A More Mechanistic Model of the Compression Strain–Load Response of Paper

T.J. URBANIK

INTRODUCTION

The time-dependent deformation of paper and corrugated fibreboard under stress is well recognized as an indicator of eventual material rupture and product service life. Researchers have sought various models for predicting the collapse or otherwise rupture of specimens following the primary and secondary phases of creep of specimens enduring a constant load, i.e. duration-of-load (DOL) tests. The primary creep phase is an initial rapid straining of material following the theoretically instantaneous load application; the secondary creep phase is the subsequently longer phase during which the creep rate eventually stabilizes or at least slows toward a minimum. A tertiary phase with another rapid increase in straining precedes ultimate specimen rupture.

Moody and Skidmore [1] observed that the secondary creep in DOL compression tests of corrugated boxes stabilizes at a constant rate. Koning and Stem [2] quantified the relationship between this secondary creep rate and stacking life of corrugated boxes, and at least four other subsequent researchers [3-6] corroborated these findings. As summarized by Bronkhorst [6], the collective significance of the secondary creep rate should make this parameter a target for greater understanding.

Improved data acquisition techniques enabled Urbanik [7] to characterize continuous DOL creep and creep rate variations with time for corrugated fibreboard under edgewise compression and cyclic relative humidity (RH). Specimen strain was observed to creep at a rate in accordance with a first-order mathematical system, and to vary from a rate initiating primary creep to an eventual steady state and lower rate that characterized the secondary creep phase. The rate of change was quantifiable by a system time constant. Kuskowski [5] later utilized the same first-order model for corrugated tubes. By contrast, tension researchers [8,9] proposed DOL creep characterizations for paper strips wherein the secondary creep rate decreases with each decade of time. The focus of this paper is on the compression response of paper for its application to corrugated containers.

An alternative model introduced by Caulfield [10] is to substitute a rate-of-load (ROL) test - i.e. load increasing linearly with time until failure - for a DOL test. The relationship between the applied load and the time to fail in a DOL test was formulated in terms of constants that also relate failure load to loading rate in an ROL test [10]. Thus, DOL performance can predict ROL performance and vice versa. ROL tests are less time consuming than their DOL partners and seemingly more favourable. However, to date, load-deformation data have not been found to readily yield a quantifiable creep rate as obtainable from DOL tests.

Although it makes some sense to conclude the relationship between ROL and DOL time-to-failure on the basis of the model [10] alone, a more mechanistic understanding of ROL phenomena is obtainable from the shape of the strain–load curve preceding failure and the values of physical constants believed to relate to the secondary creep rate. To this end, the work reported here reexamines some ROL data from Gunderson et al. [11] on the compression response of paper. The objective is a more mechanistic model of the compression strain–load curve for obtaining a load-dependent secondary creep rate. Few new assumptions beyond those already implemented by former paper investigators are introduced, so the model presented here further unifies the status of compression creep research.

CREEP THEORY - CONSTANT LOAD

A review of some previous DOL research sets forth the equations from which we...
derive the physical constants to be introduced later in our ROL theory. Monkman and Grant [12] found an empirical relationship between rupture life and secondary creep rate of metal alloys. Koning and Stem [2] applied this relationship to corrugated fibreboard boxes subjected to 1.75 kN/m static edgewise compression and 50 to 90% cyclic RH [7]. R1 = 15.1 µm/h, R2 = 1.61 µm/h, R3 = 12.2 µm/h, t1 = 19.7 h, t2 = 33.6 h and t3 = 234 h.

As mentioned previously, continuous evaluations of A and x in Eq. (1) were determined [7] from integrating each component of Eq. (5): where A and x are empirical constants. Unique constants a and b appear simply as empirical, they represent the derived combination of more fundamental variables characterizing molecular motion in accordance with a theory of chemical kinetics. Equating t1 from Eqs. (1) and (2) predicts that R1 should vary with p according to

\[R_2 = q_0 e^{q_1 p} \quad \text{or} \quad \ln R_2 = \ln q_0 + q_1 p \]

(3)

where \[q_0 = \left(\frac{A}{a} \right)^{1/x} \] and \[q_1 = \frac{b}{x} \] are creep-rate-load constants.

