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I. Introduction 

This chapter provides an overview of the physiol­
ogy and associated molecular genetics of wood-
decaying fungi as they relate to organopollutant 
degradation. White-rot fungi are characterized by 
an ability to fragment all major structural poly­
mers of wood including lignin. More poorly under­
stood are the brown-rot fungi, which rapidly 
depolymerize cellulosic materials while only 
modifying lignin. Collectively, these wood- and 
litter-degrading fungi play a pivotal role in the 
carbon cycle. In fact, white-rot fungi are the only 
microbes known to efficiently mineralize fully 
lignified tissue. 

The wood-rotting fungi are obligate aerobes, 
deriving their nourishment from the biological 

USDA, Forest Service, Forest Products Laboratory, One 
Gifford Pinchot Dr., Madison, Wisconsin 53705, USA 

combustion of wood and associated materials, 
using molecular oxygen as a terminal electron 
acceptor. The focus here is on the non-specific 
extracellular enzyme systems of white-rot fungi. 
These oxidative enzymes have been shown to 
transform and degrade an array of organopollu­
tants in addition to depolymerizing lignin. Intra­
cellular metabolism of small molecular weight 
products is also covered, although relatively 
little is known of these processes. This chapter 
does not comprehensively review the voluminous 
literature on fungal degradation of lignin and 
related organopollutants. Recent developments 
are emphasized, and the reader is referred to 
previous review articles (Kirk and Farrell 1987; 
Eriksson et al. 1990; Gold and Alic 1993; Hammel 
1995b; Cullen and Kersten 1996; Cullen 1997; Kirk 
and Cullen 1998; Cameron et al. 2000; Pointing 
2001) for more detailed information. Areas of 
uncertainty are highlighted. 

II. Physiology of Wood-Decaying Fungi 

Lignin is a formidable substrate. The polymer is 
large and initial depolymerization must be ex­
tracellular. The structure is comprised of inter-
unit carbon-carbon and ether bonds that 
demand oxidative rather than hydrolytic degrada­
tive mechanisms. In addition, the polymer’s lack 
of stereoregularity requires ligninolytic agents 
that are less specific relative to the hydrolytic 
enzymes attacking cellulose. White-rot fungi have 
met these challenges through the evolution of 
extracellular peroxidases and oxidases that act 
non-specifically via the generation of unstable 
lignin free radicals, which undergo a variety of 
spontaneous cleavage reactions. The major 
enzymes acting directly or indirectly on lignin are 
lignin peroxidase (LiP), manganese peroxidase 
(MnP), and laccase (Fig. 5.1). All three enzymes 
can act with low molecular weight mediators to 
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Fig. 5.1. Extracellular oxidative enzyme systems of P. 
chrysosporium and related white-rot fungi. Lignin peroxi­
dase (LiP) and manganese peroxidase (MnP) coupled lipid 

bring about oxidation of lignin as well as an 
impressive array of xenobiotics (Table 5.1). The 
microbiology and physiology of ligninolytic fungi 
have been reviewed (Kirk and Farrell 1987; Eriks­
son et al. 1990; Gold and Alic 1993; Higuchi 1993; 
Tuor et al. 1995; Cullen and Kersten 1996). 

peroxidation oxidize ß-O-4 models as shown in reactions A 
and B, respectively. Laccases and Mn(III) oxidize phenols 
(C) 

A. Peroxidases 

1. Lignin Peroxidases 

LIP was first discovered based on H2O2-dependent 
cleavage of lignin model compounds 

and subsequently shown to catalyze the partial 



Table 5.1. Examples of organopollutants degraded by wood-decaying fungi PCBs polychlorinated biphenyls; PAHs poly­
cyclic aromatic hydrocarbons 

Species Organopollutant References(s) 

Berkandera adusta 

Cerioporiopsis subvermispora 

Coriolus versicolor 

Corolopsis gallica 
Corolopsis polyzona 
Gloeophyllum striatuma 

Gloeophyllum trabeuma 

Irpex lacteus 
Kuehneromyces mutabilis 
Laetiporus sulphureusa 

Nematoloma frowardii 

Phanerochaete chrysosporium 

Phanerochaete laevis 
Phanerochaete sordida 

Phlebia radiata 
Phlebia tremellosa 
Pleurotus eryngii 
Pleurotus ostreatus 

Pleurotus pulmonarius 
Pycnoporus cinnabarinus 
Trametes hirsutus 
Trametes hispida 
Trametes versicolor 

Azo dyes 

Phenyl urea herbicides 

PCBs 

PAHs 

PCBs 

Anthracene 

Fluorene 

4-Methyldibenzothiophene

Textile dyes 

PAHs 

PCBs 

2,4,-Dichlorophenol

Pentachlorophenol 

Pentachlorophenol 

Polyethylene glycol 

2,4,6-Trinitrotoluene 

Phenathrene and pyrene 

Phenanthrene and pyrene 

PAHs 

2,4,6-Trinitrotoluene 

Alkyl halide insecticides 

Chloroanilines 

DDT 

2,4-Dichlorophenol 

Heterocyclic dyes 

Endosulfan (cyclodiene) 

