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ABSTRACT

A database of spectral-reflectance curves of Douglas-fir veneer surface features is presented and
analyzed via principal-component analysis. The paper describes how such analysis can be used to
model and classify the spectral-reflectance curves by feature type. For modeling (curve-reconstruction)
purposes, three principal components were sufficient by most criteria. For classification purposes,
seven principal components achieved classification accuracies (with quadratic discriminant analysis)
on the order of 99%, comparable to the accuracies achieved with the raw spectral data. The best seven
principal components were not those associated with the largest variation in the data. This paper
suggests how comparable classification accuracies might be achieved in a system operating at pro-
duction speeds in a mill.

Keywords: Principal-component analysis, discriminant analysis, classification, spectral reflectance,
color, Douglas-fir, wood.

INTRODUCTION ery. Color is an important aspect of the ap-
The wood-products industry is increasingly pearance of most wood features, and color-

adopting computer-automated manufacturing based wood-scanning systems are being em-
technologies to increase efficiency and recov- ployed with increasing frequency to identify

defects difficult to identify with gray-scale
1 
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object is its spectral reflectance, that is, the
percentage of incident light of each wavelength
reflected from its surface. An object’s spectral
reflectance, measured at potentially hundreds
of wavelengths, contains much more infor-
mation than its chromaticity, which is usually
given by three numbers (regardless of color
space). The color signal output from a video
camera depends upon the spectral reflectance
of the object in view, but is influenced by two
other factors as well: the spectral power dis-
tribution of the light source and the spectral
sensitivity of the sensor. Thus, in transforming
from spectral reflectance to chromaticity, much
spectral information is inevitably lost, and in-
formation from the influences of lighting and
sensor spectral sensitivity is added.

A knowledge of the spectral reflectances of
various wood-surface features can guide the
proper selection of cameras, lights, filters, and
color representation to ensure that the essen-
tial information for the specific application is
retained. In addition to aiding the selection of
camera/lighting components, such knowledge
can foster a better understanding of wood color
images through the use of physical models that
describe how surfaces appear.

This paper describes how principal-com-
ponent analysis (PCA) can be used to model
spectral-reflectance curves and to classify
wood-surface features on the basis of their
spectral reflectances. The literature on wood
spectral reflectance and methods for analyzing
spectral-reflectance curves, including PCA, is
first reviewed. The set of spectral-reflectance
curves, each of a common wood feature, that
were collected as part of this study are then
described and characterized and classified with
PCA. Finally, some conclusions, including po-
tential use of this research in a video-camera
system for defect identification and classifi-
cation, are offered.

LITERATURE REVIEW

Wood color and wood spectral reflectance

Color is an important aspect of the appear-
ance of most wood features. Brunner et al.

(1990) described the potential of color in ap-
plications of machine vision to wood process-
ing, and its utility for detecting defects in im-
ages of wood has been empirically demonstrat-
ed by several researchers (Conners et al. 1985:
Butler et al. 1989). Research has shown that
at least two components of a color space are
required to adequately separate normal from
defective wood (Conners et al. 1985; Brunner
et al. 1992).

The primary determinant of the color of an
object is its spectral reflectance. As noted, a
knowledge of the spectral reflectance of var-
ious wood-surface features can guide the prop-
er selection of cameras, lights, filters, and color
representation to ensure that the essential in-
formation for the specific application is re-
tained. For example, Maristany et al. (1991)
showed that the representation of color data
affects the performance of computer vision al-
gorithms. Their results indicated that trans-
forming the camera’s primary RGB color rep-
resentation into either the CIELAB or CIE-
LUV color spaces enhanced the performance
of two tested classification routines. Experi-
ments with filter adjustments have been suc-
cessful in enhancing the detection of certain
wood-surface defects (Matthews and Beech
1976; Soest 1984; Conners et al. 1985; Soest
and Matthews 1985).

