ANALYSIS OF OFF-AXIS TENSION TEST OF WOOD SPECIMENS

Jen Y. Liu
Research General Engineer
U.S. Department of Agriculture
Forest Service
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53705-2398
(Received March 2001)

ABSTRACT

This paper presents a stress analysis of the off-axis tension test of clear wood specimens based on orthotropic elasticity theory. The effects of Poisson’s ratio and shear coupling coefficient on stress distribution are analyzed in detail. The analysis also provides a theoretical foundation for the selection of a 10° grain angle in wood specimens for the characterization of shear properties. The Tsai–Hill failure theory is then applied to derive a formula for predicting shear strength. Existing strength data for Sitka spruce (Picea sitchensis Carr.) were used in a numerical analysis. Because of the large discrepancies in published test data from different sources, the accuracy of the formula is limited to the data used to derive it. However, the procedures are believed to be accurate. The off-axis tension test is attractive mainly because of its economy and ease of application. This research promises to pave the way for the adoption of the off-axis tension test for characterizing the shear properties of clear wood by the practicing engineer once representative input data become available.

Keywords: Off-axis tension test, orthotropic elasticity, shear strength, tensile strength, Tsai–Hill failure theory.

INTRODUCTION

The off-axis tension test has become attractive for determining the shear properties of composite materials because of its relatively low cost and operational simplicity. Pagano and Halpin (1968) studied the problem of specimen end constraints and the effect of the length-to-width ratio. Wu and Thomas (1968) discussed a rotating clamp fixture design. The results of Pagano and Halpin (1968) were verified and extended by Richards et al. (1969) and Rizzo (1969). Chamis and Sinclair (1977) proposed a 10° off-axis tensile specimen for characterizing fiber–composite intralaminar shear.

More recently, Pindera and Herakovich (1986) studied the relation between end constraints and accurate determination of shear modulus and the necessity of including shear coupling in stress analyses. Pierron and Vautrin (1996) discussed the use of oblique tabs proposed by Sun and Chung (1993). Pierron et al. (1998) then performed a whole-field assessment of the effects of end constraints on the strain field and reported that oblique tabbing can lead to a homogeneous strain field. Yoshihara and Ohta (2000) conducted an off-axis tension test for shear strength of Sitka spruce (Picea sitchensis Carr.) and other species. Their sample size was relatively small, nor did they apply any failure criteria to analyze their data. Consequently, their results seem to be somewhat inconclusive.

In the present study, we performed a detailed stress analysis for the off-axis tension test for clear Sitka spruce specimens to evaluate the effects of Poisson’s ratio and shear coupling coefficient on stress distribution. We then applied the Tsai–Hill failure criterion using test data from Yoshihara and Ohta (2000), the Forest Products Laboratory (FPL 1999),
and Liu and Floeter (1984). A procedure to use the 10° off-axis tension test for the determination of clear wood shear strength is suggested.

STRESS-STRAIN RELATIONS

Let the 1–2 coordinate system represent the principal material axes and the x–y coordinate system the geometrical axes with angle \(\theta \) from the x axis to the 1 axis, as shown in Fig. 1. The normal stresses \(\sigma_1 \) and \(\sigma_2 \) in the 1 and 2 axes, respectively, and the shear stress \(\tau_{12} \) or \(\tau_{06} \) in the 1–2 plane can be written as

\[
\begin{align*}
\sigma_1 &= \sigma_m m^2 \\
\sigma_2 &= \sigma_m n^2 \\
\tau_{12} &= -\sigma_m mn
\end{align*}
\]

where
\[
m = \cos \theta \quad \text{and} \quad n = \sin \theta
\]

The relations in Eq. (1) are independent of material properties; i.e., they are the same for isotropic or anisotropic materials.

For an anisotropic or orthotropic material such as wood, the applied stress \(\sigma_x \) in Fig. 1 produces the following strains:

\[
\begin{align*}
\varepsilon_x &= \frac{\sigma_x}{E_x} \\
\varepsilon_y &= -\frac{\nu_{xy}}{E_x} \sigma_x \\
\gamma_{12} &= \frac{\eta_{12}}{E_x} \sigma_x
\end{align*}
\]

In Eq. (3), the Poisson’s ratio \(\nu_{xy} \), corresponding to stress in the x-direction and strain in the y-direction, is the negative ratio of the transverse strain \(\gamma_{12} \) to the axial strain \(\varepsilon_x \). The shear coupling coefficient \(\eta_{12} \), corresponding to normal stress in the x-direction and shear strain in the x-y plane, is the ratio of the shear strain \(\gamma_{12} \) to the axial strain \(\varepsilon_x \).

