The compression of wood/thermoplastic fiber mats during consolidation

Karl R. Englund*, Michael P. Wolcott, John C. Hermanson

Wood Materials and Engineering Lab, Washington State University, Pullman, WA 99164-1806, USA

Received 22 July 2002; accepted 6 December 2002

Abstract

Secondary processing of non-woven wood and wood/thermoplastic fiber mats is generally performed using compression molding, where heated platens or dies form the final product. Although the study and use of wood–fiber composites is widespread, few research efforts have explicitly described the fundamentals of mat consolidation. In contrast, the wood composite literature has prolifically addressed the compression of wood-strand composites. Models developed for wood-strand composites and powders are reviewed and applied to experimental data for compression of wood and wood/polypropylene (PP) fiber mats. The compression response was monitored during consolidation with varying platen temperatures, densities, and PP content. A model developed from the relationship between the instantaneous modulus and relative density was found to fit the compression of the non-woven fiber mats. The consolidation behavior was analogous to previous work with wood–fiber composites and found to be influenced by the PP content and strain rate.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: A. Wood; A. Fibres; E. Consolidation; Non-woven mats

1. Introduction

Non-woven mat technology uses both natural and synthetic fibers to produce a variety of interior use products. The fibrous mats provide the automotive industry with lightweight molded door panels, trunk liners, and dashboards, while other markets include residential door skins, cabinets, and furniture. Recent trends to improve the moisture resistance have included the addition of thermoplastic fibers to the mat network [1].

Non-woven mats are generally manufactured and sold to producers of auto or residential components. The mat integrity is maintained prior to secondary processing through friction among the interlocking wood and synthetic fibers. In some cases, thermoplastic resins are used as a preliminary adhesive to improve mat strength. A majority of the products manufactured with non-woven mats utilize thermal compression molding to form and maintain the final profile. Thermoset adhesives, such as phenol–formaldehyde (PF), are added to the mat to maintain panel integrity after pressing.

The consolidation mechanisms for wood-based composites have been researched by a variety of authors; Suchsland [2] and Jones [3], to name a few. Suchsland [2] noted that the stress–strain relationship of the mat is a function of the transverse compression of the wood. Jones [3] found the consolidation mechanism of a wood–fiber mat was not only a deformation of the wood fibers, but also due to fiber slippage and bending at contact points.

With the mechanisms of consolidation identified, models developed by Dai and Steiner [4], Wolcott et al. [5], Lang and Wolcott [6], and Lenth and Kamke [7] described the stress–strain behavior of a wood-strand mat. These models have been useful in identifying the contribution of different consolidation mechanisms in wood-strand composites. In turn, this work has been predicated on describing the formation and structure of the strand network. Unlike wood–fiber systems, void filling by strand shifting does not appear to play a role in strand mats. In addition, the fiber mats formed by blends of wood and thermoplastics differ from a wood-strand mat in both geometry and material type. Combined, these differences make strand-based models somewhat limited in their approach to model a fibrous mat. Therefore, alternative methods and disciplines are needed to describe the consolidation of a fibrous mat.

The powder research field has developed models that describe the stress–strain behavior of granulated materials.

* Corresponding author. Fax: +1-509-335-5077,
E-mail address: englund@mail.wsu.edu (K.R. Englund)
Konopicky [8], Heckel [9], and Cooper and Eaton [10] established consolidation models for powders based on the relative density and void volume. As in wood–fiber mats, the mechanisms of powder consolidation rely on packing by void filling and particle deformation.

The goal of this research is to describe the stress developed during the compression of a non-woven wood and wood/polypropylene (PP) fiber mat. The specific objectives include: (1) provide a mathematical description of the compression response of a wood and blended wood/thermoplastic mat; (2) validate the model with laboratory consolidation experiments.

2. Mat compression

The development of a model for the compression of a wood/PP fiber mat must consider the response of the constitutive materials to an applied stress and the structure of the composite system. During consolidation, the mat densifies as the fibers reposition and deform. Therefore, developing a model to describe the stress behavior needs to address both fiber movement and deformation.

In an attempt to describe the compression response of a wood/thermoplastic fiber mat, models developed for consolidation of both wood-strand composites and powders are evaluated. Whereas studies addressing powder consolidation identifies volume or density ratio to be proportional to the applied compressive stress (s) [8–14] most of the models addressing consolidation of wood-strand mats utilize a Hookean relationship (Eq. (1)) modified with a non-linear strain function (y(e)) [4,5,15,16].

\[
\sigma_c = E_c e \psi(e) \quad \text{(1)}
\]

where \(E_c\) is the compression modulus and \(e\) is the compressive strain.

