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Transverse Vibrational Techniques
Transverse vibration techniques have received considerable attention for
nondestructive evaluation (NDE) applications. To illustrate these methods, an
analogy can be drawn between the vibration of a mass that is attached to a
weightless spring and internal damping force and the behavior of a vibrating
beam (Fig. 2.1). in Figure 2.1, mass M is supported from a rigid body by a
weightless spring whose stiffness is denoted by K. Internal friction or damp-

DJ IPO sin wt

Ry sin wt

Figure 2.1 - Mass-spring dashpot vibration model (left) and transversely vibrating
beam(right).
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ing is represented by the dashpot D. A forcing function equaling Posinwt or
zero is applied for forced and free vibration, respectively. When M is set into
vibration, its equation of motion can be expressed by the following:

d> d ,
M(d—tf) +D(ﬁ} +Kx = P, sin ot [2.1]

Equation [2.1] can be solved for either K or D. A solution for K will lead
to an expression for modulus of elasticity (MOE) where for a beam freely
supported at two nodal points

MOE= LWL
12.651g [2.2]
and for a beam simply supported at its ends
MOE= [’ WL
2.461g [2.3]

In Equations [2.2] and [2.3],

MOE = dynamic modulus of elasticity (Ib./in.2, Pa),
f. = resonant frequency (Hz),
W = beam weight (lv., kg.g),
L = beam span (in., m),
I = beam moment of inertia (in.4, m4), and
g = acceleration due to gravity (386 in./s?, 9.8 m/s?).

Solving Equation [2.1] for D leads to an expression of the internal friction
or damping component. The logarithmic decrement of vibrational decay o
is a measure of internal friction and can be expressed in the form (for free
vibrations)

6 1 In A

) (7’1*‘1) An

[2.4]

\évhere A1) and A, are the amplitudes of two oscillations n - 1 cycles apart
Fig. 2.2).

For forced vibrations,

_mAf L
f, Jarap-1 25]

where:

Af = difference in frequency of two points of amplitude A on each
side of a resonance curve,

f. = frequency at resonance, and
A, = amplitude at resonance (Fig. 2.2b).
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Sharpness of resonance Q is frequently used to measure damping capac-
ity; Q is defined as the ratio f,/Af. Note that if the value 0.707A, (half-power
point method) is substituted for A in Equation [2.5], the equation reduces
to

5= TAf

e [2.6]

and

Oo];‘

[2.7]
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point method.

Pellerin (1965a,b) used the apparatus shown in Figure 2.4 to examine the
free transverse vibration characteristics of dimension lumber and glulam tim-
bers. After obtaining a damped sine waveform for a specimen, he analyzed it
utilizing equationa for MOE and logarithmic decrement. Measured values of
MOE and logarithmic decrement were then compared to static MOE and
strength values. O'Halloran (1969) used a similar apparatus and obtained
comparable results with softwood dimension lumber. Wang et al. (1993) used
transverse vibration techniques to evaluate the static bending MOE of struc-
tural lumber. Ross et al. (1991? obtained comﬁarable results through coupling
relatively inexpensive personal computer technologies and transverse vibra-
tion NDE techniques. Research on the use of transverse vibration techniques

Traverse Vibration and Longitudinal Stress Wave 15
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Figure 2.3 - Experimental setup used to measure
response of wood beams to forced transverse
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imens (Pellerin 1965a,b).

then allowed to freely oscillate in the vertical (transverse

Figure 2.4 - Apparatus used to examine free
transverse vibration characteristics of lumber spec-

to assess the potential of hard-
wood lumber for structural
applications is summarized in
Table 2.2.

The use of transverse vibra-
tion techniques has evolved
considerably, especially in the
past several years. Two firms
have developed excellent equip-
ment that utilizes free trans-
verse vibration techniques
(Table 2.3). Both pieces of
equipment utilize relatively
low-cost personal computer
technologies as part of their
data acquisition and comput-
ing package. This equipment is
used by lumber grading agen-
cies and research organizations
worldwide to assist in assessing
the potential yield of structural
lumber that can be obtained
from a given wood species or
species group.

Essential Laboratory
Testing Procedures

and Key Information

Figure 2.5 illustrates a
typical free transverse vibra-
tion test setup. The specimen
is simply supported at both
ends. A slight deflection is in-
troduced at the midspan of the

specimen. The specimen_ is
direction.

Frequency of oscillation is determined and, along with the specimen weight
and dimensions, used to compute MOE. The MOE is calculated from the fol-

lowing formula:

where:

MOE

2.461g

f = resonant frequency (Hz),
W = weight of specimen (Ib.),

S = span (in.),

I = moment of inertia (in.#), and
g = acceleration due to gravity (386 in./s?).

