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In this article we revisit a method of sample allocation that has long been known to statisticians and has recently been "discovered" 
by wood strength researchers. The method allocates experimental units to blocks on the basis of the values of a variable, x, that is 
known to be correlated with the response, y. We call this allocation method "predictor sort sampling." We demonstrate that the 
associated paired T analysis recommended in statistical texts is deficient if the sample size is small and the correlation between x and 
y is high. We temper this criticism of standard statistical intuition with a proof that the approach is asymptotically correct. In a 
related development we show that a modified pooled T approach can be taken to this data with a resultant increase in power. We 
compare these approaches to an analysis of covariance approach and discuss the advantages of each. Finally, we warn against the 
intuitively attractive but incorrect power calculations that are likely to be performed in association with a predictor sort experiment. 
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1. INTRODUCTION 

In recent years wood strength researchers have begun to 
replace experimental unit allocation via random sampling 
with allocation via sorts based on nondestructive measure- 
ments of strength predictors, such as modulus of elasticity 
and specific gravity. Warren and Madsen (1977) described 
the procedure as follows: 

Specifically, then, all the boards in the experiment are ordered 
from weakest to strongest as nearly as can be judged from their 
moduli of elasticity, knot size, and slope of grain. To divide the 
material into J equivalent groups, the first J boards, after ordering, 
are taken and randomly allocated one to each group. This is re- 
peated with the second, third, fourth, etc., sets of J boards. The 
strength distributions of the resulting groups should then be es- 
sentially the same. 

This allocation procedure has come to be known as predictor 
sort sampling. Depending on the level of their statistical so- 
phistication, wood strength researchers have analyzed the 
resultant data via blocked or unblocked analyses of variance. 

As one would expect, predictor sort allocation has long 
been known to statisticians. Cox (1957) compared seven 
procedures that one might use given the availability of a 
correlated predictor. One of the procedures is a predictor 
sort coupled with a randomized block analysis of variance. 
Another approach is an analysis of covariance. Cox con- 
cluded that for p < .6, blocked ANOVA's are essentially as 
efficient as an analysis of covariance. He also noted that a 
blocked ANOVA can be superior to an analysis of covariance 
if the relationship between the covariate and the response is 
not adequately modeled. 

Cox's calculations showed that the effective variance in 
both the blocking and analysis of covariance situations is 
(1-p2)(J2,, a fact also noted by Cochran (1957). (Here oy 
is the variance of y and p is the correlation between the 
predictor x and the response y.) 

When the number of treatments is two, a blocked analysis 
of variance amounts to a paired T test, and an unblocked 
ANOVA corresponds to a pooled T test. In Figure 1 we plot 
a histogram of the paired T statistic for the case in which p 
= 1.0 and n = 2k = 16. We overlay the histogram with the 
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pdf of a T distribution with k - 1 = 7 degrees of freedom. 
In Figure 2 we plot a histogram of the pooled T statistic in 
the case in which p = .7 and n = 2k = 40. We overlay this 
second histogram with the pdf of a T distribution with 2k 
- 2 = 38 degrees of freedom. These figures illustrate why 
we refer to paired and pooled T's associated with predictor 
sort sampling as "tight T's." (Each of the histograms is based 
on 10,000 simulation trials.) 

On reflection, most professional statisticians would realize 
that a T distribution is only an approximation to the distri- 
bution of the tight paired T. It is likely, however, that sta- 
tisticians, and certainly scientists, would neglect this dis- 
crepancy in the course of an analysis (see, for example, Cox 
1958, ex. 3.3; Finney 1972, sec. 13.17; Ostle and Mensing 
1975, ex. 11.3; Snedecor and Cochran 1967, ex. 4.11.1). 

A priori, there is no reason to believe that this neglect is 
acceptable. However, we show that for p < 1 the approach 
is asymptotically justified, and that for small samples the 
approximation is adequate unless p is high and k is small. 

Further, we show that it is possible to analyze data of this 
sort via a modified pooled T. As we will see, such an approach 
yields power that is superior to that achievable via a paired 
T. In fact, in some cases this power exceeds that available 
from an analysis of covariance. 

In Section 2 of this article, we establish that, given a pre- 
dictor sort allocation, for 0 < p < 1 the tight paired T and 
the tight pooled T (suitably scaled) are asymptotically 
N(0, 1). This result is a special case of a more general theorem 
that covers n-way balanced ANOVA's. In Section 3 we pre- 
sent estimates of the small sample critical values of the tight 
T's, and identify the sample sizes needed to permit use of 
the asymptotic critical values. In Section 4 we discuss a power 
study that should be useful in selecting sample sizes, and we 
show that we need not greatly concern ourselves about en- 
tering the critical value tables via estimates of p. We include 
in this power study an analysis of covariance approach, and 
identify those cases in which it is inferior to one of the tight 
T approaches. In Section 5 we warn against intuitively at- 
tractive but incorrect power calculations. 
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Figure 1. Histogram of the Paired T Statistic for p = 1.0 and k = 8 
Overlayed With a T7 Density Function. 