Solid-state video cameras can sense light of
wavelengths from approximately 300 to 1,100
nm. This ability to effectively operate in the
near-ultraviolet and near-infrared regions of
the electromagnetic spectrum outside the vis-
ible range (360 to 830 nm) provides additional
data that may improve imaging system per-
formance. There is also potential for better
understanding wood color images through
physical models that describe how surfaces ap-
pear on the basis of their reflectance properties
(Kanade and Ikeuchi 1991; Maristany et al.
1993, 1994).

Linear models

The spectral-reflectance curves of naturally
occurring materials are typically smooth
(MacAdam 1981). This smoothness suggests
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that they might be characterized by finite-di-
mensional linear models, that is, as linear com-
binations of a finite number of fixed curves.

measurements that represent a given spectral-
reflectance curve. (In this paper p = 41, be-
cause the spectral reflectance of each sample
was measured at 41 equally spaced wave-
lengths.) Using a finite-dimensional linear
model assumes that any such x can be ade-
quately represented as

. . . , gkp]’ and ~ is a residual error vector. The
gk are referred to as basis functions, and each
spectral-reflectance curve is approximated by
a linear combination of these basis functions,
with weights given by T. Among the assump-
tions of model (1) are that the errors c are
additive and independent. Many researchers
have represented spectral reflectance by fi-
nite-dimensional linear models, including Ma-
loney (1986), Buchsbaum and Gottschalk
(1984), and Stiles et al. (1977). Choices for
basis functions have included Legendre poly-
nomials (Healey and Binford 1987), band-lim-
ited trigonometric functions (Stiles et al. 1977),
unit step functions (Stiles and Wyszecki 1962),
and empirical orthogonal functions (Cohen
1964).

Principal-component analysis

In principal-component analysis (PCA)
(Mardia et al. 1979), the basis functions gk are
chosen to be mutually orthogonal and are em-
pirically determined from a sample of response

population of interest. (Because G depends on
the data, the model is nonlinear.)

PCA has been applied to many kinds of
spectral data, including spectral-reflectance
curves (Cohen 1964; Maloney 1986; Healey
1989; Parkkinen et al. 1989; Tominaga and
Wandell 1989), spectral response curves of
neurons in monkeys (Young 1986), absor-

bance curves (Rao 1964; Cochran and Home
1977), transmittance curves (Parkkinen and
Jaaskelainen 1987), and mass spectra (Rozett
and Petersen 1976; Hoogerbrugge et al. 1983).
Simonds (1963) appears to have laid much of
the foundation for many of these applications
when he described the use of PCA for hypo-
thetical photographic and optical response
curves.

PCA offers data reduction and, in the single-
population case, the ability to transform cor-
related variables into uncorrelated ones. Fol-
lowing the terminology of Mardiaetal.(1979),

and covariance 2. The principal-component
transformation is defined as

(2)

called the ith vector of principal-component
loadings. Because of the way the principal
components are constructed, they are uncor-
related, the variance of the ith principal com-
ponent is A,, and no standardized linear com-
bination of x has a variance larger than Al
(Mardia et al. 1979).

The principal components of a sample are
defined in a manner analogous to the principal
components of a population (Flury 1988). De-
fine the sample data matrix from the popula-
tion as X = [x1, x2, . . . , x n]’, where each p-vec-
tor x, is an observation and n is the number
of observations. Let

be the sample covariance matrix, where

(4)
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Let VDV’ be the spectral decomposition of S,
i.e.,

(5)

the ith sample principal component (without
adjustment for the mean) can be written as ui
= X vi.

For several populations, PCA is not as well
defined as when there is a single population.
Assuming a common covariance structure for
the populations simplifies matters, but there
remains the decision of what estimator of Z to
use (Krzanowski 1984; Manly and Rayner
1987; Flury 1988).