[2.8]
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Table 2.3 - Equipment for free transverse vibration

techniques.
Manufacturer Description of equipment
Qualtim, Inc. E-Wave - Measures modulus

5937 Meadwood Dr., Suite 7 of elasticity, weight, specific
Madison, W153711-4125 USA  gravity, and damping ratio

Telephone: (608) 271-1176 from transverse vibration of
Fax: (978) 285-7693 simply supported specimens.
E-mail: info@qualtim.com

Metriguard, Inc. Model 340

1120 SE Latah,P.O. Box 399 Transverse Vibration E
Pullman,WA99163USA Computer-Measures
Telephone: (509) 332-7526 modulus of elasticity, weight,
Fax: (509) 332-0485 specific gravity, and damping

E-mail: sales@metriguard.com ratio from transverse
vibration of simply supported

specimens.
Oscillation
------------ /

72722 74 777 72777772
S g
_________ L T
e Span (9) ™

Specimen length (L)

Figure 2.5 - Schematic of typical free transverse vibration test setup.

Three elements are essential to the test setup: a support apparatus, an
escitation system, and a measurement system.

Support apparatus
e The apparatus should provide vertical support to the ends of the specimen
yet permit rotation.

* The specimen should be supported so as to prevent damage at the point
of contact between the specimen and the reaction support. The reactions
shouold be such that shortening and rotation of the specimen about the
reaction resulting from deflection are not restricted.

e Provisions shold be made at the reactions to allow for initial twist in the
length of the specimen. If the bearing surfaces of the specimen at its
reaction are not parallel, the specimen should be shimmed or the bear-

ing surfaces rotated about an axis parallel to the span to provide ade-
quate bearing across the width of the specimen.

* No lateral support should be applied. Specimens unstable in this mode
should not be tested.

Traverse Vibrational and Longitudinal Stress Wave 19



The specimen should be positioned such that an equal portion of the
length overhangs each support. Excessive overhang may alter results. If
Equation [2.8] is used, the span to length (S/L) ratio of the specimen
should exceed 0.98. Other S/L ratios may be used, but a more exacting
analysis and equation are needed (Murphy 1997). An overhang of ap-
proximately 1 in. (25.4 mm) on each end is often used in tests of dimen-
sion lumber. The amount of overhang may be influenced by the conven-
ience of handling and positioning, but it should be kept uniform
from specimen to specimen.

Excitation system

The member should be excited so as to produce a vertical oscillation in
a reproducible manner in the fundamental mode.

Manual deflection of the specimen will provide sufficient impetus for
oscillation for many products. The deflection should be vertical with an
effort to exclude lateral components; neither excessive impact nor pro-
longed contact with the specimen is recommended. For example, a man-
ual tap on a 16-ft. (4.8-m) nominal 2- by 12-in. (standard 38- by 286-mm)
piece of lumber with MOE of 2.0 x 10¢ Ib./in.2 (13.8 GPa) and supported
flatwise will result in a vertical oscillation of 3 to 4 Hz.

Specimens with very high stiffness require mechanical excitation by a
high force or carefully regulated impact/release.

Measurement system

Measurement of the frequency of oscillation should be obtained by
either a force or displacement measuring device.

Changes in force in response to the vibration at one or both supports are
used to obtain frequency of oscillation.

Frequency of oscillation can also be determined by measuring midspan
displacement in response to initial displacement.

It is critical that only the frequency associated with the fundamental ver-
tical oscillation mode be used. Immediately after the specimen is excit-
ed, many vibration modes appear. The modes associated with higher fre-
quencies than the fundamental bending frequency usually dissipate rap-
idly. Therefore, a short delay is necessary before acquiring the data to
ensure that the data are related only to the fundamental vertical mode.
This is an effective way to filter undesired modes from the data.

The span-to-depth ratio should be greater than 60 unless special pre-
cautions are taken to permit higher frequency measurements. With
small span-to-depth ratios, it is difficult to verify that the specimen is
oscillating in a bending mode. Best results are obtained when the fre-
quency of oscillation is less than 30 Hz.

Stress Wave Techniques

Several techniques that employ stress wave propagation have been

researched for use as NDE tools. Speed-of-sound transmission and attenuation
of induced stress waves in a material are frequently used as NDE parameters.

To illustrate stress wave techniques, consider application of one-dimen-
sional wave theory to a homogeneous viscoelastic bar (Fig. 2.6). After an
impact hits the end of the bar, a compression wave is generated. This wave
immediately begins moving down the bar as particles at the leading edge of
the wave become excited, while particles at the trailing edge come to rest. The

20
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Figure 2.6 - Viscoelastic bar of length L subjected to an
impact.

