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Abstract

We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a
Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application
to monitoring the strength of lumber is discussed including choices of prior expectation. and comparisons made to a
Bayesian parametric approach. © 1999 Published by Elsevier Science B.V. All rights resewed
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1. Introduction

Many modem standards for the strength of materials or life-length of a product are specified in terms of
alower population percentile rather than a mean. In a nonparametric setting, an order statistic becomes the
natural choice for a point estimate or one-sided confidence limit. The Bayesian nonparametric approach in this
paper was motivated by talks with V. Susarla and his research including the estimation of survival curves in
Susarlaand Van Ryzin (1976) and the estimation of a branching process life-length distribution in Johnson
et al. (1979).

The United States lumber industry sets standards in terms of alower population percentile. Thisindustry
collected large samples of several strength properties on severd different species and grades. These data can
be used to construct informative prior distributions. Johnson et a. (1995) discuss this approach for normal.
log-normal, and Weibull populations. They aso calculate the posterior distributions of population percentiles.
Concerning future data, predictive distributions can be employed to check conformity of future data with the
informative prior distribution. Box (1980, 1981, 1983) develops this approach in the context of parametric
families. In a nonparametric setting, we propose to monitor the strength of future specimens by determining
whether or not the value of a future sample lower order statistic is reasonable in light of the informative prior.
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For application to the lumber problem, we derive the predictive distribution of future order statistics when
(8) the preliminary data is used to develop an informative Dirichlet process prior and when (b) the preliminary
datais combined with a possibly noninformative prior to obtain a posterior process. We aso consider the
limiting predictive distribution as the future sample size, or prior sample size, tends to infinity. Thiswork
complements the Bayesian parametric posterior and predictive distributions for order statistics derived in
Johnson et a. (1995). Finally, we show how our results apply to monitoring the strength of lumber and

compare the parametric and nonparametric Bayesian approaches.

2. Posterior distributions fur population percentiles and predictive distributions

The cumulative distribution function (cdf) of an order statistic is a function of the population cdf F(-).
Employing a Dirichlet process prior, we derive the predictive distribution for a specified order statistic
determined from a future random sample.

The nonparametric procedure requires that we put a prior directly on the cdf, F(:), of the strength property
Ferguson (1973) describes the necessary mathematical structure for accomplishing this. In any application,
is necessary to specify the prior expected probability that a single observation, Y does not exceed y. Denote
this expected probahility by Fg (y). Continuing (Ferguson, 1973), we obtain a prior process which has

mean = Fy(y) for any y,

variance = M

Cot1

Covarlance = FO (yl A yz)[ - FO (yl v y2)] (21)
Cotl
Notice that the covariance structure is quite restrictive in form and that the variation depends on the single

choice ¢, for al .
The main advantage of selecting a Dirichlet process prior is that the posterior distribution of F(-) is again a

Dirichlet process. When data X; = X, X; = X5, . . ., Xn = X, become available, the prior shape measure cq Fq(-)
is up&ted to the measure
Viy) © V(= ¥, Yl =CoFo(y) + (number of Xy, Xp,. .. X:<.Y)
and the posterior expectation becomes v,(y)/(c, + m) or
2 _Fo+ ——F, (2.3)
Co+m Co+m

where F, (*) isthe empirical cdf of X;, X5,...,.X 1

Let h, denote the 100qth population percentile so q = F(h, ) where, a posteriori, F(-) is distributed as a
Dirichlet process with expectation measure (2.3). Ferguson (1973, Eq. (12), Section 5) gives an expression
for the posterior distribution of a population percentile.

Plng<t] = P[F(t) > q]

(22)

v.(l)—l(l - “)co+m—v.,(l)-—l du. (24)

= /I I(co +m) "

¢ TOn()((co+m) = va(t))
A 95% Bayesian lower tolerance bound for h is given by the largest value of t for which the right-hand
side of Eq. (2.4) islessthan or equal to 0.05. Thisvalue, t =h  must be detemined numerically using an

incomplete beta routine. )
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Let V;,...,Y, be afuture random sample from F(-) and let Y, be the rth order statistic. Further, let P(F)
be the Dirichlet process prior distribution for F(-) defined in terms of the measure ¢, Fy(-). A future sample
of size n will be selected. Given F(-), the cdf of the rth order statistic is given by

F= 3 (1) P - o,

q=r

The predictive distribution is then

H = /F,d.P(F)

= Z (;’) /F'[I - F""' dP(F).