Although constants a and b appear simply as empirical, they represent the derived combination of more fundamental variables characterizing molecular motion in accordance with a theory of chemical kinetics. Equating t1 from Eqs. (1) and (2) predicts that R1 should vary with p according to

As mentioned previously, continuous characterizations of creep strain E, and creep strain rate \(\dot{E} \) were determined [7] from the sum of phase components

\[\dot{E} = \dot{E}_{c1} + \dot{E}_{c2} + \dot{E}_{c3} \]

(5)

For more general materials, Caulfield [10] related \(t_b \) to the constant load \(p \) in a DOL test with the formula

\[p = \frac{1}{b} \ln a - \frac{1}{b} \ln t_b \quad \text{or} \quad t_b = ae^{-bp} \]

(2)

Although constants a and b appear simply as empirical, they represent the derived combination of more fundamental variables characterizing molecular motion in accordance with a theory of chemical kinetics. Equating t1 from Eqs. (1) and (2) predicts that R1 should vary with p according to

As mentioned previously, continuous characterizations of creep strain E, and creep strain rate \(\dot{E} \) were determined [7] from the sum of phase components

\[\dot{E} = \dot{E}_{c1} + \dot{E}_{c2} + \dot{E}_{c3} \]

(5)

For more general materials, Caulfield [10] related \(t_b \) to the constant load \(p \) in a DOL test with the formula

\[p = \frac{1}{b} \ln a - \frac{1}{b} \ln t_b \quad \text{or} \quad t_b = ae^{-bp} \]

(2)

TABLE I

<table>
<thead>
<tr>
<th>Phase</th>
<th>Strainrate (\dot{c}_i)</th>
<th>Creep strain (c_i) (\text{(constant } p \text{)})</th>
<th>Creep strain (\dot{c}_i) (\text{(variable } p \text{)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((R_1 - R_2)e^{t_b \dot{c}_i})</td>
<td>((R_1 - R_2)(1 - e^{-t_{e1} \dot{c}_i}))</td>
<td>((R_1 - R_2)^{1 - \dot{c}_i})</td>
</tr>
<tr>
<td>2</td>
<td>(R_2)</td>
<td>(R_2)</td>
<td>(R_2)</td>
</tr>
<tr>
<td>3</td>
<td>(R_3 e^{t_3 \dot{c}_i})</td>
<td>(R_3 (1 - e^{-t_{e3} \dot{c}_i}))</td>
<td>(R_3 (1 - e^{-t_{e3} \dot{c}_i}))</td>
</tr>
</tbody>
</table>

Fig. 1. Fit of Eq. (5) to DOL data on creep rate variation with time of a 38 mm column specimen of corrugated fibreboard subjected to 1.75 kN/m static edgewise compression and 50 to 90% cyclic RH [7]. R1 = 15.1 µm/h, R2 = 1.61 µm/h, R3 = 12.2 µm/h, t1 = 19.7 h, t2 = 33.6 h and t3 = 234 h.

Fig. 2. DOL data from Fig. 1 scaled to show linear decrease in \(\dot{c}_i \) with time and simultaneous linear increase in logs, 3. Slopes of in \(\dot{c}_i \) and \(t_{e1} \) are \(-1/3\) and \(-1/3\), respectively.

As mentioned previously, continuous characterizations of creep strain E, and creep strain rate \(\dot{E} \) were determined [7] from the sum of phase components

\[\dot{E} = \dot{E}_{c1} + \dot{E}_{c2} + \dot{E}_{c3} \]

(5)

Expressions for \(\dot{E}_{c1} \), \(\dot{E}_{c2} \) and \(\dot{E}_{c3} \) during primary, secondary and tertiary phases of creep, respectively, at constant \(p \) are given in the second column of Table I. In our previous work [7], only the first two creep phases were considered, but now the third phase is also accounted for. Creep rate \(R_3 \) is the initial rate of the sum of \(\dot{E}_{c1} \) and \(\dot{E}_{c2} \) at \(t = 0 \), and \(R_1 \) is the terminal rate of \(\dot{E}_{c1} \) at \(t = t_{e1} \). Time constants \(\dot{a} \) and \(\dot{c} \) characterize the rate of creep rate change during the first and third phases, respectively. A fit of Eq. (5) to the DOL data [7] is shown in Fig. 1. The contribution of each phase to total creep rate is more readily discernible from Fig. 2, which shows how \(\dot{c}_i \) decreases linearly with time at a rate \(-1/3\), while \(\dot{c}_3 \) increases linearly with time at a rate \(1/3\).