Various PAHs 


PCBs 


Pentachlorophenol 


Trichloroethylene 

2,4,5-Trichlorophenol 

2,4,6-Trichlorophenol 

2,4,6-Trinitrotoluene 


PAHs 

Creosote 

Penta chlorophenol 


Dioxins 

2,4,6-Trinitrotoluene 

PCBs 

Azo dyes

Industrial dyes 


PCBs 

Phenanthrene 

Phosphorothiolates

Various PAHs 


Benzo[a]pyrene 

Triclosan 

Lindane 

Industrial dyes 

PAHs 


PCBs 

Triclosan 


Heinfling et al. (1998) 
Khandrani et al. (1999)
Beaudette et al. (1998) 
Field et al. (1992); Kotterman et al. (1998a,b) 
Ferrey et al. (1994) 
Krivobok et al. (1998) 
Garon et al. (2000) 
Ichinose et al. (1999) 
Kapdan et al. (2000) 
Pickard et al. (1999) 
Novotny et al. (1997) 
Schlosser et al. (2000) 
Fahr et al. (1999)
Fahr et al. (1999) 
Kerem et al. (1998); Kerem and Hammel (1999) 
Kim and Song (2000) 
Sack and Fritsche (1997); Sack et al. (1997a) 
Sack and Gunther (1993); Sack et al. (1997a) 
Sack and Gunther (1993); Sack et al. (1997 a-c) 
Scheibner and Hofrichter (1998)
Kennedy et al. (1990) 
Sandermann et al. (1998) 
Bumpus and Aust (1987)
Valli and Gold (1991)
Cripps et al. (1990) 
Kullman and Matsumura (1996) 
Bumpus 1989; Hammel et al. (1991); Vazquez-

Duhalt et al. (1994); Bogan et al. 
(1996a); May et al. (1997) 

Bumpus et al. (1985); Eaton (1985; Thomas 
et al. (1992); Dietrich et al. (1995); Yadav et al. 
(1995); Novotny et al. (1997)


Hammel and Tardone (1988); Mileski et al. 

(1988); Lamar et al. (1990); Aiken and Logan 

(1996); Reddy and Gold (1999, 2000) 


Yadav et al. (2000) 

Joshi and Gold (1993) 

Armenante et al. (1994); Reddy et al. (1998) 

Fernando et al. (1990); Sublette et al. (1992); 


Hodgson et al. (2000) 

Bogan and Lamar (1996)

Davis et al. (1993); Lamar et al. (1994) 

Lamar and Dietrich (1990); Lamar et al. 


(1990a,b,1993) 
Takada et al. (1996)
Van Aken et al. (1999) 
Ferrey et al. (1994) 
Heinfling et al. (1998) 
Vyas and Molitoris (1995); Rodriguez et al. 

(1999) 
Beaudette et al. (1998) 
Bezalel et al. (1996) 
Amitai et al. (1998) 
Martens and Zadrazil (1998); Novotny et al. 

(1999); Baldrian et al. (2000) 
Maspahy et al. (1999) 
Hundt et al. (2000) 
Singh and Kuhad (1999)
Rodriguez et al. (1999) 
Majcherczyk et al. (1988); Collins et al. (1996);

Johannes et al. (1996); Johannes and 
Majcherczyk (2000) 

Novotny et al. (1997); Beaudette et al. (1998) 
Hundt et al. (2000) 

aBrown-rot fungi. All others are classified as white-rot fungi. 
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depolymerization of methylated lignin in vitro 
(Glenn et al. 1983; Tien and Kirk 1983,1984; Gold 
et al. 1984; Fig. 5.1A). Lignin peroxidase catalyzes 
a variety of oxidations, all of which are dependent 
on H2O2. Simply stated, LiP oxidizes aromatic 
nuclei of substrates by one electron and the result­
ing aryl cation radicals degrade spontaneously via 
many reactions dependent on substrate structure 
and on the presence of reactants (Harvey et al. 
1985; Kersten et al. 1985; Shoemaker et al. 1985; 
Hammel et al. 1986b). Reactions subsequent to 
cation radical formation are complex. The chem­
istry of Lip-catalyzed reactions has been reviewed 
(Higuchi 1990). 

Direct involvement of LiP has been demon­
strated in the degradation of a wide range of 
organopollutants. Polycyclic aromatic hydrocar­
bons (PAHs) with ionization potentials below 
approximately 7.6 eV, including benzo[a]pyrene, 
anthracene, and pyrene, are substrates for LiP 
(Hammel et al. 1986a). Similarly, free radical 
mechanisms involving purified LiP have been 
shown for chlorinated phenols (Hammel and 
Tardone 1988; Mileski et al. 1988; Valli and Gold 
1991; Reddy and Gold 2000), tetrahydrofurans 
(Vazquez-Duhalt et al. 1994), dioxins (Hammel et 
al. 	 1986a; Valli et al. 1992b), methoxybenzenes 
(Kersten et al. 1985), and various chloro- and 
nitromethoxybenzenes (Valli and Gold 1991; 
Valli et al. 1992a,b; Teunissen et al. 1998). The 
biochemistry of organopollutant degradation has 
been reviewed (Higson 1991; Hammel 1995a,b). 

Isozymic forms of Phanerochaete chrysospo­
rium LiPs are commonly distinguished by their 
pI and order of elution from a MonoQ anion-
exchange column. Ten peroxidases have been 
separated by this method and are designated H1 
through H10. Six of these, H1 (pI 4.7), H2 (pI 4.4), 
H6 (pI 3.7), H7 (pI 3.6), H8 (pI 3.5), and H10 
(pI 3.3), have veratryl alcohol oxidation activity 
(Renganathan et al. 1985; Kirk et al. 1986; Leisola 
et al. 1987; Farrell et al. 1989). Analytical isoelec­
tric focusing resolved 15 proteins with LiP activity 
(Leisola et al. 1987). The number of isozymes 
observed depends on the growth conditions (e.g. 
nitrogen- versus carbon-limited), the means of 
purification, and storage conditions. Proteolysis, 
dephosphorylation and other post-translational 
modifications contribute to isozyme multiplicity 
(Eriksson and Pettersson 1982; Kuan and Tien 
1989; Dosoretz et al. 1990a,b; Datta 1992; Dass et 
al. 1995; Feijoo et al. 1995; Rothschild et al. 1997, 
1999). Although the various LiPs have similar sub­

strate specificities towards aromatic substrates, 
their kinetic behavior varies more clearly when 
tert-butyl hydroperoxide is substituted for H2O2 

(Farrell et al. 1989; Glumoff et al. 1990). The pro­
cessing, biological roles and interactions among 
isozymes are poorly understood. 

