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Introduction 
Engineers who design wooden structures must try to 
ensure that the strengths of the wooden members of 
their structures exceed the loads to which the mem- 
bers will be subjected. One approach to this prob- 
lem is to design so that expected loads do not exceed 
“allowable strength properties” associated with par- 
ticular structural wood products (e.g., lumber, lami- 
nated beams, wooden I-beams) . Allowable properties 
for structural wood products are determined exper- 
imentally by taking a sample from the population 
of wood products, obtaining a lower one-sided confi- 
dence bound on the fifth percentile of the distribution 
of the strength property in question (for example, 
modulus of rupture), and then dividing this bound 
by a safety and duration of load factor. 

If a normal strength distribution is assumed, wood 
researchers typically (see, for example, ASTM stan- 
dard D2915 in volume 4.10 of the Annual Book 
of ASTM Standards) obtain a parametric one-sided 
lower confidence bound, CB, on the fifth percentile 
via the formula 

where we want to cover the a quantile with Confidence 
ß x 100% and we have n replicates. Guttman (1970, 
table 4.6) provides k values for n = 2(1)100, (10)300, 
(25)500, (50)700, (100)1000, a = .01, .05, .10, and 
.25, and ß = .75, .90, .95, and .99. He credits Owen 
(1963) for these tables. 

Scientists in other areas, e.g., composite materials, 
groundwater monitoring, and soil remediation, also 
make use of equation 1 to obtain confidence bounds 

on quantiles. See, for example, MIL-HDBK-17-1, 
Gibbons (1994), and Michigan DEQ (1994). 

For equation 1 to be valid, the sample of material 
must be a standard random sample. However, wood 
strength researchers commonly replace experimental 
unit allocation via random sampling with allocation 
via sorts based on non-destructive measurements of 
strength predictors such as modulus of elasticity and 
specific gravity. Warren and Madsen (1977) describe 
the procedure as follows: 

Specifically, then, all the boards in the 
experiment are ordered from weakest to 
strongest as nearly as can be judged from 
their moduli of elasticity, knot size, and 
slope of grain. To divide the material into 
J equivalent groups the first J boards, after 
ordering, are taken and randomly allocated 
one to each group. This is repeated with the 
second, third, fourth, etc., sets of J boards. 
The strength distributions of the resulting 
groups should then be essentially the same. 

This allocation procedure has come to be known as 
predictor sort sampling. 

Predictor sort allocation has long been known to 
statisticians. In an analysis of variance context, Cox 
(1957) compared seven procedures that one might 
use given the availability of a correlated predictor. 
Cox’s calculations showed that the effective variance 
in these situations is a fact also noted by 
Cochran (1957). Here is the variance of y, and 
p is the correlation between the predictor x and the 
response y. 

As noted in Verrill (1993) (also see David and Gun- 
nik (1997)), the correlations among the order statis- 
tics of the predictor induce correlations among the 
responses so that the standard analysis of variance 
(ANOVA) assumptions are not satisfied for a pre- 
dictor sort experiment. Verrill demonstrated that 
blocked ANOVAs are still essentially valid and that 
simply modified unblocked ANOVAs can also be per- 
formed on predictor sort data sets. 

Verrill (1999) investigated the effects of predictor 
sort sampling on standard confidence intervals for the 
mean in an ANOVA context. He found that con- 
fidence intervals for the mean are overly conserva- 
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tive if an unblocked analysis is performed and non- 
conservative if a blocked analysis is performed. He 
obtained asymptotic results that yielded correct con- 
fidence interval coverage. 

In the current paper we examine the effect of pre- 
dictor sort sampling on one-sided confidence bounds 
for normal quantiles. We have found that stan- 
dard noncentral t theory that ignores the predictor 
sort nature of the sampling leads to y - ks bounds - 

that are overly conservative. On the other hand, 
maximum likelihood methods yield non-conservative 
bounds even for fairly large sample sizes. We pro- 
vide an asymptotic result that yields the appropriate 
corrections for the standard noncentral t approach. 

In a subsequent paper we will provide methods for 
calculating correct k values for small samples. 

Poor Confidence Interval Cover- 
age of the Standard Approach 
Given Predictor Sort Sampling 
In Tables 1 - 24 of Verrill, Herian, and Green (2002a) 
we detail the coverages of four kinds of confidence in- 
terval for a variety of combinations of r, a, ß, number 
of treatments, J, and number of replicates, n. The 
four approaches that we consider are the incorrect 
standard approach, two versions of the (correct) pre- 
dictor sort - ks asymptotic approach, and a max- 
imum likelihood approach. The two versions of the 
predictor sort approach differ in the estimate that is 
used for the correlation between the predictor and 
the response. Version 1 uses the naive estimate 

Version 2 uses the maximum likelihood estimate of r. 
The tables in Verrill, Herian, and Green (2002a) 

clearly show that the incorrect approach is overly 
conservative, that the problem becomes more severe 

Figure 1: Actual confidence interval coverages, J = 
4, r = .85, nominal confidence level = .75, quantile 
= .01 

as the correlation between the predictor and the re- 
sponse variable increases, and that the problem does 
not vanish as sample sizes increase. The tables also 
show that version 2 of the predictor sort approach 
dominates the maximum likelihood approach in the 
sense that the actual coverage always approaches the 
nominal coverage more rapidly for the version 2 pre- 
dictor sort approach than for the maximum likelihood 
approach. For smaller J, the version 1 predictor sort 
approach performs better than the maximum likeli- 
hood and version 2 approaches. (See Figure 1. The 
estimated coverages in each column of four points in 
the figure are based on separate 4,000 trial simula- 
tions.) However, for large J and small n, the version 
1 approach does not perform as well. 

