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Introduction 

The stem ofa tree has the shape of a tapered cylinder whose cross 
section is approximately circular. Due to variations in wood cell 
characteristics that occur during the growing season, circular (or 
almost circular) wood density patterns can be seen in the cross 
section. These patterns, tree rings, are familiar to almost every­
one. The tree rings, and other anatomical features of wood, sug­
gest that the cylindrical coordinate system ( r , θ , z ) would be a 
good candidate for modeling the material organization of thin 
disks of this biological material (Fig. 1). 

It follows that three mutually perpendicular unit vectors can be 
^associated with each point in the wood disk: eR, in the radial 

direction ( R or r ), e ^^ T, in the tangential direction (T or θ), and e L, 
in the longitudinal direction ( L or z ). Some physical and mechani­
cal properties of wood take on values that are different in these 
anatomical directions. In particular, Young’s moduli are roughly 
in the ratios of EL : ER : ET = 20 : 2 : 1. It should be noted, however, 
that the determination of the elastic constants generally involve 
the use of rectilinearly shaped test specimens in which rectilinear 
orthotropy has been assumed; see Kollman and Côté (1964, p. 
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304, Fig. 7.10) for a graphic example. For the transverse plane of 
wood, a more appropriate assumption would be to invoke cylin­
drical orthotropy (CYO) that mimics the anatomical material or­
ganization. 

The motivation for the work presented here stems from the 
desire to obtain accurate values for the transverse constants of 
wood that preserve the anatomical arrangement to calculate the 
transverse properties. These transverse properties will be useful 
for simulations of drying stresses, in structural analysis such as 
small-diametertimber structures and other structural applications 
that require the complete set of three dimensional elastic con­
stants. A test protocol is being sought that applies radial and tan­
gential point loads and measures radial and tangential displace­
ments to determine the values of the elastic constants. By 
developing theoretical expressions for the displacements of CYO 
test specimens subjected to known point loading patterns, an in­
verse method can be used to determine the elastic parameters 
from the measured boundary conditions. Since point loads can be 
represented by generalized functions---delta    functions in the form 
of Fourier series--- it    was natural to express the stress function in 
the form of a Fourier series with coefficients being functions of 
the radial coordinate only. While searching for appropriate theo­
retical expressions to be used in the test protocol, stress singulari­
ties were noticed in solid CYO disks that were subjected to cer­
tain sinusoidal pressure distributions on the outer circumferential 
surfaces. The purpose of this paper is to elaborate the conditions 
that lead to these stress singularities. 

Generalized Hooke’s law for a CYO elastic material can be 
expressed in a dimensionless form as 

(1) 

The notation for the cylindrical stress and strain components are 
those used by Timoshenko and Goodier (1970), i.e., σ is used for 
normal stress, τ is used for shear stress, ε is used for normal 
strain, and γ is used for shear strain. Generalized Hooke’s law 
expressed in this form reveals that the essential relationship be-
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Fig. 1. Wood modeled by principal material directions of cylindrical 
coordinate system 

tween the stress and strain components is determined by three 
dimensionlessparameters– a, b, and v –and a scaling parameter 
ET. The dimensionless elastic parameters are related to the tradi­
tional elastic constants by 

(2) 

where E =Young's moduli; G =shear moduli; and v =Poisson’s 
ratios. Values of the elastic constants for several species of North 
American woods can be found in several sources: Hearmon 
(1961); Kollman and Côté (1964); Bodig and Goodman (1973); 
Bodig and Jayne (1982); Forest Products Laboratory (1999); to 
name a few. The symbols used above for the elastic constants and 
for the subscripts for the principal material directions– 
R, T, L –are commonly used in the wood science literature. 