The strain components referred to the 1 and 2 axes can be expressed in terms of those referred to the x, y axes by the following transformation relations:

\[
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\frac{1}{2} \gamma_{12}
\end{bmatrix} =
\begin{bmatrix}
E_x \\
E_x \\
2 \eta_{12}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{12}
\end{bmatrix}
\]

where the transformation matrix \([T]\) is given by

\[
[T] =
\begin{bmatrix}
m^2 & n^2 & 2mn \\
n^2 & m^2 & -2mn \\
-2mn & mn & m^2 - n^2
\end{bmatrix}
\]

The stress-strain relations in the 1-2 coordinate system are

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} =
\begin{bmatrix}
\mathcal{Q}_{11} & \mathcal{Q}_{12} & 0 \\
\mathcal{Q}_{12} & \mathcal{Q}_{22} & 0 \\
0 & 0 & 2 \mathcal{Q}_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\frac{1}{2} \gamma_{12}
\end{bmatrix}
\]
The reduced stiffnesses \(Q_{11}, Q_{22}, Q_{12}, \) and \(Q_{66} \) can be related to the basic engineering constants \(E_1, E_2, G_{12}, \) and \(v_{12} \) as follows:

\[
Q_{11} = \frac{E_1}{1 - v_{12}v_{21}} \quad Q_{22} = \frac{E_2}{1 - v_{12}v_{21}}
\]

\[
Q_{12} = \frac{v_{21}E_1}{1 - v_{12}v_{21}} = \frac{v_{12}E_2}{1 - v_{12}v_{21}}
\]

\[
Q_{66} = G_{12}
\]

(7)

From Eqs. (3), (4), and (6) by means of Eqs. (5) and (7), we obtain expressions for \(s_1, s_2, \) and \(t_6 \) in terms of the engineering constants, which should be equal to the corresponding expressions in Eq. (1). These expressions can be put in dimensionless form as follows:

\[
\sigma_1 = \frac{E_1}{E_x(1 - v_{12}v_{21})} \times [m^2 + v_{21}n^2 - v_{xy}(n^2 + v_{21}m^2)] + \eta_{x_0}(1 - v_{21})mn = m^2
\]

\[
\sigma_2 = \frac{E_2}{E_x(1 - v_{12}v_{21})} \times [v_{12}m^2 + n^2 - v_{xy}(v_{12}n^2 + m^2)] + \eta_{x_0}(v_{12} - 1)mn = n^2
\]

\[
\tau_6 = \frac{G_{12}}{E_x}[-2mn(1 + v_{xy}) + \eta_{x_0}(m^2 - n^2)]
\]

(8a)

(8b)

(8c)

In Eq. (8), the transformed elasticity modulus \(E_x, \) the Poisson’s ratio \(v_{xy}, \) and the shear coupling coefficient \(\eta_{x_0}, \) are as follows (Jones 1975):

\[
\frac{1}{E_x} = \frac{1}{E_1}m^4 + \left(\frac{1}{G_{12}} - \frac{2v_{12}}{E_1} \right)m^2n^2 + \frac{1}{E_2}n^4
\]

(9)

\[
\frac{v_{xy}}{E_x} = \frac{v_{12}}{E_1}(m^4 + n^4)
\]

\[
- \left(\frac{1}{E_1} + \frac{1}{E_2} - \frac{1}{G_{12}} \right)m^2n^2
\]

(10)

In Eq. (12), the Tsai–Hill failure criterion for orthotropic materials (Daniel and Ishai 1994) is

\[
\frac{\sigma_1^2}{F_1^2} + \frac{\sigma_2^2}{F_2^2} + \frac{\tau_6^2}{F_6^2} - \frac{\sigma_1\sigma_2}{F_1F_2} = 1
\]

(12)

in which \(F_1, F_2, \) and \(F_6 \) are the values of \(s_1, s_2, \) and \(t_6 \) at failure, respectively, and the normal stress and strength in any one direction must be either tensile or compressive. Substituting Eq. (1) into Eq. (12) with the applied stress \(\sigma_x \) replaced by \(F_x, \) we obtain

\[
\frac{1}{F_x^2} = \frac{m^4 + n^4}{F_1^2 + F_2^2} + \left(\frac{1}{F_6^2} - \frac{1}{F_1^2} \right)m^2n^2
\]

(13)

Note that \(F_x \) corresponding to any specified angle can be predicted once \(F_1, F_2, \) and \(F_6 \) are known. The Tsai–Hill theory allows for considerable interaction among the stress components \(s_1, s_2, \) and \(t_6. \) The requirement that each normal stress and the corresponding strength should be either tensile or compressive poses no problem because an off-axis tension test involves only tensile stresses and strengths.

