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ABSTRACT. The primary means of inspecting buildings and other structures is to evaluate each 
structure member individually. This is a time consuming process that is expensive, particularly if 
sheathing or other covering materials must be removed to access the structural members. This paper 
presents an effort to use a low frequency vibration method for assessing the structural performance of 
wood floor systems. 

 
 
INTRODUCTION 
 

Existing wood structures require rigorous and timely inspections to ensure the 
safety and structural performance. In general, structure inspection requires that some 
indicating parameter be monitored that is sensitive to the damage/deterioration mechanism 
in question. Current inspection methods for wood structures are limited to evaluating each 
structural member individually, which is a labor-intensive, time-consuming process. For in- 
situ inspection of wood structures, a more efficient strategy would be to screen whole 
structural systems or subsystems in terms of their overall performance and serviceability.  
Examining the dynamic response of a structural system might provide an alternative way to 
gain insight into the ongoing performance of the system.  Deterioration caused by any 
organism reduces the strength and stiffness of the materials and thus could affect the 
dynamic behavior of the system.  If, for example, one structural system or section of the 
system was found to respond to dynamic loads in a manner significantly different from that 
of other similar systems or the surrounding sections of the system, a more extensive 
inspection of that system or section would be warranted. Based on this conceptual strategy, 
we began to investigate the possibility of using a low frequency vibration approach for 
assessing the performance of wood structural systems by measuring the fundamental 
natural frequency (bending mode) and damping ratio of the entire systems.  

In a previous study [1], we conducted a pilot investigation on three laboratory-
constructed wood floors and addressed several practical problems on the use of transverse 
vibration methods for floor inspection. The first problem was related to the best way to 
obtain a good signal response when inspecting a floor with limited accessibility. We found 
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that the location of the response measuring device and forcing function do not significantly 
affect frequency. Both free and forced vibration gave acceptable results. Free vibration has 
the advantages of being easy to apply and giving both frequency and damping data. Its 
disadvantage is that the response is sometimes weak. Forced vibration enables a stronger 
response by use of a larger forcing function. It also appears to give more consistent results. 
Its disadvantage is that no damping data can be obtained. The second problem was whether 
vibration testing can be used to detect joist decay. The results indicated a decrease in 
natural frequency and increase in damping ratio proportionate to the amount of decay, as 
simulated by progressively cutting the ends of three joists. Small changes in frequency and 
damping ratio were observed with the loss of one or two joist ends, but greater change was 
observed with the loss of three joist ends. This implies that the system effect of a floor with 
bridging and decking may make it difficult to detect decay in only one or two joists. A final 
problem was to inspect a floor with superimposed loads that are not easily removed. It was 
concluded that the additional mass of the loads should be included in frequency prediction 
calculations, but the location of the loads has only a small effect on natural frequency.  

The results from the previous study are limited in scope. The objectives of this 
study were to extend the investigation of transverse vibration methods to a series of floors 
that have a wide range of spans and joist sizes and to develop an analytical relationship 
between natural frequency and stiffness (EI product) of floor systems.  
  
ANALYTIC MODEL 
 

An analytic model is used to relate the stiffness properties of the floor to its 
fundamental natural frequency for inspection purpose. Continuous system theory has been 
chosen as the means for developing a theoretical vibration model that is based on the global 
physical properties of a system.  

The floor systems in existing buildings are typically constructed of wood joists, 
cross bridging, and decking (Figure 1). In previous studies [4,5], we found that the stiffness 
of the joists predominates over the transverse floor sheathing because the thickness of the 
decking board is very small compared to the height of the joists. In addition, the deck is not 
continuous and the deck boards are nailed perpendicular to the joists, reducing the stiffness 
that would be provided in the case of simple floor bending. The cross bridging also does 
not contribute to the bending stiffness of the floor because it mainly provide lateral bracing 
 
 

 
 
FIGURE 1.  Structural details of a typical wood floor system. 
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to the joists. Thus, we assumed that a floor system behaves predominately like a beam with 
resisting moments in transverse direction. The total mass of the deck and cross bridging is 
distributed into the assumed mass of the joists. 