A solution technique for determining the stress components in 
a CYO material has been developed (Lekhnitskii 1963, Chap. 4). 
The technique involves a stress function φ which, once deter­
mined, can be used to compute the stress components, σr, σθ, and 
τ r θ . Others have used a CYO material formulation to model the 
elastic behavior of wood or paper. Drying stresses in wood have 
been investigated using the CYO material assumption (Johnson 
1975). Stress development in the winding ofpaper rolls has been 
examined (Roisum 1994). A theory of growth stress in trees has 
been developed (Archer 1987). Approximate stress distribution in 
wood disks has been modeled by Hermanson (1992) using a 
novel finite element formulation that incorporates the concept of 
curvilinearelasticity. 

I t  is well known from the work of Lekhnitskii (1963) that a 
solid CYO disk subjected to a uniform pressure on the outer 
circumferential surface will exhibit both radial and tangential 
stress singularities if a < 1. Lekhnitskii uses n2 for a. During the 
past decades, several papers have been published which have re­
vealed stress singularities due to the mechanical response of 
nonisotropic materials in various configurations subjected to cer­
tain types of loads. Antmann and Negron-Marréro (1987) have 
uncovered stress singularities in various types ofnonlinear aeolo­
tropic materials subjected to radially symmetric loading. Ting 

(1999c) has further amplified this work and has detailed the na­
ture of the stress singularities found in spherically anisotropic 
solids under uniform radial pressure. Horgan and Baxter (1996) 
have studied the stress distributions in hollow disks under axi­
symmetric loading and have noted the locations of maximum 
stress when the outer-to-inner radii of the disk increases without 
bound. Using a thick disk, in fact a cylinder, of CYO material 
with a wedge removed, Ting (1997) showed that there is a stress 
singularity at the wedge apex when the wedge surfaces are sub­
jected to equal but oppositely directed uniform shear distribu­
tions. Ting (1999a,b) has elaborated on this phenomenon and 
showed that for any wedge angle there exists a combination of 
elastic properties that will cause the stress singularity to disap­
pear. The problem of stress singularities associated with sharp 
notches or cracks will not be addressed in this paper. We will 
discuss a new type of stress singularity, one associated with the 
cylindrical organization of material stress, and the interaction of 
this material with sinusoidal pressurized loading. 

In the following sections, stress distributions will be obtained 
for specific applied sinusoidal pressure modes, labeled by the 
index n. The purpose of the analysis will be to show that under 
certain conditions external sinusoidal loading will give rise to 
stress singularities. The conditions giving rise to the stress singu­
larities will be displayed graphically in a two-dimensional plot of 
the dimensionless elastic parameters a and b. 

Mathematical Model 

To display the conditions necessary for the existence of stress 
singularities in CYO solid disks under sinusoidal loading, a gen­
eral solution to the stress function will be found. Then a particular 
solution for each term of a self-equilibrated pressure distribution 
applied to the outer surface of the disk will be determined. No 
tangential shearing distributions will be allowed on the outer sur­
face. Clearly, a wide range of solutions for the stresses, strains, 
and displacements in the solid disks can be obtained from these 
solutions by superimposing the results associated with each term. 
However, only three cases will be considered in this paper: the 
uniform load case ( n = 0), a special case ( n = 1), and the general 
case ( n = 2 ,  3,...). It should be noted that the special case (n 
= 1) is not a self-equilibrating pressure distribution applied to a 
disk. A shear distribution must be present to have force equilib­
rium. It is included in the following discussion only to show that 
this unique case will not yield stress singularities. 

For plane stress problems involving thin disks, a Fourier series 
 – in which the Fourier coefficients φ k and φ k are functions of the 

radial coordinate can be assumed as a general form for a stress 
functionsolution 

(3) 

Given a self-equilibrated pressure distribution (Fig. 2) acting at 
the outer surface of a solid disk r = r0 

(4) 

it can be shown that each of the coefficients φ k of the stress 
function will be functions of r and the known parameters k, pk, a, 
b, and r0. The stress components in the disk will be the sum total 
of the stresses corresponding to each term in the expression for 
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the external pressure. Each term in this pressure distribution, ex­
cept for p0, represents a sinusoidal pressure that exhibits k com­
pression, or tension, cycles around the circumference. The index k 
can be thought of as a sinusoidal pressure distribution mode num­
ber. 