RESULTS AND DISCUSSION

We obtained numerical results to demonstrate the effects of Poisson’s ratio and shear coupling coefficient on stress distribution in defect-free Sitka spruce based on Eq. (8). Identifying the longitudinal axis with the 1 axis and the radial axis with the 2 axis, the basic engineering constants for Sitka spruce (Liu and Ross 1998) are \(E_1 = 11,800 \) MPa, \(E_2 = 2,216 \) MPa, \(G_{12} = 910 \) MPa, and \(v_{12} = 0.37. \) Using these values as input, \(E_x, v_{xy}, \) and \(\eta_{x_0}, \) which are needed in Eq. (8), are first calculated.

Figure 2 presents the variation of the ratio
The elasticity modulus of Sitka spruce as a function of grain angle. \(E_1 = 11,800 \text{ MPa}, E_2 = 2,216 \text{ MPa}, G_{12} = 910 \text{ MPa}, \) and \(v_{12} = 0.37. \)

\[E_{1}/E_1 \text{ with } \theta. \] The maximum value occurs at \(\theta = 0^\circ. \) It decreases drastically to \(30^\circ \) and reaches a constant value of \(E_{1}/E_1 \) at about \(55^\circ. \) At \(\theta = 10^\circ, \) the decrease in \(E_1 \) is about 23\% of \(E_1. \)

Figure 3 shows that \(h_{xs} \) is negative at \(0^\circ < \theta < 69^\circ \) with a minimum value of -1.42 at \(\theta = 15^\circ. \) At \(69^\circ < \theta < 90^\circ, \) \(h_{xs} \) is positive with a maximum value of 0.04 at \(\theta = 79^\circ. \) The Poisson’s ratio starts from 0.37 at \(\theta = 0^\circ, \) reaches a maximum value of 0.47 at \(\theta = 25^\circ, \) and drops to 0.07 at \(\theta = 90^\circ. \)

Using these data, we found that all of equations (8) are satisfied for any value of \(\theta. \) We then plotted from Eq. (8a) the sum of terms containing \(h_{xs}, \) the sum of terms containing \(v_{xy}, \) and the total of all terms, i.e., \(m_2, \) versus \(\theta \) (Fig. 4). As Fig. 4 shows, \(h_{xs} \) has a stronger effect than \(v_{xy} \) on \(s_1/s_x \) at \(3^\circ \leq \theta \leq 45^\circ. \) Beyond that range, the reverse is true.

Figure 5 shows the results from Eq. (8b). Here the sum of terms containing \(h_{xs} \) has the same sign as the total, \(n_2, \) while that of \(v_{xy} \) has the opposite sign in the range of \(\theta < 67^\circ. \) Beyond that range, both have insignificant effects on the total.

The ratio of \(\gamma, \) in Eq. (8c) plotted in Fig. 6 reveals that up to \(10^\circ, \) the total \(mn \) is only slightly above the sum of terms containing \(h_{xs} \) and the two vary linearly with \(\theta, \) indicating that \(h_{xs} \) has a predominant effect on \(s \) when \(\theta = 10^\circ. \) Assuming that when \(s \) increases to cause material to fail and the same
Fig. 5. Variations of \(\frac{s_x}{s_x} \) with \(\theta \) showing effects of \(\theta \) and \(v_x \) (Eq. 8b). \(a = \gamma^2 \), \(b = \) terms containing \(\omega \), \(c = \) terms containing \(v_x \).

Fig. 6. Variations of \(\frac{s_x}{s_x} \) with \(\theta \) showing effects of \(\theta \) and \(v_x \) (Eq. 8c). \(a = \gamma \mu \), \(b = \) terms containing \(\omega \), \(c = \) terms containing \(v_x \).

Fig. 7. Failure curve based on Tsai–Hill theory for \(F_1 = 141 \) MPa, \(F_2 = 7.4 \) MPa, and \(F_6 = 11.3 \) MPa and test data for Yoshihara and Ohta (2000).

The relation between \(\chi \) and \(\delta \) still holds, the value of \(\delta \) at that instant must have a definite relation with its value at the yield limit.