J=r

2.1. Predictice distribution of Y., based on the prior process

For y fixed, F(y) is distributed as a Beta[c, Fo (Y). co(1. - Fo(y))] random variable. Consequently,

n

|
H(y)=)_ (;’) /0 (1 —t)""%t"“”““’"'(l - p)yomeofel)=l gy

j=r

n |
n 1 : .
= E ( . — eofoly)+j—=1 (1- ,)tn—cho(.V)ﬂ—/—l dr
J ) /o B

=r

_ Z (n) BleoFo(p) +jico = coFo(y) +n = j] 25)
—\J BlcoFo(y).co = coFo( )] '

where B[, -] isthe beta function.

If the prior expectation Fy(-) has a probability density function, fy(-), the predictive distribution of an
order statistic also has a probability density function. To obtain the predictive cdf, we first express each beta
function in terms of gamma functions and these in terms of exp(Infi(-)). For instance,

BlcoFo(y).co = coFo(¥)] = exp(Inl{coFo(y)] + Inl[co(1 — Fo(y))] — Inf[co])-
Differentiating H,(y) with respect to y, we obtain an expression for the predictive pdf in terms of the ps
function y(z)=(d/d=)Inf(z). In particular,

r=1
n\ BlcoFo(y) + j.co = coFo(y) +n — j]
h, = .

) Z <./ ) BlcoFo(y).co — coFo(y)] COfO(J:)

J=0
x[Y(co = coFo(y) +n — j) = Y(co — coFo(y)) — WlcoFo(y) + j) + W(coFo(¥))]- (2.6)

This expression. which is most convenient for small r is actually obtained by differentiating 1 - H, (y).
To see how the predictive distribution depends on ¢, and the future sample size n, we consider two limits.

If r = [np] and the future sample size grows unboundedly,

”RP[YM,.@'IFPO(I) if F(y)<p (F(y)> p)
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Jim PlYn < 5] = lim [ PLYo0<yIFI4PCF)

I .
= 1 0Fold)=101 _ pyco—coFalx)=1
/,; BlcoFo(y), co — coFo(y)] d (=0 dr. (2.7)

This distribution is not degenerate because of variahility in the prior process.
Alternatively, we can consider the limit ¢, — . Fixing y, the limiting marginal prior distribution
degenerate at Fy(y) aslong as 0 < Fy(y) < 1. By the dominated convergence theorem, the limit distribution.

n

Jim PYena<yl=) (}') F()1 = Fo(y)1™™ (28)

J=r

which isthe usual distribution for an order statistic when the underlying cdf isF ().
2.2. Predictive distributions based on posterior distributions

If preliminary data have already been used to update the prior so that the posterior distribution has expecta-
tion (2.3), we gtill proceed as above. Now, however, for afixed y, the posterior distribution of F(y) | X, ... X

is
Beta[coFo(y) + mFn(¥).co(1 = Fo(¥)) + m(1 = Fu(y)))-
Consequently, the predictive distribution of Y, , becomes

- BlcoFo(y) + mFa(y) + j.co(l = Fo(¥)) +m(1 = F(¥)) +n = j]
=Y (" ) .
) (J BlcoFo(y) + mFu(y).co(l = Fo(3)) + m(1 = Fo(¥))] ) (29)

J=r
where BJ[-. -] is the beta function.
The limits are similar to those above. In addition, if m — x. and the true cdf F(:) is continuous at

and 0 < F(y) < 1, then

n

lim P[¥ <= Y (1) FANL = Fr(o]"™. (2.10)

j=r

3. An application of predictive distributions to monitor lumber

Following the approach developed by Box (1980, 1981, 1983) for parametric distributions, we propose em-
ploying the predictive distribution of an order statistic to check conformity of future data with the informative
prior distribution. If the future population has “shifted downward. an order statistic based on a random sample
should be in the extreme lower tail of the predictive distribution thus signaling a change.

We first determine an informative prior based on data collected a few years ago. For afixed load. v, it is
necessary to specify the prior expected probability that the strength of a single specimen, Y, does not exceed
y. Denote this expected probability by Fq(y). We then specify the uncertainty in the probability of failure

P{Y < y] as abeta distribution with
mean = Fy(y)

and
_ Fo(0)[1 = Fo(»)]
- co+1 ’

variance
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That is. the probability of failure at load y; has probability density
1 coFul ¥y )=1 col | =Fg(11))~1
-— WtV 1 — o oy .
9= BleaFarn)-coll = Bol I (1= 3.)
For consistency of our specification at other y, we require that the expected probability Fy(y) to be a cdf.
Next. we must specify the probability distribution for two loads y; < y,. The joint pdf of P[lY<y] =u; and
P[Y < y,] = u,isgiven by the Dirichlet distribution

u“'OFO()'I =1 (u: - u )L‘u( Falrs J=Folyr D=1 ( I - uy )t‘a( I—Fo(.l‘: N=1
DlcoFo(y1).co(Foly2) = Fo(¥1)).co(l = Fo(y2))]

