et al. 1992; Zolan, 
1995). A homokaryon of non-meiotic origin, RP-78, circumvents the disadvantages 
incurred by recombination and has greatly simplified assembly of genome sequence 
(Martinez et al. 2004; Stewart et al. 2000). 

Beyond P. chrysosporium, Pleurotus ostreatus is probably the next best white rot 
experimental system offering transformation protocols (Honda et al. 2000; Irie et al. 
2001; Sunagawa and Magae, 2002; Yanai et al. 1996) and methodology for physical 
(Larraya et al. 1999) and genetic mapping (Eichlerova and Homolka, 1999; Eichlerova-
Volakova and Homolka, 1997; Larraya et al. 2000; Larraya et al. 2002). Trametes 
versicolor has also been transformed with drug resistance vectors (Bartholomew et al. 
2001; Kim et al. 2002), and gene disruptions have been demonstrated (Dumonceaux et 
al. 2001). Aspects of the molecular biology of P. chrysosporium have been reviewed (Alic 
and Gold, 1991; Cullen and Kersten, 1996; Cullen, 1997; Gold and Alic, 1993; Pease and 
Tien,1991). 

3.2. Genome Sequencing 
In a major research advance, the U.S. Department of Energy´s Joint Genome Institute 

(JGI) has completed whole genome shotgun sequencing of P. chrysosporium strain RP-78 
to 10.5X coverage. The draft assembly and interactive annotated browser are freely 
available at www.jgi.doe.gov/whiterot. The 30 Mb genome is distributed on 383 
scaffolds greater than 2 kb, and the largest 165 scaffolds contain 90% of the assembled 
sequence. Contiguity of the largest scaffolds has been validated by genetic segregation 
analysis of terminal markers (Gaskell et al. 1994). Further support for the long-range 
structure of the assembly came from end sequencing cosmid clones. Of 1390 unique 
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ESTs derived from colonized wood, 98% were identified in the assembly and their 
positions noted on the browser. 

Gene modeling predicted over 11,222 genes of which 8486 gave significant Smith-
Waterman scores to known GenBank proteins. The taxonomic distribution and 
identification of conserved Interpro (Mulder et al. 2003) domains were reported and 
compared to the other published fungal genomes, Saccharomyces cerevisiae (Goffeau et al. 
1996), Schizosaccharomyces pombe (Wood et al. 2002). and Neurospora crassa (Galagan et al. 
2003; Mannhaupt et al. 2003; Schulte et al. 2002). Among other features, this analysis 
revealed a major expansion of the cytochrome P450s (below). Models not showing 
significant similarity to known proteins correspond to highly divergent, previously 
unrecognized genes perhaps unique to filamentous fungi, basidiomycetes, or white rot 
fungi, or spurious gene predictions. 

One of the more distinguishing features of P. chysosporium genome is the occurrence 
of large and complex families of structurally related genes. As described more fully 
below, families include cytochrome P450s, peroxidases, cellulases, copper radical 
oxidases and multicopper oxidases. In some cases, but not all, clustering is observed. 
The role of gene families in lignocellulose degradation remains uncertain. Structurally 
related genes may encode proteins with subtle differences in function, and such 
diversity may be needed to meet the challenges of changing environmental conditions 
(pH, temperature, ionic strength), substrate composition and accessibility, and wood 
species. Alternatively, some or all of the genetic multiplicity may simply reflect 
redundancy. Evidence against the latter view, albeit indirect, is that certain closely 
related genes are differentially regulated in response to substrate composition It 
should also be mentioned that the genetic multiplicity of P. chysosporium stands in stark 
contrast to N. crassa, where a repeat-induced point mutation system is believed to have 
greatly restricted the number and size of gene families. Providing further insight into 
these issues, analyses of the basidiomycetes Filobasidiella neoformans (= Cryptococcus 
neoformans) (http://www-sequence.stanford.edu/group/C.neoformans/index.html), 
U. maydis (http://www-genome.wi.mit.edu/seq/fgi/candidates.html), and C. cinereus 
(http://www-genome.wi.mit.edu/seq/fgi/candidates.html) will soon be published. 

To be as current as possible, this review describes gene models recently 'mined' from 
the current database. However, we emphasize that these are generally automated 
predictions many of which are partially incorrect. This is a common problem in 
eukaryotic genomes, particularly among genes with multiple introns and short exons. 
Accordingly, proteins predicted from genomic sequence should be considered tentative 
until verified by cDNA analysis. Another qualification concerning the genome relates 
to inclusion of repeats. In short, whole genome shotgun assemblies such as P. 
chrysosporium typically exclude telomeres, rRNA clusters, and many repeats. 

3.3. Repeats 
Repetitive elements of P. chrysosporium have been associated with several genes 

encoding extracellular enzymes. The most thoroughly studied element had been Pce1, 
a repeat inserted within LiP allele lipI2 (Gaskell et al. 1995). The 1747 nt sequence 

http://www-genome.wi.mit.edu/seq/fgi/candidates.html
http://www-genome.wi.mit.edu/seq/fgi/candidates.html
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transcriptionally inactivates lipI2 and three copies are distributed on the same 
chromosome. Sequence flanking these copies showed no evidence of recombination 
(Stewart et al. 2000). In addition to Pce1-like elements, a broad array of non-coding 
repetitive sequences and putative mobile elements have been identified by systematic 
examination of the genome database. Short repeats (<3kb) not clearly associated with 
transposons vary in copy number from >40 (GenBank accession number Z31724) to 4 
(AF134289-AF134291)(Table 1). 

Table 1. Simple non-coding repeats identified in P. chrysosporium 

Location1 Type2 Accession Probable copies Comment 
85:13061-14631 Pce1 L40593 Element inserted within 

lignin peroxidase gene lipI. 
Co-segregates with Pce2, 
Pce3, and Pce4. 

223:16314-17591 Pce2 AF134289 Truncated at REND of 
scaffold. 

57:144178-142237 Pce3 AF134290 
10:259013-257364 Pce4 AF131291 

91:115464-117260 Z31724 Portions distributed on Often associated with 
>40 scaffolds Mort at retroelements as direct or 
termini, e. g. LEND s384, inverted repeats First 350 nt 

of the 731724 not located bys28, s141; REND s292, 

s260, s136, s72. blast. 


1Location is defined by genome scaffold number : nucleotide coordinates on current assembly of the Joint 
Genome Institute´s interactive browser (http://genome.jgi-psf.org/whiterot1/whiterot1.home.html) 
2The sequence, transcriptional impact, and genetic linkage of Pce elements have been reponed 
(Gaskell et al. 1995; Stewart et al. 2000). 

Several putative Class II elements, or DNA transposons, were identified in the P. 
chrysosporium genome (Table 2). Similar ascomycetous elements include Aspergillus 
niger Ant, Cochiobolus carbonum Fot1, Nectria "Restless", Fusarium oxysporum Tfo1, and 
Cryphonectria parasitica Crypt1 (Kempken and Kuck, 1998). Atypical of fungi but 
common in higher plant genomes, EN/Spm- and TNP-like elements were also found 
(Martinez et al. 2004). Interestingly, the P. chrysosporium DNA transposons are present 
in low copy numbers (1-4 copies) relative to Ascomycetes, where class II elements often 
exceed 50-100 copies. 