The application of PCA when other rela-
tionships besides equality are assumed be-
tween population covariance matrices has been
investigated by several researchers. Krza-
nowski (1979) mathematically compared prin-
cipal-component subspaces between groups to
obtain a measure of similarity. Flury (1988),
who has summarized much of this work, con-
structed a hierarchy of covariance matrix re-
lationships that includes proportionality, com-
mon eigenvector structures, and partially com-
mon eigenvector structures.

Graphical procedures for comparison as well
as formal tests for the equality of covariance
matrices exist (Seber 1984). See Lebow (1992)
for details.

Data reduction with PCA

One of the benefits of PCA is data reduction.
Such reduction is achieved by writing each ob-
servation as a linear combination of the ei-
genvectors vk of S:

where Ci is a residual error vector and q < p.
Replacing the p-dimensional vector xi by its
q-dimensional vector of principal-components
u.i provides the data reduction. One attempts
to choose g so that the remainder, ~i, can be
considered noise. This modeling approach is

based on the fact that the smaller components
contribute less toward the total variance than
do the larger ones, a relationship implying that
the smaller components are of less importance
and essentially noise.

If one assumes that the sample eigenvalues
are in decreasing order, d1 > d2 > . . . > dp >
0, many procedures for the selection of q exist,
including:

(i)

(ii)

(iii)

(iv)

(v)

choosing q by Cattell’s scree test, which
plots the eigenvalues (or their contri-
bution to total variation) in decreasing
order. An “elbow” in the plot, i.e.,
where the change in the ordered ei-
genvalues takes a noticeable jump, in-
dicates the number of components, q,
to keep (Mardia et al. 1979).
choosing the minimum q such that

where a defines some percentage
(Mardia et al. 1979).
Kaiser’s criterion: choosing the max-
imum q such that

(8)
where d is the average of all the eigen-
values (Mardia et al. 1979).
choosing the maximum q such that the
test of the hypothesis H0: & = Aq+, =
. . . = XP fails. [This test is known as
the isotropy test, Barlett’s sphericity
test, or Barlett’s test of homogeneity
(Mardia et al. 1979; Flury 1988).]
choosing q via PRESS, [predicted re-
sidual sum of squares (Weld 1978;
Krzanowski 1987)], which provides a
measure of prediction error associated
with a particular principal-compo-
nents model. The PRESS statistics for
different models are compared by an
F-test or other ratio criteria to deter-
mine a suitable value for q.

With the exception of Barlett’s test, these
tests are subjective. Using these and other cri-
teria, researchers working with relatively



78 WOOD AND FIBER SCIENCE, JANUARY 1996, V. 28(1)

smooth spectral-reflectance curves (such as
those of wood) have suggested values for q
ranging from 3 to 9 (Cohen 1964; Maloney
1986; Parkkinen et al. 1989).

Discriminant analysis

Suppose there are g distinct groups of p- di-
mensional populations, each with an associ-
ated probability density fj( • ), and one wants to
classify an unknown observation x = (x1, x2,
. . . , xP)’ on the basis of its measurements. Dis-
criminant analysis is the development of rules
separating Rp into disjoint regions in such a
way that any point x is assigned to the group
k having the highest likelihood in the region
containing x, i.e.,

fk(x) = max j{ fj(x) } (9)

If the populations are known to be normally
distributed with means µj, and common co-
variance matrix 2, the maximum-likelihood
discriminant rule allocates x to the group that
minimizes the square of the Mahalanobis dis-
tance, which is defined as follows:

This rule establishes linear boundaries sepa-
rating the groups. Linear discriminant analysis
represents the data in such a way that the ratio
of the between-group variation to the within-
group variation is nearly maximized for each
pair of groups (Mardia et al. 1979).

Suppose the population parameters µj, j =
     1, 2, . . . , g, and X are unknown, but that n j

observations are made from each population
 j, j = 1, 2, . . . , g. The sample maximum-
likelihood discriminant rule (Mardia et al.
1979) is

(11)

where S is the sample covariance matrix. This
rule also establishes linear between-group
boundaries, and so classifying observations by
it is known as linear discriminant analysis.