Experiments for creep strain \(\dot{E} \), characterizing each creep phase can be determined from integrating each component of Eq. (5):

\[\dot{E} = \int_0^t \dot{E}_{c1} \, dt + \int_0^t \dot{E}_{c2} \, dt + \int_0^t \dot{E}_{c3} \, dt \]

(6)

Results at constant \(p \) are given in the third column of Table I and are compared with data in Fig. 3.

CREEP THEORY - RATE OF LOAD

If, instead of being fixed, load is applied
Fig. 3. Plot of Eq. (6) compared with DOL data on creep deformation variation with time obtained from same specimen in Fig. 1. Physical parameter values are the same as those in Fig. 1.

Fig. 4. Plots of R_2 according to Eq. (3) and R_1 according to Eq. (10). Material properties are those of experimental design B–CD–50 from Table II.

Fig. 5. Plots of component terms in the equation $e = e_e + e_c$, with material properties representing experimental design B–CD–50 and with loading rate $r = 263 \text{ N/m·s}$. Maximum load occurs at $t = 6.3 \text{ s}$. In such a rapid test, e is essentially indiscernible from e_e, and e_c is indiscernible from e_c.

Fig. 6. Plots of component terms in the equation $e = e_e + e_c$ with material properties representing experimental design B–CD–50 and with loading rate $r = 2.63 \text{ N/m·s}$. Maximum load occurs at $t = 8.9 \text{ min}$ compared to $t = 8.1 \text{ min}$; creep is in accordance with a primary creep mechanism.

linearly with time at a rate r such that

$$p = rt$$

then total strain is the sum of an elastic strain, depending only on stress and the irreversible, depending on stress and time. With the edgewise compression of paper, data on the variation of p with ϵ, [14] have been found to fit the formula

$$p = c_1 \tanh \left(\frac{c_2 \epsilon_c}{c_1} \right)$$

where c_1 and c_2 are empirical constants.

Equation (8) was applied to a study of the effect of r on the edgewise compression response of paper [11]. Researchers conducted ROL tests spanning five decades of r. They substituted for ϵ_c in Eq. (8) and examined how fitted constants c_1 and c_2 depended on r. Stiffness was considered to be merely the initial slope of the load–strain curve without separately accounting for ϵ_e. Values of c_2, the initial slope of Eq. (8), increased with increasing r and by the definition of stiffness in [11] led to an apparent stiffening of the load–strain curve as load rate increased.

A more accurate rate-independent definition of stiffness is given by the slope of Eq. (8). If strain is measured in response to a varying applied load, the inverse of Eq. (8) given by

$$\epsilon_e = \frac{c_1}{2c_2} \ln \left(\frac{c_1 + p}{c_1 - p} \right)$$

$p < c_1$

is a more appropriate formula to fit to data. To introduce ϵ_c via Eq. (6) into an ROL expression for E, the integration must account for variation in R_1, R_2, R_3, and t_b (Table I) with p as t increases. Few investigations are known that quantify how R_1 and R_2 for paper might depend on other variables. From ROL experiments to be discussed in subsequent sections of this paper, we can now infer that

$$R_1 = q_0(1 - \alpha_1) + \alpha_1 R_2$$

(10)
and follows a variation with \(p \) as predicted by Eq. (3) (Fig. 4). Substituting Eqs. (2), (7) and (10) into Eq. (6) thus leads to the implicitly \(p \)-dependent expressions for \(a_1 \) and \(c_3 \) as given in the fourth column of Table I. An expression proposed for \(a_1 \) based on the linear relationship

\[
R_3 = \beta_0 + \beta_1 R_2
\]

(11)
is also given, but as noted \(a_1 \) needs to be determined numerically.