Continuing to define higher dimensional densities for the probabilities at loadsy, <y, < - - - <y, we
obtain a Dirichlet process prior distribution on the cdf F(-) with

mean Fy(y) for any v.
Fo(v)[1 = Fo(¥)]

variance =

co+ 1
. Folyi A vl = Fo(yi V 3]
covariance = papn . (3.2
We have relatively large data sets Xy, . . . X0 from which to develop aprior process. Wetook ¢, = ng - 1

although other choices are possible. (If no prior observations are available then F (Y)[I - Fy(y)]ing is the
sampling variance of the fraction that fail at load y.)

Based on fitsto Xy, . . . X, for one grade and species, our two choices for Fy(-) were the continuous
distributions

Normal with mean = 9.870 and s.d. = 2.490.
Weibull with shape = 4.726 and scale 10.803.

The predictive cdf's for the sample 5th 10th and 50th percentiles were evaluated by expressing the beta
functions in terms of gamma functions. The cdf’s were evaluated on a grid of points in steps of 0.001. Some
of the percentiles were checked with a double precision calculation and they were found to be accurate within
the step size 0.001 except for some of the 1st percentiles which were occasionally off by 0.004 units.

A future sample of size n will be taken and the rth order statistic obtained. If thisis too small relative
to its predictive distribution, a decrease in strength is suggested. We selected the lower 5th percentile of the
predictive distribution as the critical value for signaling a decrease in strength. One approach to evaluating
this monitoring procedure is to determine the probability that it signals a change when the prior. process
expectation F, is changed to an alternative distribution F; 5. Under this aternative prior Dirichlet process, a
cdf is selected and then asample of size nistaken. The sample rth order statistic Y,y has distribution H,

where, asin Eqg. (2.5) with F, replaced by Fga,

= ~ [ n\ BlcoFou(y)+ j.co = coFos(y) = n—j]
Healy)= Z (J> BlcoFo4(y).co = cofoa(y)] '

=r
A change to a weaker strength will be signaled if Y{,, is smaller than the 5th percentile X, o5 Where H,(x0.05) =

0.05 with H,(:) given by Eq. (2.5).
The probability of signaling a decrease in strength is then

. = (n) BleoFos(So0s) + j.co = coFou(So0s) +n — ] 33
Al Soos) = Z (/ ) BlcoFo4(S00s ). co — coFos(Soos )] . 33

1=r
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Table 1
Detection probabilities: nonparametric Bayes predictive distributions for the sample 5th percentile (shifted predictive distribution)
sample size Shift in predictive distribution
0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000

Prior size= 120

51 0.050 0.077 0.116 0.172 0.247 0.342 0.454 0.576 0.695
201 0.050 0.092 0.164 0.275 0.425 0.599 0.764 0.888 0.959
351 0.050 0.096 0.176 0.302 0.471 0.659 0.823 0.930 0.980
501 0.050 0.099 0.186 0.322 0.505 0.700 0.859 0.952 0.989
Prior size = 360

51 0.050 0.084 0.135 0.208 0.306 0.425 0.555 0.685 0.799
201 0.050 0.120 0.252 0.447 0.668 0.848 0.951 0.989 0.999
351 0.050 0.135 0.305 0.548 0.786 0.934 0.988 0.999 1.000
501 0.050 0.148 0.346 0.619 0.854 0.968 0.996 1.000 1.000
Prior size = 1000

51 0.050 0.087 0.144 0.226 0.333 0.460 0.597 0.726 0.834
201 0.050 0141 0.315 0.557 0.786 0.929 0.985 0.998 1.000
351 0.050 0.173 0.421 0.720 0.919 0.988 0.999 1.000 1.000
501 0.050 0.200 0.507 0.822 0.969 0.998 1.000 1.000 1.000

Note: The Dirichlet prior has a normal distribution, with mean = 9.87 and s.d. = 2.49, as its mean.

By selecting the future sample directly from F 5, we obtain a second measure of the probability of signaling
a change which is expressed in terms of the cdf G, g o Of V().

