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ABSTRACT 

Equations for a two-dimensional finite difference heat flow analysis were developed and applied to pon- 
derosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares 
to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating 
air, and thus surface temperatures failed to attain the temperature of the heating air. The surface tempera- 
tures were monitored during heating and related to time by an empirical equation. When this equation was 
used as the boundary condition in the finite difference solution, calculated time estimates required to heat 
the center to target temperature agreed favorably with experimentally observed heating times. 
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INTRODUCTION 

Heat treatment is an increasingly common 
way to sterilize lumber, timbers, and pallets 
against invasive species such as insects and 
fungi. In a previous study (Simpson 2003), a 
one-dimensional finite difference solution to 
heat flow equations was used to calculate esti- 
mates of heating time for heat sterilization of 
slash pine ( Pinus ellióttii ) boards. The solution 
also included boundary conditions that allowed a 
continuously variable surface temperature. The 
one-dimensional solution works well for boards 
that are considerably wider than they are thick, 
but it cannot be applied to large cross-sectional 
dimension timbers and squares. In another study 
(Simpson et al. 2003), heating time data were 
collected for ponderosa pine ( Pinus ponderosa ) 
and Douglas-fir ( Pseudotsuga menziesii ) 
squares. 

† Member of SWST. 
1The Forest Products Laboratory is maintained in coop- 

eration with the University of Wisconsin. This article was 
written and prepared by U.S. Government employees on of- 
ficial time, and it is therefore in the public domain and not 
subject to copyright. 

The objectives of the study reported here were 
to extend the one-dimensional finite difference 
solution to two dimensions so that it could be ap- 
plied to large cross-sectional dimension timbers 
and squares and to test this solution on previ- 
ously collected data for ponderosa pine and 
Douglas-fir. 

EXPERIMENTAL METHODS 

The experimental methods are described in 
detail in Simpson et al. (2003). Ponderosa pine 
specimens were 102-, 152-, and 305-mm (4-, 6-, 
and 12-in) square. Douglas-fir specimens were 
89, 146, and 298 mm (nominal 4, 6, and 12 in; 
actual 3.5, 5.75-, and 11.75-in) square. (Here- 
after, squares will be referred to as 4 X 4,6 X 6, 
and 12 X 12.) The squares were freshly sawn. 
The ponderosa pine was all sapwood, whereas 
the Douglas-fir had considerable heartwood 
(Fig. 1). 

The previous study (Simpson et al. 2003) in- 
cluded two stacking configurations, stickered 
and solid piled. It also included measurement of 
surface temperatures as well as center tempera- 
tures, which are necessary to determine when the 
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FIG. 1. Stack of ponderosa pine boards and square tim- 
bers ready for the kiln. This figure shows stickers between 
layers of boards/squares, but the data for this study were 
taken from unstickered stacks. Pieces with white tags have 
thermocouples embedded in their center. 

target heat sterilization temperature has been 
achieved. In the experiments with solid piled 
squares reported here, surface temperatures were 
monitored on two adjacent surfaces of selected 
squares; these surface temperature data were 
used to test the two-dimensional finite difference 
solution. Thermocouples were used to measure 
both center and surface temperatures. The exper- 
imental method was given in Simpson (2003) 
and Simpson et al. (2003). 

All heating was done in a 3.5-m3 (1,500 board 
foot) experimental dry kiln at a constant dry- 
bulb temperature of 71°C (160°F) and a constant 
wet-bulb depression of approximately 0.8°C to 
1.1°C (1.5°F to 2°F). Target center temperature 
was 56°C (133°F). Air velocity was approxi- 
mately 3.1 m/s (600 ft/min). 

Five replicates of the 4- X 4- and 6- X 6-in. 
squares and four replicates of the 12 X 12 
squares were heated together. Dummy boards 
and squares were included in each stack so that 
all test squares were surrounded by other boards 
or squares. Thus, all test squares responded as 
squares within the stacks and not as edge 
squares. Figure 1 shows a stack of stickered test 
material ready for the kiln. Except for stickering, 
the unstickered stacks were similar to the stick- 
ered stacks. 

ANALYTICAL METHODS 

The equation that governs two-dimensional 
heat flow is 

where T is temperature, t is time, x and y are spa- 
tial coordinates, and αx and αy are diffusivities in 
the x and y directions, respectively, and are as- 
sumed to be the same in this analysis. MacLean 
(1941) has shown that diffusivities in the radial 
and tangential directions do not differ by much. 