The precise role of LiPs in complex substrates 
such as wood and organopollutant-contaminated 
soils remains uncertain. As mentioned above, 
extracellular peroxidases are physically too large 
to enter the pores of the cell wall (reviewed by 
Blanchette et al. 1997). Thus, LiP has been pro­
posed to act indirectly by oxidizing low molecular 
weight substrates, which in turn penetrate the wall 
and oxidize the polymer (reviewed by Hammel 
1996). Specifically, the secondary metabolite vera­
tryl alcohol, which is synthesized and secreted by 
P. chrysosporium and which is oxidized by LiP to 
a cation radical (Khindaria et al. 1995), was 
proposed to play this role (Harvey et al. 1986). 
However, the veratryl alcohol cation radical is too 
short-lived to function as a diffusible mediator 
(Khindaria et al. 1995). Recent studies show LiP 
is capable of oxidizing ferrocytochrome c and syn­
thetic lignin at the protein surface by a long-range 
electron transfer mechanism (Wariishi et al. 1994; 
Johjima et al. 1999). 

2. Manganese Peroxidases 

Low molecular weight diffusible oxidants could be 
provided by manganese peroxidases (MnPs; 
Glenn et al. 1986; Paszczynski et al. 1986). Like 
LiPs, MnPs are glycosylated and have acidic pIS 
and pH optima. Also like LiPs, they have a con­
ventional peroxidase catalytic cycle, but with 
Mn(II) as the substrate. The Mn(II) must be 
chelated by bidentate organic acid chelators such 
as glycolate or oxalate, which stabilize the product 
Mn(III) and promote its release from the enzyme. 
The resulting Mn(III) chelates are diffusible oxi­
dants that can act at some distance from the 
enzyme. However, they are not strong oxidants 
and cannot attack the non-phenolic units of lignin. 
Instead, they oxidize phenolic structures (Fig. 
5.1C), which make up about 10% of the units in 
lignin. The phenoxy radicals resulting from the 
one-electron oxidation undergo a variety of reac­
tions, some of which result in polymer cleavage 
within certain units, e.g., between the aromatic 
rings and (Wariishi et al. 1991; Tuor et al. 
1992; Fig. 5.1C). Purified MnPs from cultures of 
P. chrysosporium, Nematoloma frowardi, and 
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Phlebia radiata oxidize xenobiotics such as pen­
tachlorophenol and 2,4,6-trinitrotoluene (TNT) 
in an Mn-dependent manner (Scheibner and 
Hofrichter 1998; Van Aken et al. 1999; Reddy and 
Gold 2000). In contrast, azo dye decolorization by 
Pleurotus eryngii and Bjerkandera adusta MnP 
isozymes is Mn-independent (Heinfling et al. 
1998). 

It seems unlikely that the MnP-catalyzed 
reaction should result in the extensive depoly­
merization of lignin or the efficient oxidation 
of organopollutants of relatively high ionization 
potential. However, certain efficient lignin 
degraders, including Ceriporiopsis subvermispora, 
Phanerochaete sordida, and Dichomitus squalens, 
lack detectable LiP but produce MnP (Perie and 
Gold 1991; Ruttimann et al. 1992, Ruttimann-
Johnson et al. 1993, 1994; Hatakka 1994; Orth et 
al. 1994). Also, phenanthrene and fluorene are not 
LiP or MnP substrates and yet both are efficiently 
degraded by P. chrysosporium cultures (George 
and Neufield 1989; Hammel et al. 1992; Vazquez-
Duhalt et al. 1994; Bogan et al. 1996a). These 
studies point to alternative mechanisms, and 
recent research shows that the production of dif­
fusible oxyradicals by MnP can occur by a mecha­
nism other than via chelates of Mn(III). In the 
presence of Mn(II), MnP promotes the peroxida­
tion of unsaturated lipids. Transient lipoxyradical 
intermediates are generated and these have been 
shown to oxidize non-phenolic lignin model com­
pounds (Fig. 5.1B). The MnP/lipid peroxidation 
system depolymerizes phenolic- and phenol-
blocked (methylated) synthetic lignins (Bao et al. 
1994), and oxidizes fluorene (Bogan et al. 1996a), 
phenanthrene (Moen and Hammel 1994), and ß-
O-4 linkages within lignin model compounds (Bao 
et al. 1994; Kapich et al. 1999). Taken together, 
these data suggest that lipid peroxidation may be 
a component of the lignin-degrading system of 
certain fungi. The identity of the substrate lipid(s) 
is under investigation (Enoki et al. 1999), but cur­
rently unknown. 

MnP/lipid peroxidation models aside, LiP 
remains the only fungal oxidant known that can 
efficiently mimic, in vitro, the cleavage 
and extracellular cleavage of aromatic rings that is 
characteristic of ligninolysis by white-rot fungi. 
Recently identified peroxidases defy simple clas­
sification as MnP or LiP, and can oxidize Mn(II) 
as well as non-phenolic substrates (e.g., veratryl 
alcohol) in the absence of manganese (Mester and 
Field 1998; Camarero et al. 1999). 