The mathematical procedure for determining stresses in a 
CYO material is well documented (Lekhnitskii 1963). A summary 
of the essential steps follows. Summarizing these steps may ap­
pear to be repetitious and unnecessary, given Lekhnitskii’s work, 
but the development used in this paper differs slightly in notation 
and presentation. Our notation effectively illuminates how the 
state of stress in wood disks, modeled as a CYO material, is 
related to essential nondimensional elastic parameters: a, b, and 
v. Three differential operators ( D1, D2, and D3) are used to define 
the stress from the stress function φ 

(5) 

where 

This definition assures force equilibrium for any infinitesimal vol­
ume element within the CYO disk. Another three differential op­
erators place a constraint on the strain components to maintain 
displacement continuity 

(6) 

where these three operators are similar to, but not the same as, the 
first three 

By combining the displacement compatibility relationship Eq. (6) 
with generalized Hooke’s law Eq. (1) and utilizing the stress func­
tion definition Eq. (5), a fourth order partial differential equation 
for the stress function is obtained that consists of two parts 

(7) 

where 

Fig. 2. Self-equilibrated pressure distribution represented as cosine 
Fourier series 

When a stress function in the form of Eq. (3) is acted upon by the 
operator of Eq. (7), another Fourier series expression will be ob­
tained. It is easily verified that the second operator in Eq. (7) will 
annihilate the stress function, so its solution will not contain the 
parameter v. Since the resulting expression must be equal to zero 
at every point in the disk, the coefficients of the cos ( k θ ) and 
sin ( k θ ) terms must be equal to zero. It follows that a sequence of 
fourth order, ordinary differential equations will be obtained for 
these coefficients and they will have the form 

(8) 

where y represents each of the coefficients φ k and A, B, C, and 
D = constants involving a and b and the loading mode parameter 
k. The form of Eq. (8) is a generalized form of the Euler equation, 
found in elementary differential equation textbooks, and is easily 
transformed to a new differential equation with constant coeffi­
cients by x = ln ( r ). The general solution is 

(9) 

where Kj = constants of integration to be determined by the 
boundary conditions and µj ( j = 1, 2, 3, 4 ) = four roots of the char­
acteristic polynomial 

(10) 

associated with the differential equations of Eq. (8). Selecting a 
and b as symbols for the dimensionless elastic parameters leads to 
elementary and elegant expressions for the roots of the character­
istic polynomial Eq. (10) which turns out to be a simple quadratic 
expression in ( µ -1 )2. Replacing x by ln ( r ), y by φ k in Eq. (9), 
and summing the terms, a general solution for the stress function 
is found 

(11) 

in which the roots µk1 < µk 2 < µk 3 < µk4 are given by the formulas 
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(12) 

with 

The parameters χ k1 and χ k2 , exponents ofthe radial coordinate 
as determined by the expression in Eq. (12), are similar, ifnot the 
same as, the exponents found by Ting [1999b, p. 391, Eq. (3.9)]. 
Ting’s exponents, however, are not restricted to integral modes 
and were obtained by other means. To specifically determine the 
stresses in a thin wood disk of thickness h and outer radius r0 

(h<< r0 ) subject to an external sinusoidal pressure distribution, p 
= pn cos ( n θ) ( n > 1), it is necessary to apply appropriate boundary 
conditions. Since this pressure distribution has no sin(k θ) terms, 

– all the Kkj of Eq. (11) will be zero. Moreover, only the coefficients 
associated with k=n [the cos(nθ) term] will not be zero, i.e., 
Kkj = 0 except for k = n. The displacements at the center ofthe disk 
must be zero, which implies that Kn1 and Kn2 will be equal to 
zero. Finally, Kn3 and Kn4 can be found from the fact that at σr 
= pn cos ( n θ ) and τr θ = 0 at r = r0. With the stress function com­
pletely specified by known values ofthe Knj and the µnj, the state 
of stress in the solid disk can be determined utilizing the first 
three differential operators of Eq. (5). 