A substantial number of multi-copy retrotransposons were identified in the database, 
some of which seem likely to impact expression of genes related to lignin degradation 
(Table 3). Typical of these elements, they often appear truncatcd and/or rearranged, 
and the long terminal repeats, characteristic of retroelements, often lie apart as "solo 
LTRs" (Goodwin and Poulter, 2000; Kim et al. 1998). Several non-LTR retrotransposons, 
similar to other fungal LINE-like retroelements, were also found by blast searches, 
Unusual for a fungal genome (Daboussi and Capy, 2003), copia-like retroelements are 
particularly abundant. In one case, the copia element gx.24.14.1 interrupts a cytochrome 
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P450 gene (models pc.24.16.1 + pc.24.17.1) within its seventh exon (gene model 
gx.24.14.1 (Martinez et al. 2004). A multicopper oxidase gene, mco3 also has an inserted 
element (unpublished), and gypsy element pc.91.4.1 lies immediately adjacent to a gene 
encoding an extracellular peroxidase (gx.91.10.1). 

Table 2 Putative class II elements identified1 in P. chrysosporium 

Gene model/ location2 Type Related3 to: Comments4 

pc.197.6.1 Ac/hAT F. oxysporum Folyt1 Poor model. Possible ITRs. 

pc.88.61.1 Ac/hAT 

gw.65.44.1 Ac/hAT 

pc.247.3.1+ pc.247.4.1 Ac/hAT 

pc.112.17.1 Tc1/Mariner 

s213.13484-17985 Tc1/Mariner 

(pc.213.8.1) 

s128.64902-68226 Tc1/Mariner 

(pc.128.43.1) 

pc.270.1.1(N-teminal) + Fot1/Pogo 

gx.224.2.1(COOH region) 


(AF057141) 

F. oxysporum Tfo1 

(T00208) 
F. oxysporum Tfo1 
(T00208) 
C. parasitica Crypt1 
(AF2283502) 

A. niger Ant1 

(AF283502) 

Aspergillus niger Ant1 

(AF283502) 
Aspergillus niger Ant1 
(AF283502) 
Cochliobolus carbonum 
Fot1-like. (JC5096) 

Poor model. (210aa). 

Copy:pc.14.47.1 + pc.14.45.1 

Poor model. (210aa). 


Disjoint models. (76aa + 

115aa). 

Partial model (320aa). Possible 

imperfect 65nt ITRs. 

213 nt ITRs. Model overlaps 

dehydrogenase. 

80 nt ITRs. Copy:pc.234.7.1 

(REND; no ITRs) 

N-terminus (239aa) & COOH 

(149aa) terminus on LEND & 

REND, respctively, of 2 

scaffolds. 


pc.25.43.1+gx.25.15.1 TNP Putative A. thliana Poor models. Similar to higher 
TNP2 (AC005897). No plant TNP- & En/Spm-like 
fungal examples. elements Copies:pc.15.120.1; 

pc.125.4.1 
pc.90.8.1 TNP Hypothetical carrot Similar to higher plant TNP-

Tdc1(AB001569). No and En/Spm-like 
fund examples. elements.Copies:pc.125.4.1; 

pc.249.91.1 

1Searches of Joint Genome Institute's interactive browser (http://genome.jgi­
psf.org/whiterot1/whiterot1.home.html) by keywords (e.g. transposase, transpos, retroelement, 
transposon, retrotransposon) and by blast with known fungal class I and II elements; 2Computer 
generated gene model designations (pc., gx., gw.) or, in case of elements with terminal repeats, scaffold 
coordinates (s.nucleotide positions). Models are often truncated at either termini: 3Following initial 
screening, trimmed sequences were identified by blast searches of NCBI database. Short sequences at 
scaffold termini and those located on short scaffolds were generally ignored; 4Abbreviations: REND, right 
end of scaffold; LEND, left end of scaffold; ITRs, inverted terminal repeats. 

Viewed together with the Pce1 mutant of lip1, it seems P. chrysosporium transposons 
have a proclivity for insertions within gene families. Recombination among these 
repetitive elements may be involved in the evolution of these families as well as in 
chromosome length polymorphisms (for review see Zolan, 1995). A novel class of 
eukaryotic DNA transposons, Helitrons, were recently identified in P. chrysosporium 

http://genome.jgi
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(Poulter et al. 2003). None of the three P. chrysosporium Helitrons appear to be within or 
adjacent to functional genes. Tyrosine recombinase-encoding retrotransposons appear 
more abundant in the P. chysosporium genome (Goodwin and Poulter, 2004), but again, 
the elements and their remnants are not inserted within recognizable structural genes. 

Table 3. Identification1 ofclass I elements in the P. chrysosporium genome. 

Location or Related3 to: LTRs/copies (c)/ comments (cm) 
gene model2 

Copia-like retrotransposons (LTRs): 
s84.4772-9223 T. tabacum retrotransposon TNT1 LTR: 333 nt 
(gx.84.1.1) (P10978) c: pc.142.16.1; pc.209.1.1; 

pc.214.3.1: LTR at REND s23 
cm: Few fungal examples, e.g. Candida 
(AF065434). 

s24.47199-52675 T. tabacum retrotransposon TNT1 LTR:420 nt 
(gx.24.14.1) (P10978) 	 c: LTR at REND s302 and s277; LTR at 

LEND s114 
cm: Few fungal examples e.g. S. 
cerevissiae Ty2. 

s235.5494-10983 Copia type pol polypetptide rice LTR: 127 nt 
(pc.235.3.1) (AC092553) and tobacco (T02206) c: gx.224.1.1 (w/LTR); 

gx.253.1.1 (w/LTR): gx.247.1.1 

gx.173.6.1 	 Gag protein of insects and higher 
plants. Anopheles gambiae 
(AF387862) 

s24.202590-205821 A. thaliana pol polypeptide 
(AC006841) 

Gypsy-like retrotransposons (LTRs): 
s166.34077-42356 Yarrowia lipolytica retrotransposon 
(pc.166.16.1 + Ylt1 (AJ310725) 
pc.166.17.1) 
pc.233.1.1 Yarrowia lipolytica retrotransposon 

Ylt1 (AB310725) 

s91.3017-11324 Magnaporthe grisea MAGGY (L35053) 
pc.91.4.1 and Tricholoma matsuke marY1 

(AB028236) 

(w/LTR); pc.265.3.1 (w/LTR); 
gx.290.1.1(w/1LTR); gx.268.1.1; 
gx.84.1.1; gx.217.1.1(w/LTR); 
gx.293.1.1 
cm: Few fungal examples t.g. S. 
cervisiae Ty1 protein B (T29093). 
LTR: ~200 nt 
c: gw.14.1.1 

cm: No pol polypeptide detected. 