B. Laccases 

Laccases are blue copper oxidases that catalyze 
the one-electron oxidation of phenolics, aromatic 
amines, and other electron-rich substrates. Like 
Mn(III) chelates, they oxidize the phenolic units 
in lignin to phenoxy radicals, which can lead to 

cleavage (Kawai et al. 1988; Fig. 5.1C). 
Most white-rot fungi produce laccase but some 
do not, indicating that laccase is not absolutely 
required in lignin degradation. Isozyme multiplic­
ity is common among basidiomycetes including C. 
subvermispora (Fukushima and Kirk 1995; Salas et 
al. 1995), P. chrysosporium (Srinivasan et al. 1995; 
Dittmer et al. 1997; Rodriguez et al. 1997), and D. 
squalens (Perie et al. 1998). 

aryl-

Laccase can oxidize non-phenolic lignin­
related substrates in the presence of certain auxil­
iary substrates such as ABTS (2,2’-azino-bis-3­
ethylthiazoline-6-sulfonate; Collins et al. 1996: 
Bourbonnais et al. 1997, 1998). For example, 
purified P. ostreatus laccase efficiently degrades 
organophosphorus insecticides and related nerve 
agents in the presence of ABTS (Amitai et al. 
1998). High ionization potential PAHs are also 
oxidized by C. gallica and T. versicolor laccases in 
the presence of synthetic mediators (Johannes 
et al. 1996; Pickard et al. 1999). Pycnoporus 
cinnabarinus and Trametes versicolor cultures 
produce small molecular weight compounds 
that may act as natural intermediaries for 
oxidation of non-phenolic lignin substructures 
(Eggert et al. 1996) and PAHs (Johannes and 
Majcherczyk 2000). The structure and function of 
fungal laccases have been reviewed (Thurston 
1994; Youn et al. 1995). 

C. Other Enzyme Systems 

Although numerous laboratory studies show 
extracellular peroxidases and laccases capable of 
oxidizing various xenobiotics, it is clear that a 
multitude of additional extracellular and intracel­
lular processes must be involved in the transfor­
mation and/or mineralization of these compounds. 
For examples, O-methylation of PCP and triclosan 
has been observed in P. chrysosporium (Lamar 
and Dietrich 1990) and P. cinnabarinus (Hundt 
et al. 2000) cultures, respectively. Glycosyl 
conjugation of triclosan has also been shown 
in T. versicolor cultures (Hundt et al. 2000). 
Membrane-bound and intracellular enzymes have 
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received relatively little attention to date, but 
cytochrome P-450 monooxygenases have been 
implicated in bioconversions of phenanthrene by 
P. ostreatus (Bezalel et al. 1996), benzo[a]pyrene 
by Pleurotus pulmunoarius (Maspahy et al. 1999), 
endosulfan by P. chrysosporium (Kullman and 
Matsumura 1996), and 4-methyldibenzothiophene 
by Coriolus versicolor (Ichinose et al. 1999). In the 
case of 2,4,6-trichlorophenol (Reddy et al. 1998) 
and PCP (Hammel and Tardone 1988; Mileski et 
al. 1988; Reddy and Gold 1999,2000) degradation 
by P. chrysosporium, extracellular LiP or MnP 
may intitially catalyze oxidative dechlorination 
and the products subsequently undergo various 
intracellular reductive dechlorination and hydrox­
ylation reactions. 

Organopollutant degradation by brown-rot 
fungi may involve extracellular oxidative mecha­
nisms that are fundamentally different from 
white-rot species. Gloeophyllum spp. and related 
brown-rot fungi lack detectable LiP, MnP, or 
laccase activities but nevertheless efficiently 
degrade 2,4 dichlorophenol (Fahr et al. 1999; 
Schlosser et al. 2000), PCP (Fahr et al. 1999), and 
polyethylene glycol (PEG; Kerem et al. 1998; 
Kerem and Hammel 1999). Hydroxyl radical, 
formed by a Fenton-type reaction of Fe(II) and 
H2O2, has long been suspected as the powerful 
oxidizing agent needed to rapidly depolymerize 
cellulose during brown rot (Koenigs 1974a,b). 
Analysis of metabolites and the identification of 
Fe(II) and H2O2 in Gleophyllum cultures support 
a Fenton-type degradation (Hyde and Wood 1997; 
Kerem et al. 1998; Kerem and Hammel 1999; 
Paszczynski et al. 1999; Schlosser et al. 2000). 

Several systems have been suggested as 
potential sources of extracellular H2O2 for peroxi­
dase activity and hydroxyl generation (Fig. 5.1A). 
One likely source of H2O2 for P. chrysosporium 
LiPs is glyoxal oxidase (GLOX; Kersten and 
Kirk 1987). GLOX is a radical-copper oxidase 
(Whittaker et al. 1996) that utilitizes a wide 
variety of small aldehydes such as glyoxal and 
methylglyoxal (extracellular metabolites of P. 
chrysosporium) and transfers the electrons to O2, 
generating H2O2. Another substrate, glycolalde­
hyde, is produced by the action of LiP on ß-O-4 
lignin substructures. Perhaps the most interesting 
property of GLOX, and of considerable physio­
logical significance, is that in the absence of a 
peroxidase system, the oxidase is reversibly inac­
tivated (Kersten 1990). The enzyme is reactivated, 
however, by reconstituting the complete peroxi­

dase system, including both LiP and substrate. 
This suggests that the supply of H2O2 by GLOX is 
responsive to the demand of the peroxidases, 
thereby providing an extracellular regulatory 
mechanism for control of the coupled enzyme 
systems. GLOX is also produced by other white-
rot fungi, although apparently not by all (Hatakka 
1994; Orth et al. 1994). 

Another likely candidate for generating H2O2 

in some white-rot fungi, including P. chrysospo­
rium and B. adusta, is aryl alcohol oxidase (AAO; 
Muheim et al. 1990; Asada et al. 1995b). This 
enzyme oxidizes benzyl alcohols to aldehydes, 
transferring the electrons to O2, producing H2O2. 
Interestingly, B. adusta secretes chlorinated benzyl 
alcohols that are not substrates for LiP but are for 
the AAO. Because B. adusta also secretes LiP, this 
strategy circumvents the non-productive oxida­
tion of the AAO substrate by LiP. P. ostreatus 
secretes a mixture of benzyl alcohols, including 
anisyl alcohol, and an AAO that oxidizes them 
(Sannia et al. 1991). 