The partial differential equation (PDE) governing the transverse vibration for a 
simple flexure beam is given below: 
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The solution of this partial differential equation is generally accomplished by means 

of the separation of variables and is largely dependent on the boundary conditions at each 
end of the beam. Bodig and Jayne [1] have shown that a general form for the natural 
frequency can be derived, and given in equation (2). 
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where f is fundamental natural frequency, ρ, mass density of the beam, A,  cross sectional 
area of the beam, and EI, stiffness (modulus of elasticity E× H moment of inertia I) of the 
beam. 

Consider the vibration of a beam supported at the ends, if vibration is restricted to 
the first mode (λ8 2L), Equation (2) can be rearranged to obtain an expression for the 
stiffness (EI): 
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where k is a system parameter dependant on the boundary conditions of the beam (pin-pin 
support: k = 2.46; fix-fix support, k = 12.65), M weight of the beam (uniformly distributed), 
and g acceleration due to gravity. 
 
EXPERIMENTAL PROCEDURE 
 
Laboratory Floor Systems 
 

Twelve wood floor systems were tested in laboratory condition at Michigan 
Technological University (designated as MTU floors). The floors were constructed with 2 
by 4 in. (51- by 102-mm), 2 by 6 in. (51- by 152-mm), and 2 by 10 in. (51- by 254-mm) 
joists. Joist materials included three different wood species (jack pine, spruce-pine-fir, and 
white pine) and their strength properties ranged from low to high in terms of E-rating 
values. Each floor was constructed of four joists spaced 12 in. (305 mm) on center, with a 
span of 91, 113, or 137 in. (2.32, 2.87, and 3.48 m) respectively. The jack pine solid sawn 
joists were cut from fresh and dead (contained decay) trees. White pine joists were from 
100 year-old salvaged materials. The combinations of different joist size and floor span, 
plus high E and low E materials, could provide a wide range of dynamic and static 
performance. The joists were laterally braced by cross bridging at 1/3 and 2/3 of the span. 
The floor decking was transverse 1 by 4 in. (25- by 102-mm) spruce-pine-fir (SPF) boards 
fastened by dry wall screws. 
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Boundary Conditions 
 

Theoretically, a simply supported end condition provides no moment carrying 
capacity while a fixed end condition provides infinite capability to carry moment. The true 
boundary conditions seen in real floor structures cannot be absolutely known from visual 
inspection of the floor or floor plans. However, the laboratory floor systems can provide an 
opportunity to investigate how the floor response under a forcing function is affected by 
different end conditions, from nearly free to the one that is close to the real world floor. In 
this study, the floors were tested at five different end conditions. First, each floor was 
supported by two steel pipes at the ends to approximate a simply supported boundary 
condition. This was necessary because the proposed analytical model needs to be validated 
with experimental data under an ideal boundary condition before it can be applied. Then, 
each floor was tested while the ends were supported with aluminum bars (simulation of 
hard supports), decayed jack pine boards (simulation of soft supports), and decayed jack 
pine boards with a layer of neoprene material on top of the boards (simulation of super soft 
supports), respectively. These conditions were examined because they are often occurred in 
some floor structures where one end of the joists sits on a wooden or steel girder instead of 
a masonry wall. The soft supports were used to mimic floor joist ends resting on wooden 
sill plates that were decayed. Finally, the floors were tested with the ends of joists 
imbedded in prefabricated masonry pockets. This simulates the end conditions of typical 
floor structures in existing buildings.  
  
Vibration Tests 
 

All laboratory-constructed floor systems were subjected to forced vibration testing. 
The forced vibration approach employed is a purely time domain method as described in 
the previous paper [5]. This method was investigated as a main approach in this study 
because it could enable a stronger response by use of a larger forcing function, which is 
desired when real floor structures are inspected. The other advantage of this forced 
vibration method is that it eliminates the need for modal analysis and is easy to perform in 
the real world applications.  

Figure 2 shows the experimental setup for conducting forced vibration testing on 
laboratory floor systems. The vibration was imposed by a motor with an eccentric rotating 
mass attached to the floor decking. By placing the motor at midspan over the center joist, it 
is assured that the simple bending mode of floor vibration will be excited. The response to 
vibration was measured at the bottom of the center joist using a linear variable differential 
transducer (LVDT). The time-deflection signal was recorded by an oscilloscope. To locate 
the fundamental natural frequency in bending mode, the motor’s speed was slowly 
increased from rest until the first local maximum response acceleration is located. The 
period of vibration is then estimated from ten cycles of this steady state motion.   