LTR: 190 nt 

c: pc.324.2.1 + pc. 324.1.1 (w/LTR) 

cm: LTR at REND s145 


LTR: 327 nt 

cm: Also similar to other fungal 

elements (e.g. MAGGY, CfT-1) 

c: 	s183.13150-27198 (w/LTR) 

pc.84.26.1; pc.141.13.1; s250. REND; 

gw.269.1.1; s152.LEND; gx.264.1.1; 

pc.65.56.1 + pc.65.57.1 

LTR: 1023 nt 

c: gx.311.1.1; gx.241.2.1;pc.241.2.1; 

gx.219.2.1; s242.3501-8500 

cm: Polymerase and integrase (91.4.1) 

similar to MAGGY and Tricholoma 

marY1. Gag polypeptide (pc.91.5.1) 

closer to Glomeralla and Aspergillus. 
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4. EXTRACELLULAR  OXIDATIVE  SYSTEMS 

As mentioned above, the polymers constituting plant cell walls are too large to be 


taken    up   by    fungal    hyphae   and    extracellular   depolymerization    must   occur. 

Accordingly,  the  vast  majority  of  research  on  white   rot  fungi  has  focused on  the

secreted enzymes.


4.1. Lignin Peroxidases and Manganese-dependent Peroxidases

Since their  discovery  (Glenn et al.1983; Gold et al. 1984; Paszczynski et al. 1985; Tien


and Kirk, 1983, 1984), lignin peroxidase (LiP) and manganese peroxidase (MnP) have
been the most intensively studied extracellular enzymes of P. chrysosporium.  Review

articles summarize the biochemistry (Higuchi, 1990; Kirk and Farrell, 1987; Kirk, 1988;

Shoemaker and Leisola, 1990) and genetics  (Alic and Gold,  1991; Cullen and Kersten, 


1Searches        of       joint       Genome        Institute's        interactive       browser       (http://genome.jgi/ 

psf.org/whiterot1/whiterot1.home.html)  by   keywords  (e.g. transposase,   transspos, retroelement, 

transposon,  retrotransposon)  and  by  blast  with  known fungal  class I  elements  (e.g. MAGGY, Tad1); 

2Computer  generated   gene model  designations  (pc., gw.,  gx.  prefixes) or,  in cases  of elements  with 

extended  terminal   repeats,  scaffold  (s)  coordinates.  Models  are  often   truncated   at  either  termini;

3Following initial screening,  trimmed sequences were blasted against NCBI databases; 4Following initial 

screening, trimmed   sequences  were used  to  blastn and  tblastn  search the    P. chrysosporium database.

Short sequences at scaffold termini and those located on short scaffolds were generally ignored. 
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1996; Cullen, 1997, 2002; Gold and Alic, 1993) of these enzymes. Both are 
protoporphyrin IX peroxidases. Isozymic forms are encoded by families of structurally 
related genes and further modified posttranslationally. 

LiP catalyzed reactions include Cα -Cβ cleavage of the propyl side chains of lignin and 
lignin models, hydroxylation of benzylic methylene groups, oxidation of benzyl 
alcohols to the corresponding aldehydes or ketones, phenol oxidation, and even 
aromatic cleavage of nonphenolic lignin model compounds (Hammel et al. 1985; Leisola 
et al. 1985; Renganathan et al. 1985; Renganathan and Gold, 1986; Tien and Kirk, 1984; 
Umezawa et al. 1986)(Figure 2). The importance of lignin peroxidase in the 
depolymerization of lignin in vivo was convincingly shown by Leisola et al. (Leisola et 
al. 1988). Partial depolymerization of lignin in vitro has been demonstrated for LiP 
(Hammel and Moen, 1991) and MnP (Wariishi et al. 1991). 

MnP oxidizes Mn2+ to Mn3+, using H2O2 as oxidant (Gold et al. 1984; Paszczynski et 
al. 1985). Activity of the enzyme is stimulated by simple organic acids which stabilize 
the Mn3+, thus producing diffusible oxidizing chelates (Glenn and Gold, 1985; Glenn et 
al. 1986). Kinetic studies with Mn2+ chelates support a role for oxalate in reduction of 
MnP Compound II by Mn2+, and physiological levels of oxalate in P. chrysosporium 
cultures stimulate manganese peroxidase activity (Kishi et al. 1994; Kuan et al. 1993). In 
addition to the oxidases (reviewed below), extracellular H2O2 may also be generated by 
the oxidation of organic acids secreted by white-rot fungi. Specifically, Mn(II)­
dependent oxidation of glyoxylate and oxalate generates H2O2 (Kuan et al. 1993; Urzua 
etal. 1998). 

The crystal structures of LiP (Edwards et al. 1993; Piontek et al. 1993; Piontek et al. 
2001) and MnP (Sundaramoorthy et al. 1997) show similarities; the active site has a 
proximal His ligand H-bonded to Asp, and a distal side peroxide-binding pocket 
consisting of a catalytic His and Arg. Kinetic studies of MnP variants indicate that 
manganese-binding involves Asp-179, Glu-35, Glu-39 (Kusters-van Someren et al. 1995; 
Sollewijn Gelpke et al. 1999; Whitwam et al. 1997; Youngs et al. 2001) and a heme 
propionate, consistent with x-ray crystallographic analysis (Sundaramoorthy et al. 
1997). 

Recent genome analyses (Martinez et al. 2004) located the 10 known LiP genes 
previously designated lipA through lipJ (Gaskell et al. 1994). Eight of the LiP genes were 
found clustered within 3% recombination (Gaskell et al. 1994; Stewart and Cullen, 1999), 
which corresponds to 96 kb (Martinez et al. 2004). cDNAs were previously reported for 
genes mnp1, mnp2, and mnp3 (Alic et al. 1997; Orth et al. 1994; Pease et al. 1989; Pribnow 
et al. 1989), and two new MnP genes were revealed by Blast searches of the genome 
(Martinez et al. 2004). One of these new genes has been designated mnp4 (gene model, 
15.18.1) (Martinez et al. 2004). Unexpectedly, mnp4 was found to lie approximately 5 kb 
upstream from mnpl (model 15.23.1). and a cytochrome P450 gene is located in the 
mnp4-mnp1 intergenic region. Recent data shows that mnp4 is actively transcribed when 
P. chrysosporium is grown on wood-containing soil samples (Stuardo et al. 2004). Gene 
model 9.126.1, mnp5, (Martinez et al. 2004) corresponds to the N-terminal amino acid 
sequence of an MnP purified from P. chrysosporium-colonized wood pulp (Datta et al. 
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1991). Future work requires  a more detailed  analysis of the expression profile of these

newly identified mnp genes.  The five mnp sequences are remarkably conserved (Figure
3). The number and positions of introns are also conserved, particularly mnp1 and mnp4,

and this  suggests a recent duplication (Figure 4) (Stuardo et al. 2004).