Values of \(a \) and \(b \) appearing in the expression for \(\varepsilon_c \) (Table I) can be determined from ROL failure data. Caulfield’s [10] companion formula to Eq. (2) proposes that the ROL failure load \(P \) varies with \(r \) according to

\[
P = \frac{1}{b} \ln a b + \frac{1}{b} \ln r
\]

(12)

which yields a and \(b \) from a collection of strain–load curves up to failure. With \(a \) and \(b \) thus determined, the ROL strain relationship

\[
\varepsilon = \varepsilon_t + \varepsilon_p + \varepsilon_q + \varepsilon_c
\]

(13)

has components in terms of Eqs. (6) and (9) and is predicted to be a function of the physical constants \(c_t, c_p, c_q, c_r \), and \(\eta \).

Some features of Eq. (13), including primary and secondary creep phases, are shown in Figs. 5–7, where \(E \) is plotted as the sum of its elastic and creep components at each of three loading rates. Material constants representing experimental design B–CD–50 from Table II in the next section were chosen. The plot of \(\varepsilon \) is the same in each figure except for the maximum load corresponding to failure at each loading rate.

If the loading rate is high enough and failure occurs at a time much less than \(t_1 \), for the material, almost no creep occurs, and the difference between \(E \) and \(E \) is essentially indiscernible (Fig. 5). At a lower loading rate such that the testing time is on the order of \(t_1 \) (Fig. 6), creep follows a primary creep mechanism corresponding to what would occur during the early phase of DOL creep. As the loading rate is further lowered and testing time exceeds \(t_1 \) (Fig. 7), primary creep dissipates and creep occurs according to a secondary creep mechanism. Collectively these plots (Figs. 5–7) illustrate the importance in differentiating between primary and secondary creep mechanisms when comparing DOL and ROL data.

COMPARISON WITH DATA

Data from former ROL research [11] were analyzed to establish representative parameter values in our model. The researchers had examined a 205 g/m\(^2\) linerboard (A) and a 127 g/m\(^2\) corrugating medium (B) in the machine direction (MD) and cross-machine direction (CD) at two levels of RH, 50 and 90%. Strain–load curves with six specimen replications per test combination were generated until failure at load rates of 263, 2.63 and 0.0263 N/m/s. These researchers determined a composite fit for each set of six replicated curves at each of the three load rates. Our new model enabled us to fit a composite to all 18 curves. Strength data to which we also fit Eq. (12) are summarized in Table III along with the ln \(a \) and \(b \) evaluations.

A series of fits of Eq. (13) to data were made to refine our model based on the minimization of prediction errors and the statistical confidence intervals of model parameters. The first series yielded consistently large values for \(a \), from which a simpler model for tertiary creep was inferred from the limiting case as \(\tau_i \) approaches infinity:

\[
\lim_{\tau_i \to \infty} \varepsilon_c = f + \varepsilon_c(1)
\]

The next series of fits with \(a = 0 \) and \(b = 0 \) were not found to quantify tertiary creep with any statistical significance. As \(c_t \) increases, the term \(\varepsilon_c \) approaches the form of \(\varepsilon_c \) as \(\tau_i \) decreases, the term \(\varepsilon_c \) approaches the form of \(\varepsilon_c \) making Eq. (14) statistically confounded with expressions for \(\varepsilon_c \) and \(\varepsilon_c \). An independent tertiary creep mechanism derived from Eq. (11) is not
discernible from Gunderson’s data [11]. The fact that each specimen within a group of six replicates failed at a different load makes the quantification of tertiary creep based on average failure in a group difficult and warrants a different experimental design for quantifying ROL tertiary creep.