For smaller n, the asymptotic approaches are non- 
conservative. k values that are appropriate for small 
sample sizes will appear in Verrill, Herian, and Green 
(2002b). 

Sample Size Reductions 
In the course of the development of the asymp- 
totic theory we find (see Verrill, Herian, and Green 



(2002a)) that the correct k in the appropriate version 
of y - - ks is given by 

where denotes the inverse of the standard normal 
cumulative distribution function. Thus given higher 
r ’s we can have smaller n ’s and still have the same 
k. In fact if we set 

equal to a constant, we obtain 

Thus the (approximate) permissible sample size re- 
duction factor that one obtains by using a predictor 
sort with a correlation of r between the predictor and 
the response is 

Plots of this factor as function of r and J are provided 
in Figure 2. It is clear from the figure that practi- 
cally significant sample size reductions (e.g., 40%) are 
attainable for reasonable correlations. 

Incorrect “Allowable Proper- 
ties” Given Predictor Sort Sam- 
pling and a Non-Predictor Sort 
Analysis 
As noted in the introduction, in lumber strength ap- 
plications, “allowable properties” are calculated as 
b/f, where b is a one-sided lower confidence bound 
on a fifth percentile and f is some “safety and dura- 
tion of load factor.” If b is too low, then the allowable 
property will be too low. The ratio of the correct to 
incorrect allowable properties will be approximately 
equal to 

Figure 2: Sample size reduction factor as a function 
of r and J 

where k c is the correct k value, k inc is the incorrect 
k value, and COV = s/m for the normal distribution 
under consideration. 

In Figures 3 - 5 we plot r versus r for n = 
10, COV = .15, .25, n = 20, COV = .25, and J = 
2,4,6,8,10. In these figures we refer to r as the “Con- 
fidence bound increase factor.’’ 

Since for small samples k c must be determined by 
simulation, there is some irregularity in these curves. 
However it is clear that r increases as p increases, as 
COV increases, and as J increases. r decreases as n 
increases. 

In these Figures r is sometimes as high as 1.15, 
which is is large enough to attract the interest of lum- 
ber manufacturers. On the other hand, correlations 
for solid-sawn lumber (between MOR and MOE, say) 
are probably not much greater than .70, so actual per- 
missible increases in allowable properties that were 
calculated on the basis of predictor sort experiments 
are probably below 5%. 

The Theorem 
We can think of a predictor sort specimen allocation 
in the following manner. A response value Y associ- 



Figure 3: Confidence bound increase factor, r, as a 
function of r and J, n = 10, COV = .15 

Figure 4: Confidence bound increase factor, r, as a 
function of r and J, n = 10, COV = .25 

Figure 5: Confidence bound increase factor, r, as a 
function of r and J, n = 20, COV = .25 

ated with a specimen is given by 

where and Z are independent N(0,1)’s, 
and r is the correlation between X and Y. Prior to 
the experiment we have values for X. We rank the 
specimens on the basis of their associated X values 
and then randomly allocate the top J specimens to 
the first block, the next J to the second block, and 
so on. 

where the X ij ’s, 1 < j < J, are a randomization of 
the i th group of order statistics from nJ iid N(0,1)’s, 
the Z ij ’s are iid N(0,1), and the X ’s and Z ’s are 
independent. 

Define 
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and 

Theorem. Assume that the predictor variable and 
the variable of interest, Y, have a joint bivariate nor- 
mal distribution with correlation r. Denote the vari- 
ance of Y by 0;. Suppose that there are J treat- 
ments and n blocks. Let the allocation of samples be 
as described in the introduction. 

Let Yn 
- 

,1 and sn ,1 be defined as in (2), and let r ^ be 
any consistent estimator of r. Then 

denotes the inverse of a stan- 
dard normal cumulative distribution function, 

denotes the inverse of a noncentral t 
distribution with noncentrality parameter g n (r ^ ) and 
nJ - 1 degrees of freedom, and 

The proof is provided in Verrill, Herian, and Green 
(2002a). 

Recommendations for Producing 
Predictor Sort Confidence Inter- 
vals 
Recommendations for producing predictor sort cod- 
dence intervals on the mean appear in Verrill (1999). 
Recommendations for producing predictor sort con- 
fidence intervals on quantiles will appear in Verrill, 
Herian, and Green (2002b). 

Summary 
Predictor sort experiments attempt to make use of 
the correlation between a predictor that can be mea- 
sured prior to the start of an experiment and the 

response variable that we are investigating. Prop- 
erly designed and analyzed, they can reduce neces- 
sary sample sizes, increase statistical power, and re- 
duce the lengths of confidence intervals. However, if 
the non-random nature of the predictor sort is not 
taken into account, problems can occur. 

In particular, standard one-sided lower confidence 
bounds on quantiles of a normal distribution are 
overly conservative in a predictor sort situation. For 
lumber strength applications, this leads to “allowable 
properties” that are too low. We have developed 
asymptotic theory that yields the correct k value 
in the y - ks approach to obtaining a confidence - 
bound. The resulting confidence bounds have cov- 
erages that approach the nominal values faster than 
bounds based on maximum likelihood estimation. In 
a subsequent paper we will provide k values that are 
appropriate for small sample sizes. 
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