Fig. 2. Schematic representation  of major extracellular oxidative  enzymes produced  by lignin  degrading 

fungi.   Generation of H2O2  is physiologically coupled  to peroxidases. Benzyl alcohol  derivatives (A) are

substrates for FAD-dependent  oxidases such  as aryl alcohol oxidase (R= H or OCH3). Methyl gloxal  (B) 

is a substrate for  glyoxal oxidase and possibly for related  copper radical oxidases  Peroxidase substrate C 

is a lignin model featuring the major β-O-4 linkage (R= H or ether linkage to additional monomeric units).
Peroxidases abstract one electron  from aromatic substrates which  then undergo spontaneous  degradation 

reactions  or  "enzymatic  combustion"  (Kirk and  Farrell, 1987).   The  resulting  small molecular  weight 

fragments are  further  metabolized intracellularly to  CO2 and H2O.   Peroxide might also be  a reactant in

the spontaneous  (non-enzymatic)  generation  of hydroxyl radical  via Fenton's chemistry  (D).  Reduction 

of Fe3+ has been demonstrated for cellobiose dehydrogenase.    Parenthetical numbers indicate structurally

related sequences identified  to date.

In addition  to mnp4 and mnp5, a partial mnp-like sequence encoding just the COOH-

terminus  was  discovered. This partial 274 nt mnp sequence (gw.9.92.1), named mnp6, is

located  85 kb downstream  from  mnp5 (scaffold 9), and  as observed  for  the latter, it  is

encoded  by the  minus  strand.  PCR amplification and  sequencing verified  mnp6, and 

excluded   the  possibility   of  assembly   error   (unpublished   data).  In   addition,   we 

confirmed   that   this  partial   sequence   is  present   in  both   nuclei,  and   also  in   P. 

chrysosporium   strain  ME446  (unpublished    data).  When   manually   translated,  this 
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sequence shows the highest homology (65%) to aminoacids 299 to 370 of MnP5. An 
intron splits the codon for aa 355 in mnp5, and mnp6 also possesses an 58 nt intervening 
sequence at that position. However, splicing of the intron adheres to the GT-AG rule 
only in its 5´; the 3´ splice seems to be less well defined. 

No evidence for the transcription of mnp6 could be obtained. This, in addition to the 
presence of a stop codon in the middle of its sequence, and the low conservation of its 
intronic region suggest that mnp6 is inactive and the possible product of an aberrant 
recombination or duplication event. 

LiP and MnP genes have been identified in other species, and recent cladistic analysis 
by Martinez (Martinez, 2002) shows >50 invariant residues among approximately 30 
known peroxidases. In general, the MnP and LiP genes fall within clearly defined 
clades and can be discriminated by certain key residues. As expected by its role in 
catalysis by long range electron transfer, Trp171 is common to LiPs, whereas Mn­
binding residues (Glu35, Glu39, Asp179 in mnp1) are found in MnP sequences. 

Certain peroxidases cannot be easily classified. Unusual Pleurotus eryngii sequences 
encode ”versatile peroxidases,” which have both LiP-like activities (oxidation of 
veratryl alcohol and an array of phenols) and MnP-like activities (Mn+2 oxidation) 
(Camarero et al. 2000; Ruiz-Duenas et al. 1999; Ruiz-Duenas et al. 2001). The P. eryngii 
genes have both Trp171 and the residues involved in Mn-binding. Searches of P. 
chrysosporium genome revealed a putative extracellular peroxidase related to the 
Pleurotus hybrid peroxidase (Ruiz-Duenas et al. 1999), but catalytic and Mn-binding 
residues are not conserved (Martinez et al. 2004). Designated nop, the P. chrysosporium 
gene (GenBank accession AY727765), shows novel structural features, which distinguish 
it from any of the aforementioned peroxidases (unpublished results). 

It is now well established that the peroxidase genes of P. chrysoporium are 
differentially regulated by culture conditions. Holzbaur and Tien (Holzbaur and Tien, 
1988) showed that steady state levels of lipD transcripts were far more abundant than 
those of lipA under carbon starvation. The situation was reversed under nitrogen 
starvation, i.e lipA transcripts dominated. Beyond these early Northern blot results, 
competitive RT-PCR and nuclease protection assays have been used for quantitative 
differentiation of the closely related transcripts (Reiser et al. 1993; Stewart et al. 1992) in 
defined media (Reiser et al. 1993; Stewart et al. 1992; Stewart and Cullen, 1999), in 
organopollutant contaminated soils (Bogan et al. 1996c). and in colonized wood (Janse 
et al. 1998). These studies have shown that differential regulation can exceed five orders 
of magnitude and that transcript profiles in defined media poorly predict profiles in 
complex substrates. Importantly, the observed patterns of expression show no clear 
relationship with genome organization. Post translational regulation by heme 
processing has been suggested (Johnston and Aust, 1994) but contradicted by the results 
of Li et al. (1994). 

In addition to nutrient conditions, MnP production in P. chrysosporium is dependent 
upon Mn concentration (Bonnarme and Jeffries, 1990; Brown et al. 1990). The P. 
chysosporium MnP genes mnp1, mnp2, and mnp3 generally show coordinate regulation 
in colonized soil and wood (Bogan et al. 1996a; Janse et al. 1998). Putative metal 
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response elements (MREs) have been identified upstream of mnp1 and mnp2 and their 
transcript levels respond to Mn2+ supplements in low nitrogen media (Pease and Tien 
1992a; Gettemy et al. 1998). In contrast, mnp3, lacks paired MREs and its transcript 
levels are not influenced by addition of Mn2+ (Gettemy et al. 1998; Pease and Tien, 1992). 
Taken together, these observation support a possible role for MREs in transcriptional 
regulation of P. chrysosporium MnP genes (Alic et al. 1997; Gettemy et al. 1998). 
However, MnP regulation appears not to involve MREs in T. versicolor (Johansson and 
Nyman, 1993; Johansson et al. 2002) or in C. subvermispora (Manubens et al. 2003). 
Another interesting T. versicolor gene, npr, appears repressed by Mn even though 
putative Mn-binding residues are present in the sequence (Collins et al. 1999). 

Fig. 3 Clustal W alignment of predicted manganese peroxidase proteins of P. chrysosporium. Genes mnp1 
through mnp5 are supported by cDNA evidence. cDNAs corresponding to mnp6 sequence have not been 
detected. 

The role of MREs in Mn-regulated transcription of the mnp genes was recently 
examined by Ma et al (2004). Using a green fluorescent protein reporter system, a 48-bp 
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sequence containing at least one Mn2+-responsive cis element was identified. Further 
characterization suggests that a 33-nt portion is responsible for the observed regulation. 
None of the 6 putative MREs present in mnp1 is contained in the aforementioned 
region, and functional evaluation of 4 of these MREs, show no significant effect in the 
Mn2+ response (Ma et al. 2004). Similar regulatory sequences were identified upstream 
of mnp2 and mnp3 (Ma et al. 2004). The new data suggest that in the absence of Mn, a 
negative control is exerted at that sequence, which is released in the presence of the 
metal. The existence of additional Mn-responsive cis acting sequences in the mnp1 
promoter is supported by the residual responsiveness to Mn when this bona fide 
sequence is absent (Ma et al. 2004). 

Fig. 4. Schematic representation of intro-exon composition of P. chrysosporium manganese peroxidase 
genes. 