Tensile
wave
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Figure 2.7 - Travel of compression wave along bar. The
forward-moving wave impinges on the free end of the
bar, is reflected as a tensile wave, and begins to travel
back down the bar.

Stress
=1
3
[1]

Figure 2.8 - Waveforms consist of a series of equally
spaced pulses whose magnitude decreases exponential-
ly with time.

wave depth or the dis-
tance between the lead-
ing and trailing edges
of the wave is con-
trolled by the length of
the impactor and the
velocity of propagation
of the material that
makes up the impactor.
The wave moves along
the bar at a constant
speed, but its individual
particles have only small
longitudinal movements
as a result of the wave
passing over them. Af-
ter traveling the length
of the bar; this forward-
moving wave impinges
on the free end of the
bar and is reflected as a
tensile wave traveling
back down the bar
(Fig. 2.7) the velocity
of the wave is indepen-
dent of the intensity of
the impact.

Energy is dissipated
as the wave travels
through the bar; there-
fore, although the
speed of the wave re-
mains constant, move-
ment of particles di-
minish with each suc-
cessive passing of the
wave. Eventually all
particles of the bar
come to rest. Monitor-
ing the movement of a

cross section near the end of such a bar in response to propagating stress
wave results in waveform that consists of a series of equally spaced pulses
whose magnitude decreases expotentially with time (Fig. 2.8).

The propagation speed C of such a stress wave can be determined by
coupling measurements of the time between pulses, Az, and the length of the

bar L by

c-2k
At

[2.9]

The MOE can be computed using C and the mass density of the bar p:

Traverse Vibration and Longitudinal Stress Wave
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2
MOE=C"p [2.10]

Wave attenuation can be determined from the rate of decay of the ampli-
tude of pulses using Equation [2.4] for logarithmic decrement.

Note that wave attenuation calculated by this formula is highly dependent
upon characteristics of the excitation system used. Thus, results reported by
various researchers cannot be directly compared because several excitation
systems were employed. Nonetheless, these results show that energy loss
characteristics as measured by stress wave techniques provide useful infor-
mation on the performance of wood-based materials.

A more rigorous treatise on the measurement of energy loss by stress wave
techniques is presented by Kolsky (1963). In general, a more appropriate
method for evaluating energy loss would be to determine the quantity of ener-
gy imparted into a member and the corresponding rate of energy loss. Loss of
energy would be calculated using an integral of a waveform, as is done for
determining the energy emitted during acoustic emission testing of materials
(Harris et al. 1972). This is defined as the root mean square (RMS) value.

Wood is neither homogeneous nor isotropic; therefore, the usefulness of
one-dimensional wave theory for describing stress wave behavior in wood
could be considered dubious. However, several researchers have explored
application of the theory by examining actual waveforms resulting from prop-
agating waves in wood and wood products and have found that one-dimen-
sional wave theory is adequate for describing wave behavior. For example,
Bertholf (1965) found that the theory could be used to accurately predict
dynamic strain patterns in small wood specimens. He verified predicted stress
wave behavior with actual strain wave measurements as well as dependence of
propagation velocity on the MOE of clear wood. Ross (1985) examined wave
behavior in both clear wood and wood-based composites and observed excel-
lent agreement with one-dimensional theory. Similar results were obtained
with clear lumber in tests conducted by Kaiserlik and Pellerin (1977).

An interesting series of experiments designed to explore wave behavior in
lumber was conducted by Gerhards (1981, 1982). He observed changes in the
shape of a wave front in lumber containing knots and cross grain by measur-
ing the change in wave speed in the vicinity of such defects. He concluded
that a stress wave traveling in lumber containing knots and cross grain does
not maintain a planar wave front.

One common technique that employs stress wave NDE technology uses
simple time-of-flight type measurement systems to determine stress wave
propagation speed (Figs. 2.9 and 2.10). In these measurement systems, a
mechanical or ultrasonic impact is used to impart a longitudinal wave into
a member. Piezoelectric sensors are placed at two points on the member
and used to sense passing of the wave. The time required for the wave to
travel between sensors is measured and used to compute wave propagation
speed.

Stress wave transmission times on a per length basis for various wood
species are summarized in Table 2.4. Note that stress wave transmission
times are shortest along the grain (parallel to fiber) and longest across the
grain (perpendicular to fiber). Note that for Douglas-fir and Southern Pine,
stress wave transmission times parallel to the grain are approximately
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200 ps/m (60 ps/ft.). Stress
Timer wave transmission times per-
pendicular to the grain range

from 850 to 1,000 ps/m (259
to 305 ps/ft.).