Finite Element Approximations 

The nature of the stress singularities due to sinusoidal loading 
will be presented in the next section. Since the analytic results 
reveal large changes over small regions near the center of the 
CYO disk, it would appear that numerical methods might run into 
difficulties relative to approximating these rapidly changing stress 
variations. We performed a standard, unsophisticated finite ele­
ment (FE) analysis to assess the degree to which these difficulties 
might manifest themselves. Most commercially available FE 
codes contain provisions for rectilinearly orthotropic (REO) ma­
terials. Generally, it is possible to specify` an orientation param­
eter, such as the angle between one of the principal material di­
rections and one of the global coordinate directions for each 
element in the mesh, and the FE code will transform the material 
stiffness tensor appropriately. This approximation technique will 
account for the local stiffness orientation of the material. Obvi­
ously, if the element is small the deviation between the CYO 
orientation pattern and the approximate REO orientation at each 

Fig. 3. Stress singularity in cylindrical orthotropy solid, elastic disk 
subjected to uniform pressure ( a = 0.5 ) 

point in the element will be small. Near the center of the disk, 
however, the material direction changes very sharply and the ma­
terial characterization may not be accurate. Replacing the cylin­
drically orthotropic orientation pattern of a CYO material with a 
homogeneous orientation ofa REO material within the domain of 
an element will be called a patchwise rectilinear orthotropic 
(PRO)approximationanalysis. 

A disk of wood was modeled as a quarter circle with two 
planes of symmetry, i.e., θ = 0 and θ = π /2. An FE mesh, consist­
ing of 1,411 nodes, 435 quadrilateral, isoparametric elements (8 
nodes), and 15 triangular isoparametric elements (6 nodes) at the 
center of the disk, was used to compute stress distributions. Two 
boundary conditions were used: a uniform pressure and a sinu­
soidal, radial pressure distribution with a loading mode number 
n = 4, i.e., p ( r0,θ ) / p 4 = cos (4 θ ). The calculations were made with 
a commercially available finite element package ADINA (ADINA 
R & D Inc. 2000). 

Results 

Uniform Pressure Case: p(r,θ)=p0 

Before considering the general sinusoidal pressure case, the uni­
form pressure case will be reviewed. The stress function for this 
case does not depend on θ, i.e., φ = φ0( r ). Operating on this form 
with L of Eq. (7) and solving the resulting differential equation 
leads to 

(13) 

The first term, a constant, will generate no stress and can be set 
equal to zero K01 = 0. The coefficient of the second term must be 
set equal to zero to ensure finite displacements at the origin K02 

= 0. The coefficient of the last term must also be set equal to zero; 
otherwise, multiple values for the displacements along the ray, 
θ = 0 = 2π , would occur. Thus K04 = 0. The rationale for this last 
argument is explained well in Timoshenko and Goodier (1970). 
From the boundary condition σr = p0 (uniform pressure), the co­
efficient K03 can be determined and the stress components follow 

(14) 

These stress distributions are shown in Fig. 3 for a = 0.5, a typical 
value for wood. Both normal stress components exhibit singular 
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Fig. 4. Linear relationship between logarithm of radial stress and 
logarithm of radial coordinate 

behavior near the origin, i.e., the values of stress become infinite 
as the radial coordinate approaches zero. Also shown in Fig. 3 are 
the numerical results of the approximating PRO finite element 
analysis (PRO FEA). Clearly, the numerical results are consistent 
with the analytical results. 

The logarithm of the radial stress is plotted against the loga­
rithm of the radial coordinate in Fig. 4, which shows that the 
relationship is linear with a slope of √a –1 = -0.2893,as dictated 
by the power law of Eq. (14). The results of the FEA are shown in 
Fig. 4 along with a regression line obtained from the numerical 
values. The slope of this line has a value of -0.2864. The differ­
ence between the two slopes is about 1%. Thus, there is excellent 
agreement between the analytical and numerical solutions. 