If the populations have different covariance
structures, then the estimated Mahalanobis
distance is

(12)

This rule establishes quadratic boundaries sep-
arating the groups, because the intersecting
contours of the covariance structures are non-
linear. Thus, classifying observations by this
rule is called quadratic discriminant analysis.

Discriminant analysis error rates

The maximum-likelihood discriminant rule
is a special case of the Bayes discriminant rule
when prior probabilities of classification are
equal. In this context, the posterior probability
of classification associated with allocating a
random observation to a particular population
can be discussed (Mardia et al. 1979). Posterior
probabilities of misclassification, referred to as
error rates, help assess the effectiveness of clas-
sification or discriminant rules. They are es-
timated by various techniques including re-
substitution and cross-validation, among oth-
ers.

Resubstitution procedures estimate mis-
classification probabilities by the proportion
of observations from each population that,
when classified by the sample discriminant rule,
is allocated to another population. The resub-
stitution estimate is called an apparent error
rate. Resubstitution methods tend to be overly
optimistic, i.e., biased toward zero.

Cross-validation is a sample re-use method.
It estimates error rates by using portions of the
original sample. Cross-validation repeatedly
divides the original sample into two exclusive
groups, a training set and an evaluation set.
The discrimination rule is calculated on the
basis of the training set, and then the obser-
vations in the evaluation set are classified by
this discrimination rule. The observations in
the evaluation set are then added to the train-
ing set, and another subset of the training set
that has yet to be evaluated becomes the new
evaluation set. This process is repeated until
all observations in the sample have been clas-
sified. The estimates of the posterior proba-
bilities of misclassification are calculated by
the percentages of observations that have been
misallocated. When the evaluation set is a sin-
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gle observation, this method is referred to as
the leave-one-out method.

Error rates (misclassification probabilities)
are computed for classification rules to deter-
mine the effectiveness of a particular rule for
separating groups in a data set and to compare
the different rules. Sample re-use methods are
generally acknowledged to be better estimators
of error rates than resubstitution. However,
these procedures are computationally inten-
sive, especially with a large number of vari-
ables or observations. Snapinn and Knoke
(1988) provide a good review, as well as com-
parison, of many estimators of misclassifica-
tion error rates.

Response-curve data tend to be highly cor-

related, and there may be more variables than
observations (Hoogerbrugge et al. 1983). Ap-
plying linear or quadratic discriminant anal-
ysis to this type of data will result in unstable
discriminant-function estimates, since the dis-
criminant functions depend on the inverse of
X Authors have proposed a variety of data-
reduction methods prior to classification, in-
cluding principal-component analysis, in or-
der to deal with this problem. See Lebow (1992)
for a discussion.

When discriminant analysis is performed on
the principal components of a data set, those
components associated with the most varia-
tion are not necessarily the best discrimina-
tors. Common forward variable-selection pro-
cedures in discriminant analysis were outlined
in Habbema and Hermans (1977). These in-
cluded Wilk’s Lambda (U statistic), the F sta-
tistic, and maximal estimated correct classi-
fication rate.

SPECTRAL-REFLECTANCE DATABASE

The wood spectral-reflectance curves ana-
lyzed in this paper came from eight types of
surface features in Douglas-fir [Pseudotsuga
menziesii (Mirb.) Franco] veneer. The eight
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that the spectroradiometer could focus on sin- ments were made at the normal, with illumi-
gle earlywood/latewood bands. Reflectance nation parallel to the wood-fiber direction. All
curves from the veneer specimens were ob- wood measurements were preceded by a ref-
tained with a standard 45/0 geometry, in which      erence measurement from a Labsphere Spec-
each sample was illuminated with an incan- tralon@ diffuse reflectance standard. The spec-
descent light source at a 45° angle to the surface tral-reflectance factor for each wavelength was
normal (Hunter and Harold 1987). Measure- obtained by dividing wood energy measure-
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ments by reference energy measurements at showed that the wood-feature curves were
each wavelength from 400 to 800 nm. smooth enough that measuring at 10-nm in-