The drawback of this forced vibration approach is the assumption that must be 
made: the first maximum acceleration found corresponds to the simple bending mode of the 
structure. A parallel research on timber bridges by Morison et al. [2,3] showed that the 
frequency measured by forced vibration method might correspond to a mode other than the 
bending mode in some cases. An error could occur when other modes (typically torsion) 
were misidentified as the bending mode. To verify the results from forced vibration testing, 
free vibration testing was also performed on each floor system to measure the fundamental 
natural frequency in bending mode. Free vibration was initiated by impact from a hammer 
and the fundamental natural frequency was determined as the inverse of the period 
measured from the time-domain signal. 
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FIGURE 2.  Experimental setup for forced vibration testing of a wood floor system. 
 
Load-Deflection Analysis 
 

To correlate the natural frequency of floor systems to a measure of structural 
performance, the floors were also evaluated by load-deflection analysis, which provided a 
more direct measure of floor’s stiffness, EI product. The static load testing was done by 
placing 236 pounds of line load in five increments across the structure at midspan and 
measuring the deflection response of the center joist, again at midspan, with a dial 
indicator. Since the load was distributed evenly across a floor’s width, the EI product was 
therefore estimated directly from the load-deflection data based on the beam bending 
equation: 
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where P is static load (lbs), ∆ midspan deflection (in.), and L floor span (in.). 
 
RESULTS AND DISCUSSION 
 

Table 1 summarizes the physical characteristics and measured natural frequencies 
of the floor systems. The frequency data of floor 4 was not obtained due to its possible high 
frequency and the speed limitation of the motor. Floor 4 was therefore excluded from data 
analysis. 

A comparison of measured natural frequencies from free vibration and forced 
vibration showed that the results from two methods matched quite closely, differing less 
than 3% for the simple support condition and less than 7% for the masonry support 
condition. This indicates that the lowest bending mode of each floor’s vibration was 
properly captured by forced vibration method.  

Figure 3 shows the results of a floor system (floor 4) tested at various end support 
conditions. Examination of this figure revealed that the natural frequency from forced 
vibration was about the same for the pinned, hard, soft, and super soft end support 
conditions. It appeared that the hardness of end supporting materials had little or no effect 
on floor’s natural frequency. In contrast, the masonry pocket end supports yielded a higher 
frequency than pinned end supports due to the possible constraints added to the ends of the 
joists. The increase in measured frequency for the masonry pocket supports was from 20 to 
35 percent for the most floor systems tested except for floor 2 and 7, which had an increase  
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TABLE 1.  Physical characteristics and measured natural frequencies of the floor systems. 
     
    Measured natural frequency (Hz) 

Floor Joist size Span Weight                 Pinned support           Masonry pocket support 
No. (in.) (in.) (lb) Forced Free Percent 

  Difference (%)
Forced Free Percent 

 Difference (%) 
1 2 by 4 91.25 108 21 21.2 -0.94 26.7 28.7 -6.97 
2 2 by 4 91.25 110 20 20.5 -2.44 21.3 22.3 -4.48 
3 2 by 4 91.25 111 16.2 16.5 -1.82 21.7 22.7 -4.41 
4 2 by 4 113 140 15.3 15.6 -1.92 20.7 22 -5.91 
5 2 by 10 113 223 - -  - -  
6 2 by 4 113 146 13.8 14.0 -1.43 15.5 16.4 -5.49 
7 2 by 4 113 126 11.6 11.8 -1.69 14.5 15.4 -5.84 
8 2 by 6 113 163 23.8 24.5 -2.86 24.2 24.8 -2.42 
9 2 by 4 113 136 11.3 11.4 -0.88 13.8 14.1 -2.13 

10 2 by 4 137 171 10.6 10.7 -0.93 14.1 14.9 -5.37 
11 2 by 4 137 168 10.3 10.4 -0.96 12.7 12.9 -1.55 
12 2 by 4 137 157 8 8.1 -1.23 10 10.5 -4.76 

 

0

5

10

15

20

25

Masonry
pocket

Pinned
support

Hard
support

Soft
support

Super
soft

support

Boundary condition

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

 
FIGURE 3.  Measured natural frequencies of a floor system at various end support conditions. 

 
in frequency less than 10 percent. The difference in this frequency increase was mainly due 
to the different constraint forces existed on each floor. This indicated that, even with the 
same end support structure, the end conditions could vary from floor to floor as a result of 
construction variability.  