Various sugar oxidases have also been sug­
gested to be producers of the required extra-
cellular H2O2. Most are intracellular enzymes. 
Pyranose oxidase, however, which oxidizes various 
monosaccharides at C-2, with transfer of electrons 
to O2 to produce H2O2, has been located in the 
extracellular polysaccharide matrix that coats the 
lumens of cells during white-rot. The enzyme has 
been studied in P. chrysosporium, T. versicolor, 
Oudemansiella mucida, and Agaricus bisporus 
(Daniel et al. 1994; Artolozaga et al. 1997; Volc et 
al. 1997). Glucose 1-oxidase activity has been 
reported in P. chrysosporium mycelium (Kelley 
and Reddy 1986, 1988) but appears to be less 
common than pyranose 2-oxidase (reviewed by 
Ander and Marzullo 1997). 

In addition to the oxidases, extracellular H2O, 
may also be generated by the oxidation of organic 
acids that are secreted by many white-rot fungi. 
Specifically, Mn(II)-dependent oxidation of gly­
oxylic and oxalic acids in C. subvermispora cul­
tures generates H2O2 (Urzua et al. 1995, 1998a,b; 
Aguilar et al. 1999). 

Cellobiose dehydrogenase (CDH) is widely 
distributed among white-rot and brown-rot fungi, 
and may also play an important role in organopol­
lutant degradation (Westermark and Eriksson 
1974a,b, 1975; Henriksson et al. 2000a). The 
enzyme has two domains containing FAD or heme 
prosthetic groups, and these can be cleaved by P. 
chrysosporium proteases. CDH binds to cellulose 
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and oxidizes cellodextrins, mannodextrins, and 
lactose. Suitable electron acceptors include 
quinones, phenoxy radicals, and Fe3+. (CDH can 
use O2 as a poor electron acceptor, but it is still 
classified as a dehydrogenase, not an oxidase.) 

The biological function of CDH is uncertain 
(Eriksson et al. 1990). One model suggests that 
CDH generates hydroxyl radicals by Fenton-type 
reactions [Fe(II) and H2O2 reactants] as described 
above (Kremer and Wood 1992; Mansfield et al. 
1997; Henriksson et al. 2000b). The model is con­
sistent with many of the properties of CDH and 
entails the concerted efforts of additional enzymes 
for efficient lignin depolymerization. In addition 
to Fe(II), the Fenton mechanism requires a system 
for generating extracellular H2O2, and enzymes 
such as GLOX may be involved. Possibly, the 
function(s) of CDH differ among species. This 
issue has been recently reviewed (Henriksson et 
al. 2000a). 

III. Molecular Genetics 

The molecular genetics of lignin-degrading fungi 
has advanced considerably over the past 15 years. 
Phanerochaete chrysosporium has emerged as the 
model system, in large part due to the develop­
ment of experimental procedures. Methodologies 
for auxotroph production, recombination analysis, 
rapid DNA and RNA purification, pulsed-field 
electrophoretic separation of chromosomes, and 
genetic transformation by auxotroph complemen­
tation and by drug resistance markers have been 
described (Alic et al. 1989, 1990, 1991, 1993; Alic 
1990; reviewed by Cullen and Kersten 1996; 
Cullen 1997). Another auxotroph complementa­
tion system was recently reported (Zapanta et al. 
1998). No other white-rot fungi provide a range of 
experimental tools comparable to P. chrysospo­
rium, although genetic recombination analysis 
(Eichlerova and Homolka 1999; Larraya et al. 
1999a), pulsed field electrophoretic karyotyping 
(Larraya et al. 1999b), and genetic transformation 
(Yanai et al. 1996; Kim et al. 1999; Honda et al. 
2000) are now available for Pleuotus ostreatus. 
Most recently, transformation of Trametes 
versicolor has been achieved using phleomycin 
resistance as a dominant selectable marker 
(Bartholomew et al. 2001). Virtually nothing is 
known of the molecular genetics of brown-rot 
fungi. The molecular biology of P. chrysosporium 

has been reviewed (Alic and Gold 1991;Pease and 
Tien 1991;Gold and Alic 1993;Cullen and Kersten 
1996; Cullen 1997;Kirk and Cullen 1998). 

A. Peroxidases 

1. Gene Structure 

Tien and Tu (1987) were first to clone and 
sequence a P. chrysosporium cDNA encoding a 
LiP. It is now clear that P. chrysosporium LiPs are 
encoded by a family of at least ten closely related 
genes that have been designated lipA through lipJ 
(reviewed by Cullen and Kersten 1996). One 
allele, lipI2, is transcriptionally inactivated by an 
unusual class II non-autonomous transposon 
(Gaskell et al. 1995). Residues believed essential 
to peroxidase activity are conserved (Tien and Tu 
1987; Schalch et al. 1989). The gene-encoding 
isozyme H8, lipA, also features a putative propep­
tide (Schalch et al. 1989).A similar sequence was 
shown in the LiP2 gene of strain OGC101, and the 
proenzyme was identified as an in vitro translation 
product (Ritch et al. 1991). The P. chrysosporium 
clones contain 8-9 short introns, and the positions 
of six of these are highly conserved (Brown et al. 
1988; Schalch et al. 1989; Ritch and Gold 1992; 
Gold and Alic 1993;Stewart and Cullen 1999).The 
crystal structure of LiP is similar to the overall 
three-dimensional structure of cytochrome c per­
oxidase (CCP), even though sequence identity is 
only approximately 20% (Edwards et al. 1993; 
Poulos et al. 1993). 

Several LiP genes have been characterized 
from other fungal species, including Trametes 
versicolor genes L P G I / L P G I V  (Jonsson and 
Nyman 1992,1994; Johansson and Nyman 1996), 
LPGII/LPGIII (Jonsson and Nyman 1994; 
Johansson and Nyman 1996), VLG1 (Black and 
Reddy 1991), LPGVI (Johansson and Nyman 
1995),Bjerkandera adusta clone LPO-1 (Asada et 
al. 1992), and Phlebia radiata lpg3 (Saloheimo 
et al. 1989). Further, PCR amplification of LiP­
like sequences also suggests the existence of LiP 
genes in Ceriporiopsis subvermispora and Phane­
rochaete sordida (Rajakumar et al. 1996). These 
results appear to contradict numerous biochemi­
cal investigations that failed to detect LiP activity 
in C. subvermispora (Ruttimann et al. 1992; Orth 
et al. 1993) and P. sordida (Ruttimann-Johnson et 
al. 1994) cultures. 