Although the spectroradiometer used to ob- crements was sufficient. Linearly interpolating
tain the curves was capable of measuring at between the data points of the 10-nm curves
1-nm increments, a preliminary experiment produced an RMS error of 1.2%, relative to
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the 1 -nm curves. Cubic spline interpolation
reduced this relative RMS error to 0.4%. Fig-
ure 1 shows typical reflectance curves for each
wood-feature category. The three curves shown
in each graph were randomly selected from the
collection of measured spectral-reflectance
curves for the category. Figure 2A shows the
mean response vectors for each feature group.
The mean curves are fairly distinct in shape,
although the mean sapwood-earlywood curve
is similar to the mean sapwood-latewood curve
and the mean loose-knot curve is very similar
to the mean tight-knot curve. For both pairs,
the shapes of the curves are similar but one is
shifted upward, indicating a brightness differ-
ence rather than a hue difference —that is, sap-
wood-earlywood has, on the average, a some-
what brighter appearance than sapwood-late-
wood. Likewise, loose knots generally are
somewhat brighter appearing than tight knots,
although the difference is minimal. The stan-
dard deviations of spectral reflectance at each
wavelength are presented in Fig. 2B. Although
this figure does not illustrate the relationships
between the variability of spectral reflectance
at different wavelengths, the curves do show
that the variance structures of the feature
groups seem to differ substantially.

Although Fig. 2B appeared to show differ-
ences in the variance structures of the wood
groups, as a further check Gnanadesikan and
Lee’s graphical test for equality of covariance
matrices [as described by Seber (1984)] was
performed. This graphical procedure is based
on a probability plot of the traces of the mean-
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corrected sum-of-products matrices. Figure 3
shows the resulting plot. The points fall rough-
ly on a straight line, indicating that the group
covariance matrices are similar.

CURVE CHARACTERIZATION BY PCA

As a first step in analyzing the wood spectral-
reflectance curves by PCA, eigenstructure plots
(i.e., scree plots and eigenvector plots) were
made for each wood group separately and for
all groups pooled together. The eigenstructure
plots for the individual wood groups are given
in Figs. 4 and 5. The eigenvalues and eigen-
vectors, although not identical for each group,
are similar. The eigenvectors were compared
geometrically by using Krzanowski’s (1979)
between-groups comparison of principal-com-
ponent subspaces. When six-dimensional
principal-component subspaces of the eight
wood groups were compared, the subspaces
appeared to capture similar major sources of
variation among the groups. With six-dimen-
sional subspaces, the maximum angle between
the groups’ first eigenvectors and the vector
defined as the closest to them was 0.8°. The
maximum angles between the groups’ second
through sixth eigenvectors and the vectors de-
fined as the closest to them were 1.7°, 3.7°,
8.7°, 17.1°, and 39.9°, respectively.

Figure 6 shows how well a typical spectral-
reflectance curve is modeled on the basis of a
principal-component model with common
population covariances. From the figure, it ap-

pears that more than three components are
necessary to adequately model this curve
(which is from a pitch pocket). With six prin-
cipal components, the modeled curve is vir-
tually indistinguishable from the actual curve
except for being slightly flattened at 450 nm.

The eigenstructure for all of the group co-
variance matrices pooled together is illustrated
in Fig. 7. The pooled eigenstructure shown in
this figure appears similar to that of the indi-
vidual eigenstructure plots of Figs. 4 and 5.
The elbow in the top graph suggests that, ac-
cording to Cattrell’s scree test, one or two prin-
cipal components are sufficient. Table 1 gives
the cumulative percentage of total variation
explained by the ordered eigenvalues. Because
the first two components contain over 95% of
the total variation while the remainder of the
components’ contributions decrease geomet-
rically, two components seem sufficient in ex-
plaining the variation.