Dai and Steiner [4] defined mat structure as a collection of independent strand columns of varying height, similar to the proposed model by Suchsland [2]. A Poisson’s distribution was used to numerically describe the number of strands in localized strand columns. The probability (\(p(i)\)) of an infinitesimally small column containing \(i\) number of strands is given by a Poisson distribution (Eq. (2)). The maximum value of \(i\) is based upon the thickness (\(z\)) of the wood element and the overall mat thickness. In the mat models, \(p(i)\) equates to the fractional area of columns containing this number of strands within a mat.

\[
p(i) \approx e^{-n} \frac{n^i}{i!} \quad \text{(2)}
\]

The mean number of strands (\(n\)) is estimated for each discrete finite column and is calculated from the length (\(l\)) and width (\(w\)) of the strand, total number of strands allowed in one column, and the mat area (\(A\)). The total compressive stress of the composite during consolidation results from the sum of the discrete columns and can be estimated as:

\[
\sigma_c = \sum_{i=1}^{i_{\text{max}}} \sigma_i = E_c \sum_{i=1}^{i_{\text{max}}} \psi(e) p(i) \quad \text{(3)}
\]

The terms \(s\) and \(e\) denote the stress and strain in columns with \(i\) number of strands and \(E_c\) is Young’s modulus of the wood flake. The load resistance increases while the mat is compressed, increasing the total number of strand columns supporting the load. Dai and Steiner [4] neglect any stresses prior to column compression. Lang and Wolcott [6,15] utilized beam theory to augment the column compression approach. Departing from a theoretical approach, Monte Carlo techniques were used to simulate mat structures obtained from measurements of digitized images of flake-board mats. Lenth and Kamke [7,16] viewed a wood-strand mat as a cellular solid and utilized cellular theory to describe the stress–strain behavior of a wood-strand mat.

Many of the compaction studies for powders examine the influence of relative density (\(r_R\)) on \(s_c\). The \(r_R\) is a ratio of the density of the powder bed compacted to any given strain to the density of the solid powder particles and is equivalent to the relative density used in foam models. Konopicky [8] proposed the relationship (Eq. (4)) between \(s_c\) and \(r_R\) with metal powders as:

\[
\ln \left(\frac{1}{1 - r_R} \right) = m \sigma_c \quad \text{(4)}
\]

where \(m\) is a constant.

Heckel [9] also examined the compaction of various metal powders with a modified version of Konopicky’s [8] relationship (Eq. (5)). Tabil and Sokhansanj [12] incorporated Heckel’s [9] method to describe the compression of alfalfa grinds with good agreement. The results of the preceding work fit the data quite well at higher pressures, however, they failed to recognize the initial non-linear response of the compression curve.

\[
\frac{d \rho_R}{d \sigma_c} = m(1 - r_R) \quad \text{(5)}
\]

In an attempt to describe the compression data of a non-woven mat, both strand and powder compression models can be utilized with limited success. However, the concepts behind these models can be applied to develop a more descriptive behavior of a fibrous mat in compression.

3. Experimental procedures

3.1. Uniaxial compression testing

Wood fiber and wood/PP fiber mats were obtained commercially (Mats Inc.). The mats were made with mechanically refined aspen (genus Populus) wood fibers coated with 5% PF resin and needled with 0, 30, 40, and 50% thermoplastic fibers, by weight. An additional 5% of
polyolefin coated polyester fibers (Celbond®) were also blended with the mat. The mat was passed through an oven to melt the polyolefin sheath, which provided the mat with integrity during handling.

Square test specimens (63.5 × 63.5 mm²), were cut from the mats for uniaxial consolidation. The mats were compressed to densities of 961, 1041 and 1121 kg/m³ at platen temperatures of 170, 180 and 190 °C. These platen temperatures were chosen to prevent thermal degradation of the wood (<200 °C [19]) and to exceed the melt temperature (T_m) of the PP (∼162 °C).

A final thickness of 6.35 mm was targeted, therefore, mats were layered upon each other to obtain the final density. A servo-hydraulic universal test apparatus with heated aluminum platens was used to compress the non-woven mat at strain rates of 0.15 and 0.30 mm/mm s. A thermocouple was inserted in the center of the layered mats to monitor the core temperature.

3.2. Differential scanning calorimetry

Differential scanning calorimetry (DSC) was utilized to identify the thermal transitions associated with the fiber mat components. A sample of the uncompressed wood and wood/PP fiber mats were Wiley® milled and passed through a 40 mesh screen. Approximately 5 mg of the screened material was weighed to the nearest 0.1 mg and encapsulated in a hermetically sealed pan. Utilizing a ramp rate of 10 °C/min, the specimen was heated from 40 to 200 °C, while the heat flow of the sample was recorded.