The proposed model (3) represents a possible relationship between natural 
frequency and section modulus (EI product) of a floor structure. This model needs to be 
examined with experimental data for its validity. Figure 4 shows experimental data and 
boundary predictions. Here, EI/ML3 was treated as the independent variable, and natural 
frequency as the dependent one. The natural frequency was predicted over a range of 
EI/WL3 assuming both simply supported and fixed boundary conditions. The measured 
results under masonry pocket end conditions were then superimposed onto the same set of 
axes. It can be seen from Figure 4 that measured results lie close to the simple support 
boundary predictions. A more close examination of this figure indicated that the
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FIGURE 4. Measured data and boundary predictions.       FIGURE 5. Relationship between predicted and       
                                                                                              measured frequencies.  
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FIGURE 6.  Predicted EI product and percent difference with measured EI. 
 
measured data of the most floor systems were actually fall between simple support and 
rigidly fixed boundary conditions, with a distinct bias toward the simply supported 
prediction. Only two floors (Floor 2 and 8) fall a little bellow the simple supported 
prediction.  

This result essentially suggests that the theoretical model generated from the simple 
beam theory fits the physics of wood floor structures and therefore is a valid representation 
of the relationship between natural frequency and EI product of floor systems. However, in 
order for this model to be useful, an overall system parameter (k) that best describes the 
boundary conditions of the floor systems investigated should be determined from 
experimental data.  

The analytic model in equation (3) was applied to the measured EI product and 
natural frequency for the floors tested under masonry pocket end conditions. A system 
parameter (k) was therefore estimated for each floor. These results were then averaged to 
provide an overall system parameter that best describes the entire population. The average 
system parameter was determined to be k=2.65, with a standard deviation of 0.533.  

1006



With newly developed system parameter k, the model in equation (3) can be used to 
predict floor’s natural frequency using measured EI product. Figure 5 illustrated the 
relationship between predicted frequency from the model and measured frequency from 
forced vibration. Regression analysis of data revealed a strong linear correlation (R2=0.93) 
between predicted frequencies and measured values. This again supports the previous 
conclusion that the theoretical model is appropriate to the wood floor structures.  

From the perspective of in-place inspection, a possible implementation scheme was 
to use the measured natural frequency to predict EI product for each floor system. To 
investigate the error of the model on stiffness prediction, we calculated EI product for each 
floor using measured frequency and the overall system parameter and made a comparison 
against the measured EI product. The result (Figure 6) shows quite a bit of variation, from 
4 percent as a minimum, to 37 percent maximum difference (in absolute value). It is 
believed that the natural variation of floor construction is the main error source. The second 
contributing factor could be the small sample size. If more floors had been available, more 
representative averages could have been obtained. 
 
CONCLUSION 
 

Forced vibration method was used to measure the fundamental natural frequency of 
laboratory-constructed floor systems at various end support conditions. An analytic model 
based on beam bending theory was proposed to represent the relationship between natural 
frequency and EI product of the floors. From the results of this laboratory investigation, 
flowing conclusions can be drawn: 

1. Forced vibration method is capable of measuring the natural frequency (bending 
mode) of wood floor structures investigated. 

2. The hardness of end supporting materials had little or no effect on floor’s natural 
frequency. In contrast, the masonry pocket end supports, which simulated the end 
conditions of typical floor structures in existing buildings, yielded a higher frequency than 
pinned end supports. 

3. The analytical model generated from the simple beam theory fits the physics of 
the floor structures investigated and can be used to correlate the natural frequency to EI 
product. However, in order for the model to be applied to floor inspection, it needs to be 
calibrated with field data from in-place floor systems. 
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