Gro.a(Coos)= ) (; ) Fl(Zoos)[1 — Fou(Zo0s)]" ™. (34)

j=r

In order to study the power of the predictive distributions for detecting changes in the strength popu-
lation, we considered shifts in the population of 0.000(0.250)2.000 units. Taking a cdf from the original
process and shifting it by the specified amount is equivalent to shifting the prior expectation F, by the
same amount and then selecting a cdf from this modified process. Tables 1 and 2 pertain to alternatives
that contain two sources of variation. First the choice of a cumulative distribution function according to the
informative prior which is then shifted downward by the specified amount of shift Second the sampling
variation of the order statistic, representing the sample 5th percentile, obtained from a random sample of size
n from this shifted distribution function. Equivalently, the predictive distribution of the order statistic can be
shifted.

Tables 1 and 2 give values of the detection probability which is the predictive probability, under the shifted
predictive distribution, that lies below the 5th percentile of the un-shifted predictive distribution of the order
statigtic.

In review, suppose the process generating the new observations tends to produce values D units below
those suggested by current data. Tables 1 and 2 provide the amount of predictive probability, calculated from
the new data, that lies below the 5th percentile signal value determined from the predictive distribution based
on the current study data. Inspection of Tables 1 and 2 indicates that, generally, shifts must be greater than
0.750 in order to have predictive probabilities around 0.5 or larger. The exceptions are for the smallest sample
size, n = 51, where the shifts must be about 1.000.
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Table 2
Detection probabilities: nonparametric Bayes predictive distributions for the sample 5th percentile (shifted predictive distribution)
Future sample size Shift in predictive distribution
0.000 0.250 0.500 0.150 1.000 1.250 1.500 1.750 2.000

Prior size = 120

51 0.050 0.078 0.119 0.176 0.252 0.346 0.455 0.572 0.686
201 0.050 0.093 0.164 0.272 0.417 0.583 0.744 0.869 0.946
351 0.050 0.096 0.176 0.298 0.460 0.641 0.803 0.915 0.972
501 0.050 0.099 0.184 0.317 0.491 0.679 0.838 0.938 0.983
Prior size = 360

51 0.050 0.085 0.138 0.212 0.309 0.424 0.550 0.675 0.785
201 0.050 0.119 0.246 0.434 0.646 0.827 0.937 0.984 0.997
351 0.050 0.134 0.297 0.531 0.764 0.918 0.982 0.996 1.000
501 0.050 0.146 0.336 0.598 0.832 0.956 0.994 1400 1.000
Prior size = 1000

51 0.050 0.088 0.146 0.229 0.334 0.458 0.589 0.714 0.819
201 0.050 0.139 0.306 0.522 0.763 0.913 0.978 0.997 1.000
351 0.050 0.171 0.408 0.698 0.903 0.982 0.998 1.000 1.000
501 0.050 0.196 0.488 0.799 0.959 0.996 1.000 1.000 1.000

Note: The Dirichlet prior has a Weibull distribution, with shape = 4.726 and scale = 10.803, as its mean.

4. Comparison of the Bayesian nonparametric and parametric approaches

Johnson et a. (1995) take a parametric approach. They assume either a two parameter Weibull or a normal
distribution for a strength property. In the normal case, values for the population mean and variance are
selected from an informative prior distribution and a random sample of size n generated from the corresponding
normal distribution. The sample percentile obtained is thus an order statistic from a random sample of normal
variables, given the values for the population mean and variance. The detection probabilities for norma and
Weibull populations are presented in their Tables 27.1 and 27.2, and Tables 27.5 and 27.6, respectively.

In the nonparametric approach. a population cdf F(-) is selected from the informative prior. This cdf will
likely be close to the normal distribution that is the expected value of the Dirichlet process but it will not be
normal. A random sample of size n isthen selected From F(-) and the order statistic obtained.

The mgjor difference in the two procedures is that the nonparametric Bayesian approach does not require
that the future random sample be generated from anormal distribution. It allows more latitude in the choice
of the cdf F(:) for a strength property. Heuristically, this should imply more variability in the population
percentile and hence in the sample percentile.

More importantly, suppose the underlying distribution F(t) changes for t < t, but remains unatered for
t=19 for somet,. This kind of change cannot be incorporated in common parametric models but is easily

accommodated in a Dirichlet process distribution of F by an appropriate changein Fq for t < t,.
Comparing our Table 1 with Tables 27.1 and 27.2 from Johnson et al. (1995) and our Table 2 with

Tables 27.5 and 27.6, we note that the estimators of the 5th percentile are ordered, by increasing detection
probabilities.

Bayesian nonparametric (lowest).

Order statistic from parametric distribution.

Parametric estimator (highest).

This ordering holds for both the Weibull and normal cases.
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Once it is decided that it is necessary to detect a shift in the 5th percentile of a given magnitude. the
caculations leading to Table 1 can provide a means for making an intelligent selection of future sample size.
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