Multiple MnP genes have been sequenced 
from several white-rot fungi including P. 
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chrysosporium (Pease et al. 1989; Pribnow et al. 
1989; Orth et al. 1994; Alic et al. 1997), T. versi­
color MPGI (Johansson 1994), T. versicolor 
PGVII (Johansson and Nyman 1996), C. subver­
mispora (Lobos et al. 1998; Tello et al. 2000), and 
P. ostreatus (Asada et al. 1995a). The actual 
number of MnP genes in these or other species 
remains to be established. The N-terminal amino 
acid sequences of P. chrysosporium isozymes 
indicate the existence of at least two more genes 
(Datta et al. 1991; Pease and Tien 1992). 

Multiple sequence alignments reveal features 
that help to distinguish MnP and LiP genes 
(reviewed by Cullen 1997). The crystal structure of 
MnP shows similarities with LiP. Experimental 
support for Asp203 in Mn2+ binding has been pro­
vided by site-directed mutagenesis of the residue 
(Kusters-van Someren et al. 1995). Consistent with 
its ability to oxidize Mn2+ and its Mn-independent 
activity on aromatic substrates, the gene encoding 
Pleurotus eryngii “Mn-independent” peroxidase 
features putative Mn-binding ligands (Ruiz-
Duenas et al. 1999b). Analogous genes have not yet 
been identified in P. chrysosporium. 

2. Genomic Organization 

Genetic linkage in P. chrysosporium has been 
demonstrated by restriction fragment length poly­
morphisms (RFLPs; Raeder et al. 1989a,b) and 
later refined by PCR-based segregation analysis 
(Gaskell et al. 1994). Recombination frequencies 
are based on analyses of single basidiospore cul­
tures, which are the homokaryotic products of 
meiosis. Genetic maps are entirely consistent with 
physical distances established by Southern blot­
ting of CHEF gels (Gaskell et al. 1991; Covert et 
al. 	1992a; Stewart et al. 1992; Kersten et al. 1995) 
and by walking in genomic libraries (Huoponen et 
al. 1990; Gaskell et al. 1991). 

Gene clustering and chromosome length poly­
morphisms are common in P. chrysosporium. For 
example, lipA, lipB, lipC, lipE, lipG, lipH, lipI, and 
lipJ are clustered within 3% recombination and 
hybridize to a 3.5/3.7mb chromosome pair on 
CHEF gel Southern blots (see Stewart and Cullen 
1999 and refs. cited therein). In contrast, lipD and 
lipF are unlinked and hybridize to 4.8/4.4mb and 
1.8/2.0mb pairs, respectively (Stewart et al. 1992; 
D’Souza et al. 1993). The gene encoding glyoxal 
oxidase, glx, hybridizes to a 3.7/3.9mb pair 
(Kersten et al. 1995). These length dimorphisms 
are mitotically stable in strain BKM-F-1767, but 
the number and sizes of bands rearrange substan­

tially following meiosis, presumably due to recom­
bination. Simultaneous resolution of all bands 
has not been achieved under a single set of 
electrophoretic parameters (Gaskell et al. 1991; 
Covert et al. 1992b; D’Souza et al. 1993). Beyond 
P. chrysosporium, little is known of the organiza­
tion of peroxidase genes, although a cluster con­
taining two LiP- and one MnP-encoding genes has 
been described for T. versicolor (Johansson and 
Nyman 1996). 

Homologous chromosomes differing in elec­
trophoretic mobility have also been observed in 
numerous eukaryotes such as Plasmodium falci­
parum (Corcoran et al. 1988), dozens of fungi 
(reviewed in Zolan 1995), and, most recently, in 
the related white-rot fungus P. ostreatus (Larraya 
et al. 1999a,b). Mechanism(s) giving rise to these 
chromosome length polymorphisms (CLPs) and 
their possible role in genetic variability are not 
well understood. Intrachromosomal recombina­
tion between repetitive sequences or unequal 
exchange between homologues could generate 
shortened chromosomes (Zolan 1995; Gray 
2000). The presence of repetitive elements in P. 
chrysosporium (Gaskell et al. 1995), and their 
apparent restriction to a single allelic homologue, 
has some impact on length differences. However, 
recent sequence analyses showed no recombina­
tion between elements (Stewart et al. 2000). 

3. Regulation 

LiP genes are differentially transcribed and their 
expression is dramatically modulated by culture 
conditions (Holzbaur and Tien 1988; Stewart et al. 
1992; Reiser et al. 1993; Janse et al. 1998; Vallim et 
al. 1998; Stewart and Cullen 1999). Although the 
P. chrysosporium LiP genes are tightly clustered 
and structurally similar, no clear relationship 
between genomic organization and transcriptional 
regulation has been observed (Stewart et al. 1992; 
Stewart and Cullen 1999). A report suggesting that 
nutrient nitrogen limitation regulates LiP ex­
pression post-translationally by heme processing 
(Johnston and Aust 1994) has been directly con­
tradicted (Li et al. 1994). 

Quantitative transcript analyses by competi­
tive RT-PCR support a role for P. chrysosporium 
peroxidases in organopollutant-contaminated 
soils. Consistent with an MnP-dependent lipid 
peroxidation mechanism, depletion of high ion­
ization potential PAHs generally coincided with 
increased transcripts of mnp1, mnp2, and mnp3 as 
well as MnP activity (Bogan et al. 1996c). In con-



Molecular Genetics of Lignin-Degrading Fungi and Their Applications in Organopollutant Degradation 79 

trast to mnps, the transcript patterns among LiP 
genes varied dramatically during anthracene 
transformation in soils (Bogan et al. 1996b). Com­
parison of anthracene and PCP-contaminated 
soils suggests differential regulation of LiP genes 
in response to the particular organopollutant 
(Lamar et al. 1995; Bogan et al. 1996b). 