Start Stop )
iipas trigger trigger Several research projects

hammer have been conducted on the
Acsslerometer use of one-dimensional wave

e mee i S theory for assessing the MOE

of clear wood, lumber, and
Specimen veneer. These studies have
examined relationships bet-
ween MOE values obtained
from stress wave measure-
ments and those obtained by
static testing techniques. The
strong correlative relation-
ships found in these studies

Figure 2.9 —System used to measure impact-
induced stress wave propagation speed in various
wood products.

Transmittin ;
ks lients [TeSt =pemen tRec%iving are shown in Table 2.5.
v ransducer
Ji Table 2.6 summarizes
research on the use of stress
wave techniques for assess-
Microsecond ing the strength properties of
timer lumber and composite prod-
s ucts. Kaiserlik and Pellerin
i (1977), for example, used

stress wave techniques to
Figure 2.10 - Ultrasonic measurement system evaluate the tensile strength
used to measure speed-of-sound transmission in 0f a small sample of clear

various wood products. lumber containing varying
degrees of slope of grain. They

used the one-dimensional wave equation, Equation [2.9], to compute MOE
and the equation presented by Pellerin (1965b) for logarithmic decrement.

Extensive research has been conducted on the use of stress wave tech-
niques for assessing the mechanical properties of wood composites (Fagan
and Bodig 1985; Pellerin and Morschauser 1974; Ross 1984; Ross and Pellerin
1988; Vogt 1985). Pellerin and Morschauser (1974) used the setup in Figure
2.11 to show that stress wave speed could be used to predict the flexural
behavior of underlayment-grade particleboard. Ross (1984) and Ross and
Pellerin (1988) showed that wave attenuation is sensitive to bonding charac-
teristics and is a valuable NDE parameter that contributes significantly to the
prediction of tensile and flexural mechanical behavior of wood-based particle
composites. Vogt (1985) examined the use of stress wave techniques with
wood-based fiber composites. In an additional study, Vogt (1986) found a
strong relationship between internal bond and stress wave parameters of par-
ticle and fiber composites.

The use of stress wave techniques with wood subjected to different lev-
els of biodeterioration, which adversely affects mechanical properties, has
been limited to studies that have employed only energy storage parameters
(Table 2.7). For example, Pellerin et al. (1985) showed that stress wave
speed could used to monitor the degradation of small, clear wood speci-
mens exposed to brown-rot fungi. They showed a strong correlative rela-
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Table 2.5—Summaryof research on correlation between
stress wave and static modulus of elasticity of clear wood,
lumber, and veneer.

Static Correlation
Reference Material  loading mode coefficient r
Belletal. (1954) Clear wood Compression 0.98
Clear wood Bending 0.98
Galligan and Lumber Bending 0.96
Courteau (1965)
Koch and Veneer Tension 0.96-0.94
Woodson (1968)
Porteretal. (1972)  Lumber Bending 0.90-0.92
Pellerin and Lumber Bending 0.96
Galligan(1973)
Veneer Tension 0.96
McAlister (1976) Veneer Tension 0.99
Gerhards (1982) Knotty lumber Bending 0.87
Clear lumber  Bending 0.95

tionship between stress wave speed and parallel-to-grain compressive
strength of exposed wood. Rutherford et al. (1987) showed similar results.
These authors also revealed that MOE perpendicular to the grain, meas-
ured using stress wave NDE techniques, was significantly affected by
degradation from brown-rot decay and could be used to detect incipient
decay. Chudnoff et al. (1984) reported similar results from experiments that
utilized an ultrasonic measurement system and several hardwood and soft-
wood species. Patton-Mallory and De Groot (1989) reported encouraging
results from a fundamental study dealing with the application of acousto-
ultrasonic techniques. Their results showed that energy loss parameters
may provide useful additional information on early strength loss from
incipient decay caused by brown-rot fungi.

Verkasalo et al. (1993) and Ross et al. (1992) obtained encouraging results
when using stress wave techniques to identify bacterially infected red oak.
They found that speed of sound transmission perpendicular to the grain was
significantly slower in sections of wood containing bacterial infection.

Stress wave techniques, especially those relying on measurement of trans-
mission times, are used worldwide. Current manufacturers of stress wave
timing equipment are listed in Table 2.8.

Essential Laboratory Testing
Procedures and Key Information
The following text describes essential laboratory testing procedures and

additional key information for using stress wave measurements in a labora-
tory environment.

