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Abstract 

We outline the steps that would permit a 
statistician to produce special purpose linear 
model routines through the use of high quality 
public domain numerical analysis software. 

Introduction 
Good commercial linear model packages are readily 
available. It sometimes happens, however, that one 
would like linear model code that could be incorpo- 
rated into a simulation. Verrill (1999) discusses such 
a simulation in the context of predictor sort sampling. 
See http://ws13.fpl.fs.fed.us/ttconf.html for a web in- 
terface to the simulation program. 

Further, a sophisticated user can sometimes become 
frustrated with the inflexibility of a commercial pack- 
age. This can be particularly true if the user is con- 
fronted with unbalanced data or complex hypotheses. In 
addition, some commercial linear models packages do 
not include the ability to perform power calculations. 

In such cases the user can make use of public domain 
computer routines that yield flexible linear model ca- 
pabilities. In this note we step potential users through 
the computations needed to perform hypothesis tests 
and power calculations. We follow the theoretical ap- 
proach of Scheffe (1959). To do the numerical work we 
make use of the singular value decomposition (see, for 
example, Thisted (1988)). There are, of course, other 
numerical techniques that can be used to perform the 
necessary calculations (see, for example, Kennedy and 

Gentle (1980), Gentle (1998)). We focus on the singu- 
lar value decomposition because it yields an approach 
that is numerically stable, reasonably efficient, and sim- 
ple to explain and implement. We also suggest the use 
of the DCDFLIB public domain package of distribution 
routines. 

The relation between the singular value decomposition, 
least squares, generalized inverses, and estimability has 
been discussed in Good (1969) and Eubank and Webster 
(1985). 

Hypothesis Testing 
The standard linear model is 

where y is the n x 1 vector of responses, X is the n × p 
design matrix, ß is the p × 1 parameter vector, and E is 
the n × 1 vector of random errors. We assume that the e i 
are independent, identically distributed N(0, s 2) random 
variables. 

We want to test a hypothesis of the form 

(1) 

(It is often the case that c T 
i 1 = 0, in which case c T 

i is 
referred to as a “contrast.”) 

For example, in a one-way ANOVA we are testing 

To test hypothesis (1) we proceed in a series of steps: 
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Is the Hypothesis Overspecified? 
We need to determine whether the c i are linearly inde- 
pendent. (If they are not, the hypothesis is overspec- 
ified. The user needs to think more clearly about the 
hypothesis, and arrive at a set of c i ’s that are linearly 
independent.) 

Let 

where q < p. The singular value decomposition of C is 

where the columns of U are orthonormal to each other, 
V is an orthogonal matrix, and D g is the diagonal ma- 
trix with g = g 1 > g 2 > . . . > g q > 0, the singular 
values of C, as its diagonal. Thus the rank of C is just 
the number of nonzero singular values. Because of the 
limitations of computer arithmetic, the null g i ’s will not 
in general be exactly equal to zero. We need to deter- 
mine a threshold value. If a g i lies below that threshold, 
we take it to be equal to zero and conclude that the hy- 
pothesis is overspecified. A threshold value that is sug- 
gested in the numerical analysis literature (for example, 
Golub and Van Loan (1 996)) is 

|| C || × (the machine precision). 

Our experience suggests that 

threshold = ||C|| × (the machine precision) × 10 

is a better rule of thumb. Recall that 

For double precision arithmetic on 32 bit computers one 
would use 

as the threshold value. 

Are the c i 's Estimable? 

We need to know whether there exists an a i that satisfies 
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for all ß where E is the expectation operator. This holds 
true if and only if there exists an a i that satisfies 

We determine whether equation (2) holds by first ob- 
taining a singular value decomposition of the design 
matrix, X. 

where the l ’s are nonzero ( r < p is the rank of X ), or 

Thus the projection operator onto the space spanned by 
the columns of XT, L ( XT ), is VV T, and c i = X T a i 
for some a, if and only if c, Î L (X T ) or VV T c i = c i. 
Using double precision arithmetic on 32 bit machines, 
one would take them to be equal if 

(2) 

(3) 

Find the a i that Satisfies 
Given that c i is estimable, there is a unique a i in the 
linear span of the columns of X, L ( X ), such that 

(This is one of Scheffé’s lemmas.) 

Using the singular value decomposition of X, equation 
(3), we know that the solution of c, = X T a i satisfies 

or 

But because a, Î L ( X ) and UU T is the projection op- 
erator onto L ( X ), from equation (4) we have 

Thus, we can use the left-hand side of the equation 
above to calculate the a i that satisfies 

span of 

We simply perform a singular value decomposition of 
A = (a1 . . . aq) to obtain 

and the columns of U form an orthonormal basis for 

Find the Hypothesis Sum of Squares 
Case 1 - h1 = . . . = h q = 0 Let u A ,1,. . . , u A,q be an 
othonormal basis for L ( A ) found as described in the 
preceding subsection. Scheffé’s theory tells us that the 
hypothesis sum of squares is 

(4) 

Find an Orthonormal Basis for the Linear 



with q degrees of freedom. 