4. Results and discussion

4.1. Compression model

The compression curves for a wood/PP fiber mat were modeled with the same approach as Dai and Steiner [4], Lenth and Kamke [16], and Lang and Wolcott [15]. In each case the high strains associated with the fibrous mat could not be accounted for by any of the traditional strand-based models.

Utilizing the approach by Dai and Steiner [4], the wood element was considered to be an average wood fiber or fiber bundle for aspen species. The elements were square in their cross-section and had a length of 0.13 mm. In Fig. 1, z for the strand elements were 250, 25, and 12.5 µm, to represent a fiber bundle, single, and half fiber, respectively. The E_z was set at 25 MPa and y(e) was represented as the 10th order polynomial function utilized by Dai and Steiner [4]. In all elemental sizes, the experimental data failed to be described by the model. The strain at which stress begins to accumulate in the wood-fiber mats is approximately 0.9, substantially greater than that predicted by any of the wood-strand models.

One of the underlying assumptions of a Poisson distribution is that the likelihood of an event to occur is independent and cannot influence any other event [18]. In reality, the structure of a randomly oriented mat has overlapping and intertwining wood elements. In this case, the finite columns that comprise the mat structure do not necessarily behave as independent elements. Fibers that share columns may influence the stress–strain relationship of the neighboring columns. This assumption was recognized by Dai and Steiner [4], but was not found to strongly influence wood-strand mats. The larger aspect ratios found with wood and synthetic fibers may play a larger role in stress distribution throughout the mat. In addition, the influence of fiber bending and repositioning may render a consolidation model utilizing a Poisson’s distribution inadequate for a fibrous network.

The cellular model utilized by Lenth and Kamke [16] failed to fit their experimental data at the higher strains. The same was true for the wood/PP fiber mats in this study as an exponential increase in the data was observed at a lower strain of 0.65–0.75, depending upon the constants utilized in their cellular model. Lenth and Kamke [16] surmised their model did not consider the changing density of the cellular material, in this case, the wood strands. The same effect holds true for a wood/PP fiber mat. Similar results were also found when the experimental data was compared to the model developed by Lang and Wolcott [6]. The stress developed at the higher strains could not be accounted for in their model.

The poor prediction of strand mat consolidation models for wood/PP fiber mats is due to the large strains that occur during consolidation of fiber mats. In a loosely formed mat, a substantial amount of deformation occurs before stress begins to accumulate (Fig. 1). This would indicate a large amount of fiber movement, presumably through repositioning and bending. During fiber movement, voids are filled and the density continues to change until the cessation of strain. As the density increases, so do the mechanical properties of the composite. Mechanical testing of...
the compressed wood composite exhibits a parabolic relationship between the density and modulus \((E) \) of the composite [19]. Shivanand and Sprockel [11] found similar increases in tensile strength with highly compact cellulose powders.

Many of the powder compaction studies examine the influence relative density \((r_R) \) has on sc. However, the curve-fitting models utilized in the powder research did not address the low stress, non-linear region of the curve. This was also found to be true when the models of powder compression were utilized with the wood/PP fiber composites. The lack of fit with Konopicky [8] and Heckel’s [9] models can be attributed to the linear relationship assumed between \(s_c \) and \(r_R \). In powder compacts, this assumption of linearity can provide an accurate representation of the stress-strain response, however, with wood/PP fiber composites, the initial non-linear behavior of the compression curve is too substantial to overlook.

To describe the entire stress-strain behavior of a fibrous mat, instantaneous modulus \(E(e)(dsc/(de)) \) can be utilized. During the initial stages of consolidation, \(s_c \) is minimal and remains relatively constant due to fiber movement and rearrangement, which results in \(E(e) \) approaching zero. However, as \(s_c \) increases non-linearly with \(e \), during strains between 0.7 and 0.9, \(E(e) \) begins to increase. Based upon the powder compaction literature [7], the following correlation between the change in modulus and relative density is postulated

\[
\frac{dE(e)}{E(e)} = \frac{m}{\rho_R} \frac{dp_R}{pe} \tag{6}
\]

During consolidation, the \(r_R \) is related to strain \((e) \) as

\[
\rho_R = \frac{c}{1 - e} \tag{7}
\]

\[
dp_R = \frac{c}{(1 - e)} \tag{8}
\]

where \(c = \text{initial } r_R \text{ at } e = 0 \).

Substituting Eqs. (7) and (8) into Eq. (6) yields the following proposed integral equation:

\[
\int \frac{dE(e)}{E(e)} = m \int \frac{de}{1 - e} \tag{9}
\]

Integrating Eq. (9) with respect to \(E(e) \) and \(e \), the natural logarithm of \(E(e) \) becomes proportional to the compressive true strain \((e) \) of the composite mat as seen in Fig. 2, which yields the following linear relationship:

\[
\ln E(e) = B + A \ln(1 - e) \text{ or } E(e) = (1 - e)^A e^B \tag{10}
\]

where \(\ln(1 - e) = \text{true compressive strain } (e) \).