4.2. Copper Radical Oxidases 
An important component of the ligninolytic system of P. chrysosporium is the H2O2 

that is required as oxidant in the peroxidative reactions. A number of oxidases have 
been proposed to play a role in this regard. However, only one appears to be secreted 
in ligninolytic cultures; glyoxal oxidase (Kirk and Farrell, 1987). The temporal 
correlation of glyoxal oxidase (GLOX), peroxidase, and oxidase substrate appearances 
in cultures suggests a close physiological connection between these components 
(Kersten and Kirk, 1987; Kersten, 1990). Glyoxal oxidase is a glycoprotein of 68 kDa 
with two isozymic forms (pI 4.7 and 4.9). A number of simple aldehyde-, α­
hydroxycarbonyl-, and α-dicarbonyl compounds are oxidized by GLOX. Lignin itself is 
a likely source of GLOX substrates. Oxidation of a β-O-4 model compound 
(representing the major substructure of lignin) by lignin peroxidase releases 
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glycolaldehyde (Hammel et al. 1994). Glycolaldehyde is a substrate for GLOX and 
sequential oxidations yield oxalate and multiple equivalents of H2O2. Oxalate may be a 
source of chelate required for the manganese peroxidase reactions described above. 
Biochemical and spectroscopic investigations show structural similarities between 
GLOX and glactose oxidase and the correponding catalytic residues have been clearly 
identifed (Kersten et al. 1985; Kurek and Kersten, 1995; Whittaker, 2002; Whittaker et al. 
1999). 

The reversible inactivation of GLOX is of considerable physiological significance 
(Kersten, 1990; Kurek and Kersten, 1995). During enzyme turnover, GLOX becomes 
inactive in the absence of a coupled peroxidase system. The oxidase is reactivated, 
however, by lignin peroxidase and non-phenolic peroxidase substrates. Conversely, 
phenolics prevent the activation by lignin peroxidase. These observation show that 
glyoxal oxidase has a regulatory mechanism responsive to peroxidase, peroxidase 
substrates, and peroxidase products (e.g., phenolics resulting from ligninolysis). Also, 
lignin will also activate glyoxal oxidase in the coupled reaction with LiP (Kersten, 1990; 
Kurek and Kersten, 1995). 

Glyoxal oxidase of P. chysosporium is encoded by a single gene with two alleles 
(Kersten and Cullen, 1993; Kersten et al. 1995). On the basis of the catalytic similarities 
with Dactylium dendroides galactose oxidase, potential copper ligands were tentatively 
identified at Tyr377 and His378 (Kersten and Cullen, 1993). Subsequent studies also 
implicated Tyr135, Tyr70, and His471 in the active site (Whittaker et al. 1999). 
Surprisingly, Blast analysis of the genome has revealed 6 sequences with low overall 
sequence homology to glx (<50% amino acid similarity) but with highly conserved 
residues surrounding the catalytic site. Extended N-terminal domains of unknown 
function are present in new copper radical oxidase genes cro3, cro4, and cro5. On the 
basis of similarities to galactose oxidase, cro1, cro2, and possibly cro6 may have 
propeptides which play a role in self-catalytic processing (Firbank et al. 2001; Rogers 
and Dooley, 2003; Xie and van der Donk, 2001). Our recent blast searches have found 
structurally related genes in a diverse array of fungi including, the ascomycete 
Magnaporthe grisea (www.broad.mit.edu/annotation/fungi/ ustilago_maydis/) and in 
the Badisiomycete, Coprinus. cinereus. 
(www.broad.mit.edu/annotation/fungi/coprinus_cinereus/). Recently, one of these 
M. grisea glx-like sequences, glo1, was shown to be required for filamentous growth and 
pathogenicity (Leuthner et al. 2004). Elucidating the biological function of these copper 
radical oxidases remains a major challenge for future research. 

One of the unexpected findings in the P. chrysosporium genome project was the 
identification of the aforemnentioned family of copper radical oxidases In particular, 
copper radical oxidase genes cro3, cro4, and cro5 were located within the cluster of LiP 
genes (Cullen and Kersten, 2004). The clustering of lip and cro genes seems consistent 
with a physiological connection between peroxidases and peroxide-generating 
oxidases. Of the seven copper radical oxidascs of P. chrysosporium, only glx has been the 
focus of transcript analysis. Again consistent with a role in lignin degradation, glx
transcripts are coincident with lip and mnp in defined media (Kersten and Cullen, 1993; 
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Stewart et al. 1992), soil (Bogan et al. 1996b), and wood (Janse et al. 1998) 

4.3. FAD-dependant oxidases 
Cellobiose dehydrogenase (CDH) is widely distributed among white-rot fungi. Its 

precise function is uncertain, but it may play a role in carbohydrate metabolism and in 
lignin degradation. The enzyme has two domains containing FAD and heme prosthetic 
groups, respectively. The two domains can be cleaved by P. chrysosporium proteases. 
CDH binds cellulose via a binding module in the flavin domain and oxidizes 
cellodextrins, mannodextrins, and lactose. Suitable electron acceptors include quinones, 
phenoxy radicals, molecular oxygen and Fe3+. Several studies have emphasized the 
FeIII reductase activity of the heme domain and its implications in generating hydroxyl 
radicals via a Fenton reaction (Kremer and Wood, 1992a; Kremer and Wood, 1992b; 
Mason et al. 2003). One possible role for CDH may be enhancement of cellulases by 
relieving product inhibition (Cameron and Aust, 2001; Igarashi et al. 1998). Another 
possibility is that CDH generates hydroxyl radicals via Fenton type reactions thus 
oxidizing wood components including lignin. Potential CDH roles have been reviewed 
(Cameron and Aust, 2001; Henriksson et al. 2000a). 

Genes encoding CDH have been cloned from several fungi including the white-rot 
fungi P. chrysosporium (Li et al. 1996; Raices et al. 1995). Trametes versicolor (Dumonceaux 
et al. 1998). and Pycnosporus cinnabarinus (Moukha et al. 1999). Sequences are highly 
conserved. All share a common architecture with separate FAD, heme, and cellulose 
binding domains (CBD), although the latter domain has no obvious similarity to 
functionally analogous bacterial or fungal CBDs. The heme ligands of P. chrysosporium 
CDH have been confirmed by site specific mutagenesis (Rotsaert et al. 2001). As 
mentioned above, the role of CDH in lignin degradation remains unsettled, but CDH 
gene disruptions in T. versicolor do not affected the ability to degrade synthetic lignin 
(Dumonceaux et al. 2001). A single CDH gene is present in P. chrysosporium as well as 
related white rot fungi, and full length sequences with non-trivial Smith-Waterman 
scores (<e-20) are obvious in A. nidulans, N. crassa, and M. grisea genomes (http://www­
genome.wi.mit.edu/annotation/fungi/). 