Case 2 - at least one of the h 's is nonzero 

Scheffé’s theory tells us that the hypothesis sum of 
squares is 

with q degrees of freedom. 

We can make use of the singular value decomposition 
of A given above to obtain 

(5) 
Then taking 

we have 

Find the Residual Sum of Squares 
Let u X ,1, . . . , u X,r be the columns of the U matrix of 
the singular value decomposition, equation (3), of X. 
Then the projection of y onto the linear span of the 
columns of X, PL (x) (y), equals 

and the residual sum of squares equals 

with n - r degrees of freedom. 

Form the F Statistic and Compare It to the 
Appropriate Critical Values 
The F statistic equals 

This should be compared to an Fq,n-r ( 1 - a ) critical 
value where a is the significance level. 

Confidence Intervals 

Suppose that we are interested in confidence intervals 
on l estimable combinations of the parameters, 
. . . , and further suppose that the linear span of 
the c's has rank q < l. This rank can be determined 
as described in section 2.1. Let s 2 RSS /( n - r ). 
Then (see Scheffé (1959)) we know that an individual 
(1 - a) x 100% confidence interval for is 

where t n-r (a /2) is the appropriate t critical value, and 
a j satisfies (see section 2.3). Also, joint 

(1 - a)  × 100% confidence intervals for the 
j Î {1,. . . , l } ,  are given by 

where Fq,n-r ( 1 - a)  is the appropriate F critical value. 

Power Calculations 
The noncentrality parameter is given by 

(6) 

Note that (A T A) –1 can be calculated as in equation 
(5). 
Scheffé’s noncentrality parameter equals the square root 
of our noncentrality parameter. Our version corre- 
sponds with what the DCDFLIB library (see below) ex- 
pects. 

In a completely general power calculation program, 
possible values of ß, h, and s 2 would be specified by a 
user in the course of power calculations. In the common 
case in which h = 0 and the ß’ s represent treatment 
means, it might be more reasonable to expect a user to 
specify the components of the ß vector as fractions of 
an overall mean and to specify a range of coefficients 
of variation. This would yield b/s values that would 
enable one to calculate NCP. 

Under the null hypothesis, and the non- 
centrality parameter is 0, but under the alternative hy- 
pothesis C T/ß ¹ h and the noncentrality parameter is 
inflated above zero. If we operate at an a significance 
level, the power is given by 

(7) 
the probability that a noncentral F distribution with q 
numerator degrees of freedom, n - r denominator de- 
grees of freedom, and noncentrality parameter NCP 
lies above the 100(1 - a) th percentile of a central F 
distribution with q numerator degrees of freedom and 
n - r denominator degrees of freedom. 

implementing the theory as code 
Public domain FORTRAN or C code to perform the 
singular value decomposition is found in the LIN- 
PACK (Dongarra and others (1979)) or (C)LAPACK 
(Anderson and others (1995)) linear algebra li- 
braries. These can be obtained over the inter- 
net at http://www.netlib.org/liblist . h tml. Public do- 
main C++ code to perform the singular value de- 
composition can be found by searching on svd at 
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http://www.netlib.org. A Java translation of the LIN- 
PACK singular value decomposition can be found at 
http://www1.fpl.fs.fed.us/linear_algebra.html. This 
site also points to Java translations of the LAPACK lin- 
ear algebra routines. 

Public domain FORTRAN or C code to calculate the 
t distribution and the central and noncentral F distri- 
butions and their inverses can be found in the DCD- 
FLIB library. DCDFLIB is a public domain library of 
“routines for cumulative distribution functions, their in- 
verses, and their parameters.” It was produced by Barry 
Brown, James Lovato, and Kathy Russell of the Depart- 
ment of Biomathematics, M.D. Anderson Cancer Cen- 
ter, The University of Texas. DCDFLIB can be found at 
http://odin.mdacc.tmc.edu/anonftp/page_2.html. 

A relatively raw example of the use of the LIN- 
PACK and DCDFLIB routines to create a linear mod- 
els program can be obtained (or run over the Web) at 
http://www1.fpl.fs.fed.us/glm.html. This site includes 
sample input and output based on Table 9.1 in Milliken 
and Johnson (1992). We note that linear model routines 
produced by these methods would need extra work to 
become user friendly. In particular we have finessed 
the issue af the generation or input of the design, X, 
and hypotheses, C T, matrices. We would expect a so- 
phisticated user interested in simulations or special pur- 
pose analyses to be able to generate these matrices by 
hand. A person new to this approach might want to take 
a look at some of the examples in Milliken and Johnson 
(1 992). 

An algorithm that automatically generates design ma- 
trices for balanced factorial experiments is described in 
MacKenzie and O’Flaherty (1982). 

Kennedy and Gentle (1980) (page 388) note: 

[User friendly] computer software must in- 
clude the ability to accept user specification 
of the model. Most programs in use today 
allow the user to provide some rather nat- 
ural algebraic specification. The program 
then deciphers the specification and trans- 
lates it into numeric coding for subsequent 
use. There are no established standards 
for doing this, but many techniques used 
in compiler construction can be applied to 
this problem. 

An example of such an algebraic specification is dis- 
cussed in Wilkinson and Rogers (1973). 
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