Manganese peroxidase production in P. 
chrysosporium is generally dependent on Mn con­
centration (Bonnarme and Jeffries 1990; Brown 
et al. 1990, 1991). Differential regulation of 
MnP isozymes has been observed in response to 
media composition for C. subvermispora and P. 
chrysosporium (Pease and Tien 1992; Lobos et al. 
1994). Transcriptional control of MnP expres­
sion is complex. Possible transcriptional control 
elements, particularly metal response elements 
(MREs), have been identified in 5’-untranslated 
regions (Godfrey et al. 1990,1994; Alic and Gold 
1991; Brown et al. 1993; Alic et al. 1997). Consis­
tent with the occurrence of upstream MREs, 
Gettemy et al. (1998) observed upregulation of P. 
chrysosporium mnp1 and mnp2 in response to 
Mn2+ concentration in defined media, but tran­
script levels of mnp3 were unaffected. In contrast, 
T. versicolor mnp2 does not contain any MREs but 
is dramatically upregulated in response to Mn (T. 
Johansson and D. Cullen, unpubl.). Differential 
display analysis of Coriolus versicolor cultures 
exposed to PCP identified upregulated genes 
encoding a heat shock protein, but not MnP genes 
(Iimura and Tatsumi 1997). 

4. Heterologous Expression 

Basic biochemical investigations have been ham­
pered by low yields and purification difficulties 
associated with LiP/Mnp isozymes. As a result, 
considerable research effort has been expended 
on the development of heterologous expression 
systems. Baculovirus systems have been used to 
produce active recombinant MnP isozyme H4 
(Pease et al. 1991) and LiP isozyme H8 (Johnson 
and Li 1991; Johnson et al. 1992; Lin et al. 1997). 
Yields are relatively low, but baculovirus produc­
tion may be useful for experiments requiring 
limited quantities of recombinant protein, e.g., 
site-specific mutagenesis. Techniques have also 
been developed for recovering active P. 
chrysosporium isozymes MnP H4 (Whitwam et al. 
1995; Whitwam and Tien 1996), LiP H8 (Doyle and 
Smith 1996), and LiP H2 (Nie et al. 1998) from E. 
coli inclusion bodies. P. chrysosporium MnP and 
LiP can also be produced in a “homologous 

expression” system in which mnp transcriptional 
control is placed under the glyceraldehyde-3­
phosphate dehydrogenase promoter (Mayfield et 
al. 1994; Sollewijn Gelpke et al. 1999). The system 
temporally separates the recombinant protein 
from other peroxidases, and it has been suc­
cessfully used in site-directed mutagenesis 
(Kusters-van Someren et al. 1995; Kishi et al. 
1997). Efficient secretion of fully active MnP 
isozyme H4 has been achieved in A. oryzae 
(Stewart et al. 1996) and A. niger (Conesa et al. 
2000). The recombinant enzyme has served mech­
anistic studies (Jensen et al. 1996; Kapich et al. 
1999). and Aspergillus expression systems have 
been extended to peroxidases from C. subvermis­
pora [Larrondo et al. 2001, #1418], P. eryngii 
(Ruiz-Duenas et al. 1999a), and Geotrichym 
candidum (Sugano et al. 2000). Aifa et al. (1999) 
has recently reported low-level secretion of P. 
chrysosporium LiP by Aspergillus niger. 

B. Laccases 

Laccases of white-rot fungi are also encoded by 
complex families of structurally related genes 
(Kojima et al. 1990; Saloheimo et al. 1991; Coll et 
al. 	1993; Yaver and Golightly 1996; Yaver et al. 
1996; Karahanian et al. 1998; Giardina et al. 1999; 
Temp et al. 1999). Although laccase activity has 
been demonstrated in P. chrysosporium cultures 
(Srinivasan et al. 1995; Dittmer et al. 1997; 
Rodriguez et al. 1997), the corresponding genes 
have not yet been isolated (D’Souza et al. 1996). 
Laccase genes are often differentially regulated 
and the patterns of regulation differ substantially 
between species (Wahleithmer et al. 1995; Yaver 
and Golightly 1996; Yaver et al. 1996; Smith et al. 
1998; Palmieri et al. 2000). Little information is 
available on the genomic organization of laccases, 
but Trametes villosa pulsed field gels suggest the 
possible linkage of certain laccase genes (Yaver 
and Golightly 1996). Basidiomycete laccases have 
been expressed in several systems including A. 
oryzae (Yaver et al. 1999) and Pichia pastoris 
(Otterbein et al. 2000). 

C. Peroxide-Generating Enzymes 

Glyoxal oxidase (GLOX) of P. chrysosporium is 
encoded by a single gene with two alleles (Kersten 
and Cullen 1993; Kersten et al. 1995). The deduced 
amino acid sequence lacks clear homology with 
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any other known proteins (Kersten and Cullen 
1993), although Bork and Doolittle (1994) have 
identified a 50-residue ‘kelch’ motif in a variety 
of database sequences including glyoxal oxidase 
and galactose oxidase. On the basis of catalytic 
similarities with Dactylium dendroides galactose 
oxidase, potential copper ligands were tentatively 
identified at Tyr135, Tyr377, His378, and His 
471(Whittaker et al. 1996). The deduced amino 
acid sequences of allelic variants differ by a single 
residue (Lys308<<Thr308), which may explain the 
two isozyme forms observed on isoelectric focus­
ing gels (Kersten and Kirk 1987; Kersten 1990). 
Southern blot analysis of CHEF gels and segrega­
tion analysis show that glx is unlinked to MnP or 
LiP genes (Gaskell et al. 1994; Orth et al. 1994; 
Kersten et al. 1995). The GLOX gene (glx) is 
transcriptionally regulated in P. chrysosporium 
(Kersten and Cullen 1993). Consistent with a close 
physiological relationship between GLOX and 
LiP, glx transcript appearance in defined media 
(Stewart et al. 1992; Kersten and Cullen 1993), soil 
(Bogan et al. 1996b) and in wood chips (Janse et 
al. 1998) is coincident with lip and mnp. Produc­
tion of mutant GLOX in Aspergillus nidulans and 
Pichia pastoris has confirmed the identity of 
catalytic residues (Kersten et al. 1995; Whittaker 
et al. 1999). 