Under Kaiser’s criterion, the number of ei-
genvalues that exceed the average eigenvalue
is two. (The average eigenvalue in the decom-
position of the pooled covariance is 29.95.)

Let xij be the ith response curve observed
from the jth group. If .i?ij is the corresponding
predicted response curve from a q-dimension-
al principal-component model, then the PRESS
statistic can be given by

where g is the number of groups and n = Z nj

is the total number of observed response curves.
Notice that PRESS(q) is the mean-squared er-
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ror. Table 2 summarizes these average squared
deviations based on progressively larger prin-
cipal-component models. Application of the
PRESS statistic by following the leave-one-out
scheme as outlined previously results in 32
components being retained.

The number of components retained for each
of the preceding methods is summarized in
Table 3. The results of the methods for choos-
ing the number of meaningful components vary
considerably. As is common with many anal-
yses, the researcher must decide which number
of components adequately represents the data.
Between three and six principal components
probably are sufficient; with six components,
predictability is substantially improved.

CURVE CLASSIFICATION BY PCA

The preceding section showed how the wood
curves in this data set can be characterized by
a small number of principal components. Prin-
cipal components can also be used to classify
the curves by feature type. The usefulness of
PCA for classification was investigated by
comparing a number of methods for classifying
the spectral curves by feature type. First, both
linear discriminant analysis (LDA) and qua-

dratic discriminant analysis (QDA) were per-
formed on the raw spectral curves. Table 4
shows the estimated rates of misclassification
for each type of analysis. The rates were esti-
mated by the cross-validation, leave-one-out
method discussed earlier. In this table the two
sapwood groups (early and late) have been
merged for reporting purposes, as have the two
knot groups (loose and tight), because for many
practical purposes, it is not necessary to dis-
tinguish between these groups, even though
they may differ in their spectral-reflectance
characteristics. For example, if grain pattern
is not important, there is no advantage in
knowing if a normal-wood pixel is earlywood
or latewood. The same can be said for loose
and tight knot when neither is allowed in a
cutting or when both are treated equally for
grading purposes. Without merging, the over-
all misclassification rate for LDA increased
from 5.0% to 7.1 %; for QDA the rate increased
from 1.1 % to 1.6 %.

The data points of the raw reflectance curves
are highly correlated, and calculation of the
discriminant functions on such data can result
in ill-behaved discriminators, because their
calculation depends on the inverse of the pooled
sample covariance matrix. For these data, the
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condition number (the ratio of the largest ei-
genvalue to the smallest) of the pooled sample
covariance matrix was 5.4•105, indicating that
the matrix was near-singular. This number can
be interpreted as indicating that changes in the
fifth significant digit of the pooled sample co-
variance would be sufficient to make it singular
(Stewart 1987). The effects of measurement
density on the stability of the sample covari-
ance matrix and on the ability to classify were
investigated by repeating the discriminant
analyses and using only every fifth wavelength
reading for each spectral curve. Doing so af-
fected the results only modestly. The condition
number of the pooled sample covariance ma-
trix decreased to 1.1.104, the overall LDA
misclassification rate increased from 5.0 % to
6.6 %, and the overall QDA misclassification
rate actually decreased from 1.1 % to 0.8 %.