To determine \(s_c, E(e) \) is defined as \(ds_c/de \) during consolidation. Separating the variables and taking the exponent of each side (Eq. (11)), yields \(A \) and \(B \) as coefficients of the linear approximation of \(\ln E_i \) vs \(\ln (e) \).

\[
d\sigma(e) = (1 - e)^A e^B \, de \tag{11}
\]

\[
\sigma_c(e) = -\frac{e^B}{(A + 1)}[(1 - e)^{A+1} - 1] \tag{12}
\]

Fig. 2. Relationship between \(E(e) \) and \(e \), for various percentage levels of PP at 180 °C platen temperature and 1041 kg/m³ density.

Integrating both sides with respect to \(s_c \) and \(e \), the following estimate of the positive compressive stress is given by Eq. (12). A comparison of experimental data and the stress predicted in Eq. (12) is presented in Fig. 3. The average value of the coefficients \(A \) and \(B \) for varying PP content, density, and platen temperature at a 0.15 mm/mm s strain rate are provided in Table 1. The slope \((A) \) of the relationship between \(\ln(E(e)) \) and \(e \) increases with increasing PP content. This corresponds to the similar behavior with the ultimate compressive stress, as the composite with PP required a higher stress to achieve the target density.

Fig. 3. Comparison of the modeled and experimental stress during the compression of a 50% PP wood-fiber mat at 180°C and 1041 kg/m³ density.
Table 1
Linear coefficients, A and B for the ln(\(E(e)\)) vs true strain plot, tested at a 0.15 mm/mm s strain rate

<table>
<thead>
<tr>
<th>Density (kg/m(^3))</th>
<th>0% PP</th>
<th>30% PP</th>
<th>40% PP</th>
<th>50% PP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>170 °C 961</td>
<td>4.091</td>
<td>4.172</td>
<td>4.494</td>
<td>5.428</td>
</tr>
<tr>
<td>1041</td>
<td>4.097</td>
<td>3.920</td>
<td>4.444</td>
<td>5.354</td>
</tr>
<tr>
<td>180 °C 961</td>
<td>4.094</td>
<td>3.966</td>
<td>4.456</td>
<td>5.509</td>
</tr>
<tr>
<td>1121</td>
<td>4.074</td>
<td>3.886</td>
<td>4.398</td>
<td>5.270</td>
</tr>
<tr>
<td>190 °C 961</td>
<td>3.905</td>
<td>3.329</td>
<td>4.493</td>
<td>5.688</td>
</tr>
<tr>
<td>1041</td>
<td>3.944</td>
<td>3.599</td>
<td>4.454</td>
<td>5.298</td>
</tr>
<tr>
<td>1121</td>
<td>3.999</td>
<td>3.681</td>
<td>4.545</td>
<td>5.324</td>
</tr>
</tbody>
</table>

4.2. Compression behavior

The strain rate and PP content influenced the compression response of the wood/PP fiber mats. However, the platen temperature had little or no effect on the compressive stress behavior of the wood/PP mats (Fig. 4). Temperature can influence the mechanical properties of a polymer with the most substantial effect from glass and melt transitions. The lack of a temperature effect is likely due to the core temperatures remaining between ambient and 80 °C during compression in all conditions. As evident in the DSC spectra for the 0 and 50% PP mats (Fig. 5), no thermal transitions occur within the major components of the composite between ambient and 80 °C. The melt transition exhibited in both curves at approximately 126 °C can be attributed to the polyolefin coated polyester fibers utilized in the non-woven mat process, while the PP melt at 163 °C can be seen in the 50% PP mat.

The change in strain rate was only found to influence the final compressive stress of the wood/PP mats, while little effect was seen in the 0% PP mats (Figs. 6 and 7). Suchland [20] pressed wood particleboard with a range of strain rates and found a lower final compressive stress with the longer closing times. The strain rates used for the non-woven mats may have been too slow to see any time-dependent effects on the wood fibers. Also, the mechanical behavior of wood is not completely governed by viscoelasticity. The cellulose component is a highly crystalline material, which exhibits
The research was funded by the USDA National Research Initiative Competitive Grants Program. Acknowledgements

The authors would like to acknowledge the contributions of the following individuals:

[List of acknowledgments]

Figure 2: Graph showing the relationship between stress and strain for wood samples.

Figure 3: Graph depicting the force versus displacement for different wood species.

Figure 4: Graph illustrating the humidity effect on wood density and its implications on construction applications.

Figure 5: Graph showing the variation of modulus of elasticity with temperature for various wood species.

The authors gratefully acknowledge the financial support from the USDA National Research Initiative Competitive Grants Program.
References