Special Case: p(r,θ)=p1 cos(θ) (n=1) 

If the stress function has the form φ = φ 1(r)cos( θ ), then it can be 
shown that the general solution for 4, will be 

(15) 

where χ 2 
11=1+ a+2 b. The second term, K12 r cos( θ ) will produce 

no stress, so K,, can be set equal to zero without loss of general­
ity. The coefficients of the first and third terms must be set equal 
to zero to maintain finite displacements at the origin: hence, K 11 

= K 13= 0. Given a pressure distribution of σ r = p 1 cos ( θ ) at the 
outer boundary of the disk, r = r0, the last coefficient K 14 can be 
found and thus the stress distribution in the disk is 

(16) 

I t  is clear that if σ r = p 1 cos ( θ ) at the boundary, then a shear dis­
tribution t r θ = p 1 sin( θ ) must also be applied at the boundary to 
keep the disk in equilibrium. Since we are considering only those 
cases where no shear stress components occur on the outer 
boundary of the disk, the term p 1 cos ( θ ) must be dropped from 
the general pressure expression of Eq. (4). In any event, no stress 
singularities are associated with this pressure mode as the expo­
nent of the radial coordinate, a + 2 b, will never be negative. 

General Case: p(r,θ)=pncos(nθ) (n=2,3,...) 

Given a sinusoidal pressure distribution of the form p 
= pn cos( n θ ) for n > 1, the stress distributions within the solid 
wood disk are found to be 

Fig. 5. Roots of characteristic polynomial associated with differential 
equation for stress function coefficients ( n = 0.5 and b = 10.0) 

(17) 

where 

The mathematical form of the expressions in Eq. (17) results from 
setting Kn 1 and Kn 2 in Eq. (11) to zero. This eliminates infinite 
displacements at the center of the solid disk since the roots µ n 1 

and µ n 2 are negative. The other two coefficients, Kn 3 and Kn 4, are 
determined by setting the radial stress at the boundary to the 
sinusoidal pressure distribution and by setting the shear stress at 
the boundary to zero. Since the root µ n 4 is always positive and 
greater than two, terms associated with this root will lead to no 
displacements or stresses at the disk’s center. It is the root µ n 3 

[see Eq. (12) with k = n ] that gives rise to interesting results. If this 
root takes on a value greater than two, it will also lead to no 
displacements and stresses at the center of the disk. However, if it 
takes on a value between one and two, then the displacement at 
the center of the disk will be zero but the stress at the center will 
be infinite. If the root is exactly two, then a finite stress will occur 
at the center of the disk. It is the value of the quantity n χ n 2 that 
determines whether the stress at the center of the disk is zero, 
finite, or infinite. This quantity shows up in the exponents in the 
expressions for f 1, f 2, and f 3 of Eq. (1 7). 

The four roots, µnj, are represented graphically in Fig. 5 as a 
function of the loading mode number k = n. When a = 0.5 and b 
= 10, there are five sinusoidal loading modes, n = 2-6, that have 
roots in the 1-2 interval and consequently produce stress singu­
larities. Since µ n 3 = 1 + n χ n 2, the reason for the singularities in the 
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Fig.6. Dimensionless elastic parameters for wood and singularity 
separation zones for p(r,θ)=pncos(nθ) loadings; a=ET/ER; and 
b = -1 

2 (ET/GRT ) – vTR 

stress distributions is that n χ n 2 < 1. Substituting µ n 2 = 2 ( k = n ) into 
Eq. (12) gives [ a ( n 2 -1) -2 b ] n 2 = 0. It then follows that a stress 
singularity will occur when b > a ( -1 n 2 -1).

2
For a fixed value of n, the equation separating the elastic pa­

rameter space ( a, b ) into two zones is 

(18) 

These zones are shown in Fig. 6 for several values of n: 2,3 ... 6. 
For a given sinusoidal pressure mode number n, a stress singular­
ity will occur if the a, b coordinates lie above the line associated 
with the mode number. Those combinations of a and b values 
lying below the line will not produce stress singularities. Also 
shown in Fig. 6 are the a and b coordinates for typical wood 
species (Bodig and Goodman 1973). 