Discriminant analysis was also performed
on various combinations of the curves’ prin-
cipal components. Table 5 shows the misclas-
sification rates for quadratic discriminant
analysis, as estimated with the cross-valida-
tion, leave-one-out method. The principal
components for each row of the table were
chosen via a forward stepwise variable-selec-
tion criterion that considered the first 10 prin-
cipal components, PC1 through PC10 (rank-
ordered by eigenvalue). Note that the PCs as-
sociated with the larger eigenvalues were often,
but not always, the best discriminators. For
example, the second principal component
(PC2) proved to be the best single component

for discrimination, in that it produced the low-
est overall misclassification rate for the merged
set of feature classes. However, it alone was
able to correctly classify only about 60 % of the
reflectance curves. The second best principal
component (when used in conjunction with
PC2) was PC3. The addition of PC3 in the
analysis dramatically reduced the pitch-streak
error rate (although at the expense of blue stain)
and also substantially reduced the sapwood er-
ror rate. Adding PC1 to PC2 and PC3 brought
the blue-stain error rate back to a reasonable
level and further reduced the sapwood error
rate. Adding PC4 to PC1, PC2, and PC3 im-
proved the knot and pitch-pocket error rates.

Linear discriminant analysis was also per-
formed on the principal components, but as
with the raw data, it proved significantly in-
ferior. Merging the two sapwood groups and
knot groups prior to QDA also resulted in
somewhat higher misclassification rates.

For those reflectance curves that were mis-
classified, it is instructive to consider into what
classes they were assigned. The QDA confu-
sion matrix, i.e., the matrix of actual versus
predicted classifications by feature type for the
unmerged classes (based on the best eight prin-
cipal components), is given in Table 6. As the
table shows, the two types of knots are often
confused, but the two types of sapwood are
not. Furthermore, blue stain has a tendency to
be misclassified as sapwood-earlywood. Wane
also has a tendency to be misclassified, but not
to any single other group.
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DISCUSSION AND CONCLUSION

A database of spectral-reflectance curves of
Douglas-fir veneer surface features was pre-
sented and analyzed via principal-components
analysis. For characterization (modeling) pur-
poses, the choice of which principal compo-
nents to consider becomes the choice of how
many principal components to retain, because
those associated with the largest eigenvalues
are the best choices. For this data set, the var-
ious methods of determining the number of
components to keep for characterizing the
curves yielded widely different results, ranging
from 2 to 32.

For classification purposes, the choice of
which principal components to consider is
more complicated than merely a choice of how
many principal components to retain. For this
data set, the principal components associated
with the largest eigenvalues were not always
the best for classification purposes. When qua-
dratic discriminant analysis was used to clas-
sify the curves, raw spectral reflectance mea-
surements spaced 50 nm apart (9 readings per
curve) achieved approximately the same mis-
classification rates as when QDA was applied
to a comparable (7) number of principal com-
ponents, Quadratic discriminant analysis
proved substantially superior to linear dis-
criminant analysis, whether operating on the
raw data or on a subset of principal compo-
nents.

Even though the classification accuracies of
QDA on the raw data were comparable to those
for QDA on the best seven principal compo-
nents, practical considerations favor the PCA
approach. Direct spectral-reflectance measure-
ments are difficult or impossible to make at
production speeds in a mill. However, if one
is given a set of p principal-component loading
curves (eigenvectors), it is theoretically pos-
sible to dssign a p -dimensional image-acqui-
sition system whose p color values at a point
are precisely the desired principal components
for the spectral reflectance of the object at that
point (Vora and Trussell 1993; Vrhel and
Trussell 1993). This design is possible because

the major principal-component loading curves
are fairly smooth functions of wavelength. A
simple system would consist of a gray-scale
camera and a filter wheel accommodating p
custom-made filters. A real-time system would
use several spatially registered sensors, each
with its own filter, or a single sensor fitted with
a liquid crystal tunable filter (Hoyt 1995). Such
systems are called multispectral or extended-
color systems because they usually employ
more than the usual three sensors of a con-
ventional color camera, i.e., p > 3. At least
one practical extended-color system is already
being proposed (Trussell 1994). Although this
study is based on limited data and its conclu-
sions will need further verification, its results
suggest that extended-color systems may be
able to achieve, in a mill environment, clas-
sification accuracies comparable to those found
here.
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