The Tsai–Hill failure criterion in Eq. (13) is based on assumptions of homogeneity (Perkins, Jr. 1972) and linear stress–strain behavior to failure as are almost all other macromechanical failure theories. It shows that for the prediction of failure load \(F_x \) corresponding to any specified value of \(\theta \), only the values of \(F_1 \), \(F_2 \), and \(F_6 \) are needed. Yoshihara and Ohta (2000) recently published these values for Sitka spruce as \(F_1 = 141 \) MPa, \(F_2 = 7.4 \) MPa, and \(F_6 = 11.3 \) MPa. Using these values in Eq. (13), the failure curve obtained is shown in Fig. 7 together with the test data of \(F_x \) at several values. Within the range \(110^\circ < \theta < 75^\circ \), the test data are significantly above the predicted values. With the \(F_x \) values from the
Tsai–Hill theory and the test data in Fig. 7 representing the corresponding value of s in Eq. (1c), the shear stresses $|\sigma|$ at failure are plotted in Fig. 8. (Note: In the Tsai–Hill theory, the sign for σ makes no difference. We therefore use its absolute value.) At $\theta = 10^\circ$, $|\sigma|$ is only about 1.2% less than its maximum value, which occurs at 13°, based on the Tsai–Hill theory. However, the test data are more prominently above the theoretical predictions at $10^\circ < \theta < 45^\circ$. It is against any theory for $|\sigma|$ to be larger than F_6 in an off-axis tension test. When that happens, the test facilities, specimen conditions, sample size, and other variables may all need to be reexamined. However, if we use the predicted value of $F_6 = 58.57$ MPa at $\theta = 10^\circ$ and substitute it into Eq. (1c) for σ, we obtain $|\sigma| = 10$ MPa, which is about 13% less than $F_6 = 11.3$ MPa, and seems to be reasonable. So, the important question is how reliable are the F_1, F_2, and F_6 values that were used in Eq. (13).

In the Wood Handbook (FPL 1999), F_1, F_2, and F_6 values for Sitka spruce are 78.3, 2.55, and 7.93 MPa, respectively, which are considerably lower than the values found by Yoshihara and Ohta (2000). Using these values in Eq. (13), we obtain $F_6 = 36.43$ MPa at $\theta = 10^\circ$ (Fig. 9). The corresponding value of $|\sigma|$ from Eq. (1c) is 6.23 MPa, which is about 27% less than $F_6 = 7.93$ MPa.

Liu and Floeter (1984) reported that $F_6 = 6.25$ MPa for Sitka spruce. Using $F_1 = 78.3$ MPa, $F_2 = 2.55$ MPa, and $F_6 = 6.25$ MPa, and following the same steps as described in the preceding text, we obtain $F_6 = 31.05$ MPa at $\theta = 10^\circ$ and $|\sigma| = 5.31$ MPa, which is about

Fig. 8. Variation of $|\sigma|$ with θ at occurrence of F_6.

Fig. 9. Failure curve based on Tsai–Hill theory for two sets of F_6 values: (a) $F_1 = 78.3$ MPa, $F_2 = 2.55$ MPa, and $F_6 = 7.93$ MPa (FPL 1999). (b) $F_1 = 78.3$ MPa, $F_2 = 2.55$ MPa, and $F_6 = 6.25$ MPa (Liu and Floeter 1984).

2The Wood Handbook F_1 value is adjusted based on data from dry specimens.
18% less than $F_s = 6.25$ MPa. Note the close proximity of the two failure curves in Fig. 9.

We are now ready to discuss the procedures to determine F_s from the 10° off-axis tension test. Assuming the set of data $F_1 = 141$ MPa, $F_2 = 7.4$ MPa, and $F_6 = 11.3$ MPa is valid, we have found that $F_s(\theta = 10°) = 31.05$ MPa and $|t_6| = 5.31$ MPa, which is about 18% less than $F_6 = 6.25$ MPa. Since 13% and 18% are close to one another, we select their mean, which is about 15%. We therefore obtain

$$F_6 \approx F_s(\theta = 10°) \times \sin 10° \cos 10° \times 1.15$$

$$= F_s(\theta = 10°) \times 0.2 \quad (14)$$

Also, from these two sets of data, we find $F_s(\theta = 10°) \times 0.4 \times F_1$. We can replace Eq. (14) by

$$F_6 = 0.08 \times F_1 \quad (15)$$

Our discussion is based on the Tsai–Hill theory and limited test data for Sitka spruce from different sources. Although there are considerable discrepancies between the two sets of test data, the formulas seem to be valid for both. The discrepancies may need to be reconciled, but the procedures presented are believed to be useful in applying the off-axis tension test for the characterization of wood shear properties.

CONCLUSIONS

1. In an off-axis tension test of clear wood specimens, at a 10° grain angle, the shear stress in the principal material plane is due mainly to the shear coupling coefficient.
2. In applying the Tsai–Hill theory for tensile strength prediction of wood at any grain angle, the strength data in the principal material axes and plane must be reliable to produce accurate results.
3. The 10° off-axis tension test can be used to predict clear wood shear strength in a principal material plane of wood.
4. A formula has been derived for shear strength prediction of Sitka spruce based on input data in the literature.

REFERENCES