Two glucose oxidases have been identified in P. chrysosporium cultures; glucose 1­
oxidase from P. chrysosporium ME-446 (Kelley and Reddy, 1986) and glucose 2-oxidase 
or pyranose 2-oxidase from P. chrysosporium K3 (Eriksson et al. 1986). The peroxide-
generating enzyme pyranose-2-oxidase is predominantly intracellular in liquid cultures 
of P. chrysosporium, but evidence supports an important role in wood decay (Daniel et 
al. 1994). The oxidase is preferentially localized in the hyphal periplasmic space and the 
associated membraneous materials. Pyranose 2-oxidase sequences have been reported 
from C. versicolor (Nishimura et al. 1996). related Trametes strains (Acc. Nos. P59097 and 
AAP40332) and most recently P. chrysosporium (de Koker et al. 2004). Transcript 
patterns for the P. chrysosporium pyranose 2-oxidase are similar to lignin peroxidases 
and glyoxal oxidase supporting a role in lignocellulose degradation (de Koker et al. 
2004). A P. chrysosporium sequence highly similar (Smith-Waterman score = 480) to A. 
niger glucose-1-oxidase has been identified in the genome (Martinez et al. 2004). 

http://www
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Another strategy for peroxide generation may involve aryl alcohol oxidase (AAO) 
which is secreted by Bjerkandera sp. (de Jong et al. 1994). Chlorinated anisyl alcohols, 
synthesized de novo from glucose, are the preferred substrates. The oxidation products 
are reduced and recycled by the fungal mycelia, LiP does not oxidize the chlorinated 
anisyl alcohols. Various Pleurotus species may support a redox cycle supplying 
extracellular peroxide using AAO (or veratryl alcohol oxidase) coupled to intracellular 
aryl alcohol dehydrogenase (AAD) (Guillen and Evans, 1994; Marzullo et al. 1995; 
Varela et al. 2000b). In Pleurotus ostreatus, veratryl alcohol oxidase may participate in 
lignin degradation by supplying peroxide and by reducing quinones and phenoxy 
radical and thereby inhibiting the repolymerization of lignin degradation products 
(Marzullo et al. 1995). Genes encoding aryl alcohol oxidases have been characterized 
from Pleurotus spp. (Marzullo et al. 1995; Varela et al. 1999; Varela et al. 2000a; Varela et 
al. 2000b), and multiple AAO-like sequences (³4) have been identified in the P. 
chrysosporium genome (Martinez et al. 2004). 

4.4. Multicopper Oxidases 
Analysis of the genome has shown that, unlike other white rot fungi, P. 

chrysosporium does not have any sequence encoding conventional laccases. Instead, it 
produces a multicopper oxidase possessing strong ferroxidase activity with catalytic 
parameters similar to those of yeast Fet3p (Larrondo et al. 2003). The physiological 
function of this protein (MCO1) is uncertain. The gene (mco1) is part of a cluster of 4 
structurally related sequences located within 25 kb region. All 4 are transcribed, but 
only mco1 has a clear secretion signal (Larrondo et al. 2004). 

Multiple alignments of a large collection of fungal multicopper oxidase sequences, as 
well as structural comparison of MCO1, show that these MCOs are closer to Fet3 
proteins, than to conventional laccases (Larrondo et al. 2003; Larrondo et al. 2004). 
Together with iron permease Ftr1 (Stearman et al. 1996), Fet3 ferroxidase (Askwith et al. 
1994) plays a key role in iron homeostasis. Our recent clustal analysis of multicopper 
oxidases sequences in P. chrysosporium, N. crassa and M. grisea, databases (unpublished 
results) supports a new branch of the multicopper oxidase family in which the P. 
chrysosporium mco encoded sequences are in close association with two M. grisea 
sequences (MG00551.1, MG07771.1, www-genome.wi.mit.edu/ annotation /fungi/ 
magnaporthe/) and with C. neoformans ´laccase". This branch is in close proximity to 
another harboring all known Fet3 proteins (Figure 5). Like mco1, the C. neoformans 
´laccase´ exhibits Fe2+ oxidation activity (Liu et al. 1999; Williamson, 1994). 

Because of the intriguing similarity between mco1 and Fet3, the P. chrysosporium 
genome database was searched for related sequences. A single gene highly
homologous to S. cerevisiae fet3 was identified at a separate locus less than 1 Kb from a 
Ftr1-like iron permease gene model. Transcripts of both are detected by RT-PCR. The P. 
chrysosporium fet3 encodes a protein of 628 amino acids, 69 residues larger than mco1 
(unpublished results). Typical of ferroxidases, but unlike mco1, the COOH terminus has 
a predicted transmembrane domain. 

http://www-genome.wi.mit.edu


333 

Structural determinants that confer multicopper oxidases with ferroxidase activity 
have been identified (Askwith and Kaplan, 1998; Bonaccorsi di Patti et al. 2000; 
Bonaccorsi di Patti et al. 2001). Glu-185 and Tyr-354 are essential for the oxidation of 
Fe2+ by Fet3 from S. cerevisiae. These two residues are conserved in all known Fet3 
proteins, whereas they are absent in ascorbate oxidases and laccases. The equivalent 
Glu residue is conserved in all but one of the MCO-like ferroxidase (Figure 6). 
However, the Tyr-354 is absent in most of these sequences, suggesting that Glu-185, but 
not Tyr, is essential for Fe2+ oxidation. 

Our analysis supports the importance of the Glu-185 residue. The C. neoformans 
´laccase´ lacks this residue, which may explain its weak ferroxidase activity relative to 
MCO1 (Liu et al. 1999; Williamson, 1994). Supporting a new subfamily of multicopper 
oxidases, the abovementioned M. grisea sequences have the essential ferroxidase 
residues, as well as putative secretion signals. In addition, all these MCO-like sequence 
lack a COOH terminal transmembrane domain, which are common to Fet3 proteins. 
Consistent with separate subfamilies, blast analysis of the M. grisea genome reveals a 
fet3 othologue (MG02156.1) at a locus separate from MCO1-like sequences. Thus, like P. 
chrysosporium, M. grisea seems to have extracellular ferroxidases, distinct from Fet3. 
Possibly, the similarities reflect the common requirements for attacking plant cell walls. 
In this context, it is interesting to note that both P. chrysosporium and M. grisea genome 
features an impressive number of glycosyl hydrolases. Our recent analysis of plant 
pathogens Ustilago maydis and Fusarium graminearum identified Fet3s, laccases, as well 
as MCO-like sequences. The saprophytes Aspergillus nidulans and Coprinus cinereus 
possess the first types of multicopper oxidases but lack MCO-like sequences in their 
genomes (unpublished results). A recently deposited multicopper oxidase sequence 
(GenBank AAR82933) from the basidiomicete Auricularia auricula falls directly into the 
MCO-like clade, posseses the discussed Glu residue, and does not have a COOH­
terminal anchor. 

The role of mco1 remains unclear, although we have hypothesized that it might be 
involved in the control of Fenton-based chemical reactions in the extracellular medium 
(Larrondo et al. 2003). Recently, a similar function has been attributed to yeast Fet3p 
(Shi et al. 2003; Stoj and Kosman, 2003). 