With Eq. (13) truncated to include only primary and secondary creep mechanisms, the model \(\varepsilon = \varepsilon_P + \varepsilon_C + \varepsilon_{C1} \) was fit to the data and was tested with various forms of the linear relationship \(R = a + bR \). Neglecting \(a \), the simple proportionality of \(R = bR \) was first tried, but this predicted an E offset at the lowest \(r \), which was inconsistent with data. The magnitude of offset was found to be equal to the limiting case as \(r \) becomes infinitesimally small.

\[
\lim_{r \to 0} \varepsilon_{C1} = \tau_1 (1 - a_1) q_1 e^{-a_1 t_1} (1 - 1)
\]

(15)

This led to the value of \(a = q_1(1 - \cdot) \) which, when incorporated into the integration of \(\varepsilon_{C1} \), yields a correction term equal to Eq. (15) and a more accurate prediction of \(\varepsilon_{C1} \) at all \(r \) levels.

Final results of our composite fits are given in Table II, along with precision estimates by an approximated standard error associated with each parameter value in Table IV. Two experimental designs, A–CD–50 and B–CD–50, yielded consistently high precision (low standard errors) for all material properties. Among the other experimental designs, estimates of \(q_0 \) and \(q_1 \) appear to be the least sensitive. A trial was made to prescribe \(q_0 \) and \(q_1 \) as a function of \(A \) and \(x \) in accordance with Eq. (4) and then determine the optimum values of \(A \) and \(x \) representing all material sets. However, the resulting fits deviated too far from data to be considered useful, and the results as given in Table II are more accurate.

Although our composite values of \(c_i \) and \(c_i \) in Table II are overall highly correlated with the composite values reported in Gunderson et al. [11], with correlation coefficients of 0.995 and 0.998 for \(c_i \) and \(c_i \), respectively, differences between the two studies were observed in the effect of RH on these constants. At 50% RH, our composite values of \(c_i \) are on average 18% greater than those reported by Gunderson, and at 90% RH the difference is 6.5%. At 50% RH, our composite values of \(c_i \) are on average 3% lower than those of Gunderson, and at 90% RH they are 7.4% greater.

PREDICTIONS AT CONSTANT LOAD

Expressions for the components of Eq. (13) at a constant \(p \) are given in the third column of Table I. Figure 8 shows creep strain plots of Eq. (13) based on material properties from experimental design B–CD–50, if instantaneous loads of 0.1\(P \), 0.35\(P \), 0.6\(P \), 0.75\(P \) and 0.8\(P \) were applied. \(P \) is the ROL strength at 263 N/m². Over the time scale shown, the strains at 0.75\(P \) and 0.8\(P \) are truncated at a time of failure predicted by Eq. (2). Although there are no data for verifying these curves (Fig. 8), the predicted curves for paper in Fig. 8 have the same form as the experimental data during primary and secondary creep of corrugated fibreboard (Fig. 3).

COMMENTS AND CONCLUSIONS

A new stress–strain relationship including elastic and irreversible creep strain components is proposed for paper. Expressions for creep rate characterizing constant load data are integrated to determine corresponding expressions for creep strain. To further generalize these creep strain expressions and deal with a linearly increasing load, our model incorporates the relationships among load level, creep rate and failure time from other previous Forest Products Laboratory investigations, thereby unifying these studies. The results enable DOL and ROL data to be characterized in terms of the same physical constants. Fits of our model to data were determined from previous ROL experiments on containerboard materials. Such tests successfully characterized the primary and secondary phases of creep, but new and different experiments appear to be warranted to better quantify tertiary creep.

In actual service, the containerboard components of corrugated containers are subjected to neither a constant duration of load nor a linearly increasing load. Changes in humidity and moisture content within various components would impose cyclical stresses upon an average load. Since our expressions for strain in response to a linearly increasing load were derived by integrating appropriate expressions between an initial zero time and a terminal time, the analysis can be broadened easily to integration between arbitrary time limits representing an infinitesimal time increment. Such results would provide a way to represent any load profile with a numerical summation of linear load segments and to examine the strain response to humidity-induced loads. In addition, our model can also be used to determine a zero-to-failure loading profile that spans multiple load rates and enables all the physical constants in the model to be determined from a single stress–strain curve.

REFERENCES

4. LEAKE, C.H. and WOJCik, R., “Influence of the

KEYWORDS: PAPER, STRESS STRAIN PROPERTIES, CREEP, MATHEMATICAL MODELS.