This diagram clearly shows that there is an upper limit on the 
sinusoidal stress mode number that will produce stress singulari­
ties. Given a wood disk with elastic parameters a and b, all modes 
n such that n > √2(1+(b/a)) will not generate singularities. Ifb is 
large relative to a, however, there may be several lower order 
modes that will produce singularities. For example, if b = 5 and 
a = 0.5, the modes n = 2, 3, and 4 will generate singularities, but if 
a remains the same and b is doubled, two more modes would be 
added to the list, n = 5 and 6. 

Dimensionless radial and tangential stress components along 
the ray θ = 0 are shown in Fig. 7 for loading mode n = 4 and for the 
elastic parameters a = 0.5 and b = 10.0. The shear stress distribu-

Fig.7. Stress singularities inall stresscomponents [ σ r ( r , 0),σ θ ( r , 0), 
and trθ ( r , π / 8)] for sinusoidal pressure mode n = 4 with a = 0.5 and 
b =10.0 

tion along the ray θ = π / 8 is also shown. The magnitudes of all 
three components exhibit unbounded increases near r = 0 as a re­
sult of µ43 being in the range of 1-2, 

The dependence of the stress components on the angular loca­
tion variable θ is only a function of the multiplicative factors: 
cos (4 θ ) and sin (4 θ ). Near the center ofthe disk, the normal stress 
components change dramatically from tension to compression 
four times along the circumference of a small circle whose center 
is located at r = 0. Moreover, the dilatation strain energy density, 
the sum of the products of the normal stress and strain compo­
nents from Eqs. (1) and (17), along the circumference of this 

1small circle would be proportional to -
2 

(1  + cos (8 θ )) and thus 
would take on eight maximums at θ = m π / 4  ( m = 0, 1,. . .7). This 
strain energy density would also be zero when θ = (2 m + 1) π / 8. 
However, at these locations the shear strain energy density would 
be a maximum. Clearly then, zones of maximum dilatation energy 
densities interleave zones of maximum shear energy densities in 
the disk subjected to sinusoidal loading mode n = 4 and the mag­
nitudes of these maximums increase for circles with decreasing 
radii. 

To illustrate the difference between the exact results and those 
obtained by numerical methods, a few finite element calculations 
were made. Three elastic parameter cases were considered in con­
junction with a loading mode n = 4. The three elastic parameter 
combinations are indicated by solid circles in Fig. 6 (labeled: 
numerical example). The ratio of the Young’s moduli was held 
constant, a = 0.5, but b, the parameter associated with the shear 
modulus, was chosen to be 3.0, 3.5, and 4.0. The three dimen­
sionless stress components, analytical, and finite element results, 
for the three cases are shown in each of the parts of Fig. 8. The 
analytic results indicate that no stress will occur at the center of 
the disk when b = 3.0. A state of finite stress will occur at the 
center when b = 3.5 and the stress components will “blow up” at 
the center when b = 4.0. This reveals the remarkable bifurcation 
phenomena associated with the values of the elastic parameters of 
a CYO material. 

The finite element results also indicate stress amplification 
near the disk center for the b = 4.0 case and show stress decay for 
the b = 3.0 case. However, the FE results do not approximate the 
analytic results very well, particularly near the center of the disk. 
In the b = 3.5 case, the FE results are even worse as they indicate 
a stress decay rather than converging to a finite value at r = 0. It 
was not the purpose of this study to construct a precise finite 
element model to accurately duplicate the analytical results. We 
were only interested in the degree to which a standard FE analysis 
would capture the bifurcation phenomena. 