It should be noted that the absence of conventional laccases in P. chrysosporium does 
not exclude a role in lignin degradation in related fungi. Laccase genes, often occurring 
as multigene families, are widely distributed among lignin-degrading fungi (Cullen, 
1997; Mayer and Staples, 2002; Thurston, 1994; Youn et al. 1995). Laccases oxidize the 
phenolic units in lignin to phenoxy radicals, which can lead to aryl-Cα cleavage (Kawai 
et al. 1988). In the presence of certain mediators, the enzyme can depolymerize 
synthetic lignin (Kawai et al. 1999) and delignify wood pulps (Bourbonnais et al. 1997; 
Call and Muncke, 1997) suggesting a role in lignin biodegradation. White rot fungi such 
as Pycnoporus cinnabarinus efficiently degrade lignin, and in contrast to P. chrysosporium, 
secrete laccases but not peroxidases. Two laccase genes, closely related to sequences
derived from other white rot fungi, have been characterized from P. cinnabarinus 
(Eggert et al. 1998; Temp et al. 1999). Also consistent with an important role for laccase 
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in P. cinnabarinus,  "lac"  mutants  are impaired  in their  ability to degrade  14C-labeled

DHP (Eggert et al. 1977). 


Fig. 5. Clustal  W  analysis of  multicopper  oxidases.   GenBank accessions,  where  available, are  given

parenthetically.  All other sequences are derived from publicly accessible databases for N.crassa (ncu), M. 

grisea (MG), P. chrysosporium (Pc).


5. EXTRACELLULAR CARBOHYDRATE ACTIVE ENZYMES

Relative to ligninolysis, the  degradation of cellulose, hemicellulose and pectin by P.


chrysosporium  has  received  less  attention.    Enzyme  activities  imply  a   degradative

strategy similar,  but not  identical, to other microbes, especially the intensively studied
Ascomycete  Trichoderma reesei   (Hypocrea  jecorina).    Components  of  the  cellulolytic

system  include   multiple   exocellobiohydrolase  I  (CBHI)  isozymes,  as  well   as  an
exocellobiohydrolase II  (CBHII), and  a  β-glucosidase (reviewed by  Kirk and  Cullen,
1998).   From  a genetic  point of view, the  degradation of cellulose, hemicellulose and

pectin  is  rather  complicated  in  P. chrysosporium.    More than  240  sequences encode
putative  carbohydrate  active enzymes,  and this  includes  a minimum  of 50 cellulases
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(Martinez et  al. 2004). As in  the  case of peroxidases, many  of these sequences are

distributed within complex gene families. 


Fig. 6. Clustal W alignment  of predicted  multicopper oxidases: Selected region of the multiple alignment
shows  the location of Sc-Fet3 Glu185 (*) and Tyr354 (·), which are essential for ferroxidase activity in S.
cerevisiae  Fet3. Genebank accession numbers are  provided. M. grisea (MG) sequences were obtained from

NCBI. Numbering of the MG sequences might not correspond to the actual length of the proteins. Shaded
residues match Pc-MCO1.

Eriksson  and  coworkers  (Eriksson  and  Pettersson, 1975a, 1975b)  characterized

multiple   endoglucanase   (EG)  and   exocellobiohydrolase (CBH)  isozymes  in   P.
chrysosporium cultures containing cellulose as sole carbon source.Two CBHI isozymes
designated  CBH62 and  CBH58, and  a  single CBHII, designated CBH50, were later
purified (Uzcategui et al. 1991c). Genetic analysis identified the corresponding genes,
and  following   the  glycosyl  hydrolase  nomenclature of  Henrissat  and  coworkers
((Henrissat, 1991); http://afmb.cnrs-mrs.f/CAZY/
index.html), these have been named
cel7C, cel7D, and cel6A.  Four  additional  CBH1 cDNAs have been  sequenced,  and all six 
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have been the subject of molecular modeling (Munoz et al. 2001). Transcripts of the cel7 
genes are present in cellulose-containing media (Covert et al. 1992b; Vanden 
Wymelenberg et al. 1993) and in colonized wood (Vallim et al. 1998), but protein 
identification to date has been limited to CEL7C and CEL7D (Uzcategui et al. 1991b; 
Uzcategui et al. 1991c). Transcript patterns among cel7 genes are dramatically altered 
by substrate composition, and there is no apparent relationship between transcriptional 
regulation and genome organization. Extensive analysis of the genome has not revealed 
additional exocellobiohydrolase genes. 

Five endoglucanase isozymes were partially resolved by Eriksson and colleagues 
(Eriksson and Pettersson, 1975a). Later, experimentally determined peptide sequence 
were reported for two glycosyl hydrolase family 5 (GH5) isozymes (Uzcategui et al. 
1991a) and a single GH28 isozyme (Henriksson et al. 1999). Prior to completion of the 
genome, a single endoglucanase gene, cel61A, was known (Vanden Wymelenberg et al. 
2002). In silico analysis of the genome has revealed more than 40 putative 
endoglucanases unevenly distributed in at least 5 glycosyl hydrolase families (Figure 1). 
Among these, glycosyl hydrolase family 61 encompasses 17 sequences, of which at least 
5 contain highly conserved cellulose binding domains at their carboxy terminus. 
Alignment of their predicted proteins is shown in Figure 7. 

Following the synergistic activities of CBHs and EGs, cellobiose and related 
oligosaccharides are converted to glucose by β-glucosidases. Several isozymes have 
been purified from P. chrysosporium cultures (Deshpande et at. 1978; lgarashi et al. 2003; 
Smith and Gold, 1979) and a single gene, bgl1, identified (Li and Renganathan, 1998). 
Again following the glycosyl hydrolase nomenclature of Henrissat and coworkers 
((Henrissat, 1991); http://afmb.cnrs-mrs.fr/CAZY/index.html), bgl1 is now designated 
cel3A. cel3A was shown to be expressed under cellulose induction (Li and Renganathan, 
1998) at relatively low levels (Vanden Wymelenberg et al. 2002). Genome analysis 
(Martinez et al. 2004) indicates a minimum of 12 GH3-like sequences and recent 
investigations show that purified CEL3A has substantial glucan 1,3- β -glucosidase 
activity (Igarashi et al. 2003). Uncertainty regarding CEL3A substrate preference 
highlights the difficulties assigning function based solely on structure and family 
membership. 