The two-dimensional finite difference equa- 
tions that approximate the solution to Eq. (1) and 
the finite difference grid are shown in Appendix 
A; one equation is for the interior temperatures 
and the other for the center temperatures. As a 
first test of the two-dimensional finite difference 
analysis, heating times were compared with the 
two-dimensional equation developed by 
MacLean (1932) (also discussed in Kollmann 
and Côté 1968) and described and applied by 
Simpson (2001). MacLean’s equation (Appendix 
B) can be applied only under the boundary con- 
ditions where the surface immediately attains 
and maintains the temperature of the heating 
medium. The finite difference analysis can be 
applied to these boundary conditions as well as 
boundary conditions where surface temperature 
varies with time. Comparisons of the calculated 
times required for the center of various sizes of 
lumber and timber to reach a target center tem- 
perature of 56°C (133°F) are shown in Table 1. 
The times calculated by the two methods are in 
close agreement. 

The main purpose for the two-dimensional fi- 
nite difference analysis was to accommodate 
boundary conditions of time-dependent surface 
temperature. In this study, surface temperatures 
were derived from fitting the following empiri- 
cal equation to the surface temperature-time 
data collected for each experimental heating run: 

where Ts is surface temperature, 

(1) 

(2) 
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TABLE 1. Comparison of heating times of two-dimensional 
wood configurations calculated by MacLean’s equation and 
by a finite difference method.a 

Wood configuration MacLean Finite difference 
(inch (mm)) (min) (min) 

2 × 2 (51 × 51) 23.1 21.2 
6 × 6 (152 × 152) 207 204 
8 × 8 (203 × 203) 369 361 
10 × 10 (254 × 254) 576 567 
12 × 12 (305 × 305) 830 864 
16 × 16 (406 × 406) 1,475 1,444 

aMacLean 1932, Kollmann and Côté 1968, and Appendixes. 
Heating times calculated from center of specimen to 56°C (133°F). Condi- 

tions: heating temperature, 71°C (160°F); heating temperature, 71°C (160°F); 
initial temperature, 21°C (70°F); specific gravity, 0.5; moisture content, 90%; 
diffusivity, 1.60 × 10–3 cm2/s. 

T h is temperature of heating medium = 71°C 

t is time (minutes in this analysis), and 
a and b are coefficients determined by nonlin- 

ear regression. 
Equation (2) was developed from the basic re- 

quirement that the surface temperature will 
eventually attain the temperature of the heating 
medium. Thus, the equation was developed to be 
forced to converge to T h at large times. For this 
analysis, n was taken up to a value of 3. 

(160°F) in this study, 

RESULTS AND DISCUSSION 

Solid stacking the squares prevented the heat- 
ing medium access to the surfaces. If the square 
timbers had been stickered, the surfaces would 
have immediately attained and maintained the 
approximate temperature of the heating medium 
because, with the small wet-bulb depression, the 
heating medium was nearly saturated steam. 
However, by solid stacking the squares (which is 
sometimes more practical than breaking down 
solid piled stacks), stickering them for heat treat- 
ment, and then restacking them in solid piled 
configuration, access to the surfaces was denied. 
Consequently, the surfaces did not immediately 
attain and maintain the temperature of the heat- 
ing medium. This, in turn, reduced the tempera- 
ture that the squares would have attained had 
they not been solid stacked. Similarly, even if the 
squares had been stickered but the heating 
medium had been air drier than saturated steam, 

FIG. 2. Increase in surface and center temperatures with 
time for square timbers: (a) 12 × 12 ponderosa pine, (b) 4 × 
4 Douglas-fir. 

the surfaces would not have immediately at- 
tained the air temperature because the drier air 
would have caused water to evaporate and thus 
cool the surfaces below the air temperature. 

Figure 2 shows examples of the variation of 
surface and center temperatures with time for 
two different cases. The coefficients of Eq. (2) 
are shown in Table 2. Equation (2) is effective in 
characterizing the variation of surface tempera- 
ture with time, with coefficients of determina- 
tion (R2) in excess of 0.99. 

Table 3 compares the time for the centers of 
solid piled ponderosa pine and Douglas-fir 
square timbers to reach 56°C (133°F) when 
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TABLE 2. 
squares heated at 71°C (160°F). 

Species, config. a1 b1 a2 b2 a3 

Ponderosa pine 
4×4 49.6 -0.202 -52.8 -0.0220 -91.8 -0.0000763 0.9981 
6×6 -23.9 -0.0248 -3.09 -0.0393 -86.1 -0.0000486 0.9993 

-0.0000885 0.9952 12 × 12 -2.37 -5.41 × 10–9 -237 -0.00194 121 

Coefficients of Eq. (2) relating surface temperature to time (min) for solid piled ponderosa pine and Douglas-fir 

b3 R2 

Douglas-fir 
4×4 123 -0.0285 -158 -0.00338 -52.4 -1.58 × 10–13 0.9988 
6×6 144 -0.0104 -179 -0.000341 -54.5 -0.000167 0.9987 
12 × 12 -6.89 -0.193 -62.6 -0.000754 -28.1 -0.0000694 0.9987 