Discussion 

The dimensionless elastic parameter space, as shown in Fig. 6, is 
a new way to consider the behavior of orthotropic materials. The 
existence of stress singularities at the center of the C Y O  disk for 
various sinusoidal loading modes and for particular combinations 
of elastic constants seems bizarre. Obviously, infinite stress never 
occurs in nature. Thus, the stress singularities are basically math­
ematical artifacts. They are exhibited by the continuum model 
that is being used to characterize the behavior of an actual wood 
disk, an object composed of a biological, porous material consist­
ing of very small hollow cells-fibers-all bound together. It is 
noted also that the annual rings of trees are not perfect circles 
composed of uniformly constant elastic material; nor is the trunk 
of a tree absolutely cylindrical since it is tapered in reality. 
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Fig. 8. Comparison between analytical results and finite element 
approximations ( n = 4) of stress bifurcation at center of cylindrical 
orthotropy disk (a) Radial stress component σ r ( r , 0); (b) tangential 
stress component σθ ( r , 0); and (c) shear stress component τ r θ(r,π/8) 

In real trees there is a small region in the center of a tree trunk 
that is composed of another type of soft material, called pith. The 
tissue in this region is composed of thin-walled cells with large 
void spaces. This material is very compliant. It would be more 
realistic to model this region as a flexible isotropic material or, 
alternatively, to replace the zone with a hole containing no mate­
rial. In either case the mathematical model would not produce 
stress singularities at the center. The material organization, how­
ever, would still lead to stress amplifications near the center of the 
tree. It is the nature of the stress amplification that is of interest 
here. 

The intriguing aspect of our findings is the three distinctly 
different patterns of stress for different values of dimensionless 
elastic constants under various loading conditions. In the case of a 
uniform pressure, one can intuitively imagine how the bifurcation 
can physically develop. Suppose that the solid disk is cut into 
several concentric rings. Separate these rings and subject the 
outer ring to a uniform pressure on its outer circumference. The 
ring will deform and the inner circumference will squeeze into a 

smaller circle. Now subject the next smaller ring to another pres­
sure such that its outer displaced circumference is equivalent to 
the inner circumference of the loaded outer ring. Continue this 
mental process. Apply sufficient pressure to the outer circumfer­
ence of any ring so that its displaced shape conforms to the inner 
circumference of the next largest ring. A sequence of pressure 
values will be generated by this process. They represent the pres­
sures each ring must be subjected to so that all the rings will fit 
together and form the solid loaded disk, i.e., there will be no gaps 
between the rings. 

If the disk is composed of an isotropic elastic material, a = 1, 
then all the pressure values in the list will be the same. The state 
of stress is uniform in the disk. If, however, the material is stiffer 
along the circumference, in the tangential direction than along the 
rays in the radial direction, then the total length of the deformed 
circumference will be less than that of the isotropic case and the 
radial displacement will be smaller. Less pressure will be required 
to compress the next ring, and even less for the next after that. A 
monotonic decreasing sequence of pressures will be obtained. An 
infinite sequence of pressures with a limit of zero will result if the 
number of rings is increased and the rings become thinner and 
thinner. Thus, for a > 1 the stress in the center of the disk will 
converge to zero. 

Just the opposite would occur for a set of rings whose stiffness 
is greater in the radial direction than the tangential. In this case, 
more pressure has to be applied to each successive ring to squeeze 
the rings so they tit together in the loaded state. Now the sequence 
of pressure values will increase. For an infinite number of infini­
tesimally thin rings, the sequence will have no limit; the pressure 
values will increase without bound. The center of the disk with 
a < 1 will have an infinite stress. 

A more complicated situation is encountered when the disk is 
subjected to a sinusoidal pressure at the outer Circumference. 
Imagine again that the disk is separated into concentric rings. The 
outer ring will be subjected to an alternating pattern of tension 
and compression cycles. A state of shear will develop in those 
regions where there is a tangential gradient in the pressure distri­
bution. Thus, in addition to a pressure distribution, a shear distri­
bution will have to be applied to the outer circumference of the 
next ring so that its displaced shape is compatible with the inner 
circumference of the outer disk. 