Beyond GLOX, relatively little is known of 
the molecular genetics of white-rot oxidases. 
Although numerous studies implicate pyranose 2­
oxidase in lignin degradation, the corresponding 
gene has only been isolated from Coriolus versi­
color (Nishimura et al. 1996). The sequence shows 
weak similarity to a short region within the FAD 
domain of several cellobiose dehydrogenase 
genes. Glucose 1-oxidase genes have not been 
isolated from any basidiomycete. Martinez and 
coworkers have cloned and sequenced aryl 
alcohol oxidase (AAO) encoding genes from 
Pleurotus pulmunarius (Varela et al. 2000) and 
Pleurotus eryngii (GenBank accession No. 
AF064069). The predicted proteins are over 90% 
identical, and show substantial sequence similarity 
to A. niger glucose 1-oxidase (35% identity). Blast 
searches clearly show that the P. pulmunarius 
sequence is related to an array of fungal “oxi­
dases” including P. pastoris alcohol oxidase (24%), 
and the FAD domain of cellobiose dehydroge­
nases from P. chrysosporium (25%), Trametes 
versicolor (25%), and Pyconporus cinnabarinus 
(24%). We have recently cloned and partially 
sequenced cDNAs from P. chrysosporium colo­

nized wood that exhibit striking similarity to these 
FAD oxidases and to GLOX (T. Johansson and D. 
Cullen, unpubl.). Taken together, these results 
suggest involvement of a wide range of sugar oxi­
doreductases, aryl alcohol oxidases, and glyoxal 
oxidase. 

D. Cellobiose Dehydrogenase 

Genes encoding CDH have been cloned from 
several fungi including the white-rot fungi P. 
chrysosporium (Raices et al. 1995; Li et al. 1996), 
T. versicolor (Dumonceaux et al. 1998), and P. 
cinnabarinus (Moukha et al. 1999). Sequences are 
highly conserved. All share a common architec­
ture with separate FAD, heme, and cellulose-
binding domains (CBD), although the latter 
domain has no obvious structural similarity to 
functionally similar bacterial or fungal CBDs. 
Li et al. (1997) characterized both allelic variants 
of P. chrysosporium cdh. Northern blots show 
upregulation of cdh in cellulose-containing media 
(Li et al. 1996; Moukha et al. 1999), and com­
petitive RT-PCR revealed transcripts in P. 
chrysosporium colonized wood (Vallim et al. 
1998). Renganathan and coworkers (1985) tem­
porally altered expression of P. chrysosporium 
CDH by fusing cdh with the promoter of the 
highly expressed glyceraldehyde-3-phosphate 
dehydrogenase gene (Li et al. 2000). No evi­
dence for CDH gene multiplicity has been 
reported. 

IV. Conclusions and Future Prospects 

Experiments with purified enzymes, analysis of 
metabolites in whole cultures, and field trials 
demonstrate efficient degradation of a wide range 
of organopollutants by wood-decaying fungi. 
Oxidative mechanisms involving extracellular 
peroxidases and laccases have been repeatedly 
shown, although their relative importance in 
complex substrates such as organopollutant­
contaminated soils remains uncertain. Fenton­
type reactions and an array of membrane-bound 
and intracellular enzyme systems probably 
augment or supersede peroxidases and laccases in 
certain circumstances. 

Establishing the role of specific genes and 
enzymes in degradation pathways requires ex-
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perimental tools that have only recently become 
available. Biochemical analysis in cell-free 
systems is greatly facilitated by the increasing 
availability of pure recombinant enzymes. Quan­
titative analysis of transcripts and organopollutant 
transformations in complex substrates provides 
further evidence for the involvement of specific 
genes. A more direct experimental approach 
might be disruption or replacement of individual 
genes, and transformation systems are now avail­
able for Phanerochaete chrysosporium, Pleurotus 
ostreatus, and Trametes versicolor. Gene replace­
ment through homologous recombination occurs 
at low frequency in P. chrysosporium (Alic et al. 
1993), but the technique has not yet been brought 
to bear on questions of organopollutant degra­
dation. Agrobacterium-mediated gene transfer 
systems may facilitate gene disruption experi­
ments in related wood-decaying fungi (Covert et 
al. 2001 #1538; Chen et al. 2000 #531; de Groot 
et al. 1998 #1537). 

Current genomics research offers significant 
opportunities for elucidating the roles and interac­
tions of known genes and for identifying new and 
novel genes involved in degrading lignin and 
organopolluntants. The US Department of Energy’s 
JointGenome Institute (JGI) has completed whole 
genome shotgun sequencing of P. chrysosporium. 
A draft assembly is currently available for Blast 
searchingat<url>http://www.jgi.doe.gov/programs/ 
whiterot/whiterot_mainpage.html</url>. Our la­
boratory and the JGI are collaborating on sequenc­
ing ESTs from P. chrysosporium colonized wood, 
and all sequences should be publicly available 
by 2002. Clearly, these efforts will reveal an enor­
mous number of genes of potential relevance to 
organopollutant degradation. When coupled to 
transcript profiling, heterologous expression, and 
gene disruptions, these investigations will elucidate 
majordegradation pathways, and answer funda­
mental questions concerning lower eukaryotic 
genome organization. 
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