Relatively little is known about the enzymes involved in hemicellulose and pectin 
degradation in P. chrysosporium (Castanares et al. 1995; Copa-Patino et al. 1993; Kirk and 
Cullen, 1998). The complete conversion of major hemicelluloses of wood, 
glucuronoxylans and galactoglucomannans, requires the combined activities of 
numerous enzymes including endoxylanase, acetylxylan esterase, a-glucuronidase, β­
xylosidase, α-arabinosidase, endomannanase, α-galactosidase, acetylglucomannan 
esterase, β -mannosidase, and β-glucosidase (Kirk and Cullen, 1998). Very few of these 
enzymes have been characterized from P. chrysosporium (Castanares et al. 1995; Copa-
Patino et al. 1993). Two cDNAs encoding endoxylanases, xyn10A and xyn11A, were 
sequenced (GenBank accessions AAG44993, AAG44995) and recently expressed in a 
heterologous system (Decelle et al. 2004). An α-galactosidase and corresponding gene 
(aga27A) have been characterized (Brumer et al. 1999; Hart et al. 2000). Analysis of the 

http://afmb.cnrs-mrs.fr/CAZY/index.hhnl
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genome reveals many putative genes involved in hemicellulose and pectin degradation 
(Martinez et al. 2004). Among probable xylanases, no additional members of glycoside 
family 10 were recognized, but a total of 6 family 11 sequences were identified. 
Sequences with significant Smith-Waterman scores to NCBI genes of known function 
include acetylxlan esterases (3), pectin methylesterase (1), β-mannosidases (2), β­
xylosidase (1), β-mannanase (3). xylanases (7). β-glucosidase (5), α-galactosidase (3). 
polygalacturonases (4), rhamnogalacturonase (1), β-xylosidase (1), and a-L­
arabinofuranosidase (1). Because of problems associated with accurate gene model 
predictions, the relatively small number of NCBI representatives of certain enzyme 
classes, and sequence divergence, our assignments no doubt grossly underestimate the 
total number of genes. 

Fig. 7. Clustal W alignment of predicted Cel61 proteins of P. chrysosporium Only cel61A is supported by 
cDNA sequence (Vanden Wymelenberg et al. 2002). Others correspond to gene models available on the 
Joint Genome Institutes web browser (http//genome.jgi-psf.org/whitcrot1/whiterot1.home.html) 
Models were manually adjusted to provide full length. 

While our chapter focuses an genes involved in wood decay, it should be noted that 
numerous other sequences encoding carbohydrate active enzymes have been identified 
in the P. chrysosporium genome database. Among these are at least 25 putative enzymes 
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involved in the degradation of β-1,3-glucan and mixed-linkage β-1,3-1,4-glucans. These 
polysaccharides are common constituents of cell walls of certain cereal grains, grasses 
and related plants as well as the cell walls of yeasts and fungi. Also present in the 
genome are hydrolase-encoding sequences probably involved in the degradation of 
starch and glycogen (amylase, glucoamylase, β-glucosidase), mutan (β-1, 3-glucanase), 
and chitin (chitinase). Chitin is an important structural component of fungal cell walls, 
and the 10 putative chitinases (GH family 18) may be involved in cell wall 
morphogenesis. In addition, a minimum of 57 putative glycosyltransferase encoding 
genes were identified in the genome of P. chrysosporium. Their precise function is 
unkown, but some are likely candidates for the biosynthesis of chitin, β-1,3-glucan 
glycogen, cell wall mannan and N-glycans. 

6. OTHER EXTRACELLULAR ENZYMES 
Posttranslational processes regulate extracellular enzyme activity and contribute to 

isozyme multiplicity, but to date little progress has been made at the genetic level. 
Proteolytic processing of LiP has been shown in P. chrysosporium (Dass et al. 1995; Datta, 
1992; Dosoretz et al. 1990a; Dosoretz et al. 1990b; Eriksson and Pettersson, 1982; Feijoo 
et al. 1995) and T. versicolor (Staszczak et al. 2000) cultures, and extracellular 
dephosphorylation of certain P. chrysosporium LiP isozymes is well established (Kuan 
and Tien, 1989; Rothschild et al. 1997; Rothschild et al. 1999). Proteases have also been 
implicated in regulating cellulase (Eriksson and Pettersson, 1982) and CDH (Eggert et 
al. 1996) activity. Dozens of putative extracellular protease genes are predicted from 
genome analysis (Martinez et al. 2004) including one that corresponds to the published 
N-terminal sequence of a pulp-derived protease (Datta, 1992). Recently, an unusual 
cluster of glutamic proteases have been identified in the P. chrysosporium genome 
database (Sims et al. 2004). 

7. INTRACELLULAR ENZYMES RELATED TO LIGNOCELLULOSE 
DEGRADATION 

The complete degradation of lignin requires many intracellular enzymes both for the 
complete mineralization of monomers to CO2 and H2O and for the generation of 
secondary metabolites (e.g. veratryl alcohol) supporting extracellular metabolism. 
Examples of enzymes that have been characterized from P. chrysosporium include 
methanol oxidase (Asada et al. 1995). 1.4-benzoquinone reductase (Brock and Gold, 
1996). methyltransferases (Jeffers et al. 1997), cytochrome P450s (Kullman and 
Matsumura, 1997; Van Hamme et al. 2003; Yadav and Loper, 2000; Yadav et al. 2003), L­
phenylalanine ammonia-lyase (Hattori et al. 1999), 1,2,4-trihydroxybenzene 1,2­
dioxygenase (Rieble et al. 1994), glutathione transferases (Dowd et al. 1997). superoxide 
dismutase (Ozturk et al. 1999). catalase (Kwon and Anderson, 2001) and aryl alcohol 
dehydrogenase (Reiser et al. 1994). 

Genome mining identified a large number of cytochrome P450s, 14 of which are 
located on a single scaffold (number 24). The startling enumeration of >148 partial or 
complete cytochrome P450 gene models (Martinez et al. 2004) represents a promising, if 



339 

not daunting, framework for future investigation. The genetic complexity is reflected in 
recent studies demonstrating an impressive array of potential substrates and 
transformation products (Matsuzaki and Wariishi, 2004; Miura et al. 2004; Teramoto et 
al. 2004). In another recent study, Yadav and coworkers (Doddapaneni and Yadav, 
2004) demonstrated differential regulation of two cytochrome P450 genes in response to 
various xenobiotics. 

8. CONCLUSION 
Analysis of the P. chrysosporium genome presents challenges and opportunities for 

future research. The biological role of impressive gene multiplicity among glycosyl 
hydrolases, cytochrome P450s. peroxidases and oxidases remains one of the most 
pressing issues. Are these closely dated genes merely redundant or do they encode 
enzymes with subtle but important functional differences? Other significant questions 
revolve around the abundant transposable elements identified. Do these elements 
impact gene expression and/or the emergence of gene families? 

The genome database provides a framework for addressing these and other 
questions. Transcript profiling using microarrays may provide indirect evidence for the 
role(s) of many genes. Tandem mass spectrometry and MALDI analysis, already begun 
in several laboratories, will also help identify key genes and enzymes. A major concern 
for such high throughput approaches centers on difficulties inherent in gene prediction, 
a problem especially common in fungal genomes where introns are present in most 
genes. As gene models are corrected, databases will need continual updating. A 
powerful approach to determining gene function would be gene knockouts, but unlike 
well established experimental systems, e.g. S. cerevisiae, gene disruptions are currently 
very difficult in P. chrysosporium. Hopefully, more efficient methodology will be 
forthcoming. A productive route for establishing the role of individual genes in 
lignocellulose degradation will continue to involve biochemical characterization of pure 
recombinant enzymes. Toward this end, more efficient heterologous expression 
systems are needed. Finally, whole genome comparisons, particularly among 
filamentous Ascomycetes and Basidiomycetes, may provide valuable information 
concerning gene function. 
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