Pulse Echo Test Setup
Figure 2.11 illustrates a typical pulse echo test setup. An impact or
"pulse™ on one end of the specimen induces a wave to flow along the length

Traverse Vibration and Longitudinal Stress Wave 25
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Table 2.7—Research summary of correlation between nondestructive testing parameters and properties of degraded wood.

NDE Degradation
Reference technique  Material agent

NDE
parameter
measured

Static
test

Reported
properties

Comparison of NDE parameters
and static properties (correlation
coefficient #, unless noted)

Chudnoff et al. Longitudinal ~ Decayed and —
(1984) stress wave sound mine
(parallel to props;
grain) 26 species
or species
groupings
Pellerinetal. Longitudinal ~ Small clear ~ Brown-rot fungi
(1985) stress wave southern (Gloeophyllum
(parallel to yellow pine  trabeum)
grain) specimens

Termites
(subterranean)

Eq

C E,

C,Ey

Compression
parallel to grain

Compression
parallel
to grain

E, UCS

UcCs

E.and Eg, 0.84-0.97 (all species
combined, hardwoods, maple, and oaks)
E.and Eg4, 0.73-0.81 (all species
combined, southern pines, lodgepole pine)
UCS and Ej, 0.85-0.95 (all species
combined, hardwoods, maple, and oaks)

UCS and C:

0.47 (control)

0.73 (exposed)

0.80 (control and exposed)
UCS and Ey:

0.86 (control)

0.86-0.89 (exposed)

0.94 (control and exposed)

UCSand C:

0.65 (control)

0.21 (exposed)

0.28 (control and exposed)
UCSand E:

0.90 (control)

0.79 (exposed)

0.80 (control and exposed)
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Impactor Sensor of a specimen. The pulse is

, | “echoed from the opposite

Specimen end of the specimen, hence

[ " the term pulse echo. Char-
: L ' acteristics of waveforms ob-
served when using the pulse

echo technique are highly

Oscilloscope ~ dependent upon the type of

sensor used. Various types

Figure 2.11—Typical pulse echo test setup. of sensors, including those
that measure particle dis-

i placement, particle velocity,

S et and particle acceleration or

kS strain, can be used with this

2 /\ /\ type of test setup. Fig-

. L — ure 2.12 illustrates example

IS Hims waveforms  obtained by

. transducers that measure

particle velocity and accel-

g| ——at eration. Note that the time

ok /\ required for a pulse to trav-
&6 — el a round trip through the
=8l \J \J \J Tm  specimen canp be otgtained
by using any of these trans-

Figure 2.12 - Example waveforms obtained by ducers. The formula for
transducers that measure particle velocity and transmission time Is
acceleration.

Transmission time -At

2L

where At is time between pulses and L is specimen length. Note that this tech-
nique, as described, requires that both ends of the specimen are freely sup-
ported. A fixed end support condition will yield waveforms with different
characteristics.

Pitch and Catch Test Setup

Figure 2.13 illustrates a typical pitch and catch test setup. A pulse is intro-
duced in the specimen, sensed by a transducer, and then allowed to flow
through the specimen. The leading edge of the pulse is then sensed by a sec-
ond transducer located further down the specimen. A pitch and catch test
setup yields an electronic signal similar to that illustrated in Figure 2.14. The
time required for the wave or pulse to travel between the sensors can be cal-
culated by the following equation:

Transmission time = %E

where At is time between pulses and L is distance between transducers.

There are two key points to consider when using the pitch and catch test
setup:

Traverse Vibration and Longitudinal Stress Wave 31



Oscilloscope

Impactor

i

Transducer Transducer

L
(Distance between transducers)

Figure 2.13— Typical pitch and catch test setup. Pulse is introduced in
specimen, sensed bytransducer, and allowedto flow through specimen.

I At 1
| |
I I
I I
% 1 1/ f
S S = -
S V [ Time
Output from Output from
transducer transducer
closest to impactor farthest from impactor

Figure 2.14 — Electronic signal yielded by pitch and catch test setup.

Oscilloscope

O

Accelerometer

{
)}}» Specimen 5
|

Compression
wave

Figure 2.15— Accelerometer positioned so that its base faces away from
approaching compressive wave. Orientation of accelerometer influences characteristics

of waveform.

1. The transducers must be in line with each other.

2. Many transducers are sensitive to the manner in which they are installed.
For example, commonly used accelerometers yield wave forms that are
strongly dependent upon which direction they sense the pulse. Note that
in Figure 2.15, the base of the accelerometer directly faces an approach-
ing compressive wave. Simply turning the accelerometer so that its base
faces away from the approaching compressive wave changes the charac-
teristics of the waveform.
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