TABLE 3. 
(160°F) dry-bulb temperature and 1.1°C (2°F) wet bulb depressiona 

Comparison of experimental and calculated (MacLean equation) heating times for timbers heated at 71°C 

Heating time (min) 

Finite difference in 
Species, config. Experimentalb MacLean heating time (min) Deviation (%) 

Ponderosa pine 
4 × 4 831 (14.0) 101 730 13.8 

12 × 12 1,736 (26.4) 87 1 1,724 0.7 
Douglas-fir 

6 × 6 1,201 (30.1) 217 1,214 -1.1 

4 × 4 432 (27.2) 70 427 1.2 
6 × 6 977 (9.3) 197 1,038 -5.9 
12 × 12 1,931 (13.5) 817 1,903 1.5 

aCalculations of diffusivity (Simpson 2001) take ponderosa pine and Douglas-fir specific gravity as 0.38 and 0.45 and moisture content as 112% and 97%, 

bValues in parentheses are coefficients of variation. 
respectively, giving diffusivities of 1.68 × 10–3 and 1.60 × 10–3 cm2/s, respectively. 

heated in saturated steam at 71°C (160°F). The 
comparisons are between experimental times, 
times calculated by MacLean’s equation assum- 
ing that surface temperature immediately attains 
the heating medium temperature, and times cal- 
culated by the two-dimensional finite difference 
equations utilizing Eq. (2) to characterize the 
change in surface temperature with time. Times 
calculated by MacLean’s equation were grossly 
shorter than experimental times, as expected. 
The finite difference equations were effective in 
estimating heating times, with the average of the 
absolute value of deviation from experimental 
times of less than 5%. 

The practical usefulness of this two- 
dimensional approach requires knowledge of 
how surface temperature varies with time under 
any heating conditions (where the target center 
temperature is above the wet-bulb temperature 
of the heating medium (Simpson 2003)). Knowl- 

edge of how coefficients a and b of Eq. (2) vary 
with heating conditions or any other factors 
could lead to practical applications, and further 
studies could clarify this variation. 

CONCLUSIONS 

The two-dimensional finite difference heat 
flow analysis accurately estimates the time re- 
quired to heat the center of ponderosa pine and 
Douglas-fir square timbers to target temperature 
when the heating medium is saturated steam and 
when the boundary conditions of a time-varying 
surface temperature are included in the solution. 
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APPENDIX A. FINITE DIFFERENCE TWO-DIMENSIONAL HEAT FLOW ANALYSIS 

Schematic of two-dimensional quadrant (Fig. A) of wood square for finite 
difference calculations of temperature during heating. 

i direction ( x ) i direction ( x ) i direction ( x ) i direction ( x ) i direction ( x ) i direction ( x ) 

Finite Difference Equations 
Surface temperatures ( i or j = 1 in grid; Eq. (2) in text): 

Interior temperatures (bold-faced print in grid): 

FIG. A. Schematic of cross section with quadrant and typ- 
ical finite difference grid points. 

j direction ( y ) T(1,1) T(2,1) — — T(n–1,1) T(n,1) 
j direction ( y ) T(1,2) T(2,2) — — T(n–1,2) T(n,2) 
j direction ( y ) — — — — — — 
j direction ( y ) — — — — — — 
j direction ( y ) T(1,n–1) T(2,n–1) — — T(n–1,n–1) T(n,n–1) 
j direction ( y ) T(1,n) T(2,n) — — T(n–1,n) T(n,n) 
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APPENDIX B. MACLEAN TWO-DIMENSIONAL HEAT FLOW EQUATION FOR RECTANGULAR CROSS SECTIONS 

The equation for rectangular cross sections is taken from MacLean (1932) and is the solution to the differential equation 
of heat conduction in the two dimensions of a rectangular cross section. The temperature T at any point x and y is given by 

where 

T s is surface temperature (which must be attained 
immediately), 

T 0 initial temperature, 

(A.4) 

a one cross-sectional dimension, 

b other cross-sectional dimension, 

α x thermal diffusivity in the x direction 
(dimension2/time), 

α y thermal diffusivity in they direction, and 
t time. 
Equation (A.4) converges quickly, so only the first few terms are necessary. In this report, seven terms were used. Because 
thermal conductivity and thermal diffusivity do not differ much in the radial and tangential directions of wood, in Eq. (A.4) 
we can set α x = α y (MacLean (1941). Equation (4) can easily be converted to calculate the temperature at the center of the 
cross section by setting x = a /2 and y = b /2. 

Center temperatures (italics in grid): 
x direction: 

y direction: 
(A.3) 

Inner corner point (T n,n in grid): 