Suppose now that the shear modulus is large, or conversely 
that b is small. In this case, little shear deformation will occur. It 
can be conjectured that this “shear stiffening” might decrease the 
pressure and shear compensation that must be placed on the outer 
circumference of the next smaller ring to maintain displacement 
continuity. The maximum values of the pressure and shear distri­
butions for the following sequence of rings would decrease. If the 
shear modulus is small (large b), then it appears that the pressure 
and shear distributions acting on the next smaller rings must be 
increased to preserve displacement continuity. For the right com­
bination of shear resistance and the ratio of Young’s moduli, there 
is a delicate balance between the displaced shapes of the concen­
tric rings that leads to a finite state of stress at the center of the 
disk. Without the help of the mathematical solutions, it is difficult 
to intuitively understand this delicate balance between the shape 
and volume changes. 

The finite element stress distribution calculations of the uni­
form pressure case (Fig. 3) matched the analytical results very 
well. This was an axisymmetric case with no shear component. In 
the case of sinusoidal loading, however, the finite element and 
analytic results (Fig. 8) were not well matched but, by and large, 
the bifurcation in stress results relative to the values of the elastic 
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constants did show up. There are several possible explanations for 
this discrepancy. The mesh may not have been optimized for this 
problem. The apparent delicate balance between normal strain 
and shear strain in this problem seems to create difficulties with 
respect to a traditional FE analysis. The use of rectilinear ortho­
tropic material in a patchwise fashion, such that there is a small 
but finite mismatch of material properties across the element 
boundaries, could have led to some errors. Or, the equivalent 
loads, applied to the outer circumference representing the sinu­
soidal pressure distribution, may have caused some problems. Re­
solving the computational discrepancies will be left for future 
research. 

The relevance of sinusoidal pressures may not be immediately 
obvious, but such loads are a first step in modeling other loading 
conditions that may be induced by such practical situations as 
drying of a log. The bifurcation phenomena suggests that center 
point cracking will result in some log cross sections but possibly 
not others because of material variability in the same tree. 

Conclusions 

Stress singularities can occur in solid disks of cylindrically ortho­
tropic elastic material subjected to sinusoidal pressure distribu­
tions at the outer boundaries. For a particular combination of two 
dimensionless elastic property parameters, there are only a finite 
number of sinusoidal loading modes that produce stress singulari­
ties. A finite element analysis, utilizing a rectilinear orthotropic 
material assumption for the material in each element, exhibited 
the bifurcation phenomena found in the analytic results but was 
unable to accurately duplicate the exact results. Whether or not 
the CYO material assumption is valid for modeling the mechani­
cal behavior of wood is still an open question, but it is one worthy 
of further inquiry. 
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Notation 

The following symbols are used in this paper: 
a = ET/ER, dimensionless elastic parameter; 

1b = - ( ET/GRT ) -v√a, dimensionless elastic parameter; 2

Dk = differential operators, k = 1 . . .6; 
Ei = modulus of elasticity in direction i; 
ê i = unit vector in coordinate direction i; 
fk = substitution variable defined in Eq. (17); 

Gij = shear modulus in plane ij; 
Kk = constants of integration, k = 1 . . .4; 
L = axis aligned with wood fibers in tree; 
L = fourth order differential operator; 

Pk = substitution variable defined in Eq. (10); 
p = self-equilibrating pressure acting on surface; 
R = axis aligned with radial direction; 
r = radial axis in cylindrical coordinate system, or 

radial distance in disk; 

T   = axis aligned with growth ring tangent; 
y   = substitution variable defined in Eq. (17); 
z  = longitudinal axis in cylindrical coordinate system; 

γij    = shear strain in plane ij; 
εi  = small normal strain tensor in coordinate direction i; 
θ = tangential axis in cylindrical coordinate system; 

µj  = roots of the characteristic polynomial; 
v = √vRTv TR; 

vij  = Poisson’s ratio for plane ij; 
σ i = normal stress tensor component in direction i; 
τij = shear stress component in plane ij; 
φ = Airy stress function; 

φk,φk = Fourier coefficients, k = 1 . . . ∞; and 
χk1,k2 = substitution variable defined in Eq. (12). 
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