2. ASYMPTOTIC DISTRIBUTIONS 
Theorem. Assume that the predictor variable and the 

variable of interest have ajoint bivariate normal distribution 
with correlation p. Let the allocation of samples be as de- 
scribed in Section 1. (For the n-way case, enough adjacent 
experimental units are chosen at a time to provide one ad- 
ditional observation for each cell.) Then for 0 ? p < 1, the 
asymptotic distribution of the statistic that treats the groups 
of "equivalent" experimental units as a block (the "paired 
approach") is XJ-I . The asymptotic distribution of the sta- 
tistic that ignores the block structure generated by these 
groups (the "pooled approach") is (1 - p2 ) XJ-I. 

Proof. The proof appears in the Appendix. 
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Figure 2. Histogram of the Pooled T Statistic for p =. 70 and k = 20 
Overlayed With a T38 Density Function. 

3. MONTE CARLO ESTIMATES OF CRITICAL VALUES 
OF THE T'S 

We ran 10,000 trials for each combination of n = 2k 
= 4, 6, 8(4)40(8) 120, 160, 200, 300 and p = .40(.05).95, 
.99, 1.0. (Here k is the number of observations per treatment 
and p is the correlation between the predictor x and the 
response y.) To do so we used the uniform (UNI) and normal 
(RNOR) random number generators developed by Kahaner 
and Marsaglia. The absolute values of the scaled pooled sta- 
tistic (the usual pooled statistic divided by V 1 -2 ) and the 
usual paired statistic were ordered, and order statistics 8001, 
9001, 9501, 9801, and 9901 were used as estimates of the 
two-sided .20, .10, .05, .02, and .01 critical values. Using the 
techniques described by Verrill and Johnson (1988), one 
can see that this approach yields the following .999 proba- 
bility intervals on the true sizes: [.187, .213], [.090, .110], 
[.043, .057], [.015, .025], and [.0066, .0134] (e.g., Pr(f.090 
< .10 cv estimate ' t.IIo) = .999). 

For each p size combination, the critical values for n 
= 8(4)40(8) 120, 160, 200, 300 were smoothed via the equa- 
tion cv = ao + al/n1/2 + a2/n + a3/n3/2. For p < 1.0, ao 
was fixed at the appropriate asymptotic critical value. 

For p = 1 (not covered by the Theorem) there are heuristic 
reasons for believing that Ikln (k) times the usual pooled 
statistic converges in distribution to something approximat- 
ing a linear combination of independent double exponentials. 
Thus in this case we calculated the smoother of the Monte 
Carlo critical values of the usual paired statistic, but we cal- 
culated the smoother of the Monte Carlo critical values of 
fkln( k) (rather than 1 / A1 _ p2) times the usual pooled sta- 
tistic. To perform the pooled p = 1.0 calculations, we fixed 
ao at the average of the estimated critical values for n = 104, 
112, 120, 160, 200, and 300. (Plots indicated that the critical 
values seemed to have leveled off at an "asymptotic value" 
by n = 104.) In the paired p = 1.0 case, ao was a free param- 
eter estimated in the smoothing process. 

The coefficients for the pooled statistics and size .05 are 
presented in Table 1. Those for the paired statistics and size 
.05 are presented in Table 2. Because we found it necessary 
to exclude the n - 4, 6 results from the smoothing process, 
the critical values for these two n's and size .05 are presented 
in Table 3. (Again the critical values reported in Table 3 for 
p = 1 are the critical values of the usual paired statistic, 

Table 1. Smoothing Curve Coefficients, Pooled T, Two-Sided Size = .05 

p aO al a2 a3 

.40 1.960 -.2577 3.683 2.803 

.45 1.960 .04724 .9800 8.326 

.50 1.960 .1034 .5330 9.370 

.55 1.960 .4342 -2.825 16.62 

.60 1.960 .03690 .9038 8.550 

.65 1.960 -.3309 5.768 -3.737 

.70 1.960 -.02812 2.638 4.050 

.75 1.960 -.01677 2.068 6.746 

.80 1.960 .5183 -2.803 18.36 

.85 1.960 .07835 .9213 14.07 

.90 1.960 -.08358 5.158 6.189 

.95 1.960 -.01327 8.132 9.684 

.99 1.960 -1.726 56.24 -52.81 
1.0 2.315 .3015 -2.284 -6.309 
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Table 2. Smoothing Curve Coefficients, Paired T, Two-Sided Size = .05 

p aO a, a2 a3 

.40 1.960 .2104 -.7322 27.61 

.45 1.960 .6684 -4.402 34.34 

.50 1.960 .7335 -5.161 36.02 

.55 1.960 .6474 -4.129 32.81 

.60 1.960 .2880 -.7502 25.99 

.65 1.960 .6407 -4.543 33.54 

.70 1.960 .5610 -3.486 31.37 

.75 1.960 .6104 -4.190 32.83 

.80 1.960 .6726 -3.872 31.15 

.85 1.960 .3756 -2.169 28.55 

.90 1.960 .3746 -.8042 22.85 

.95 1.960 .8558 -5.915 34.22 

.99 1.960 .8197 -7.140 34.78 
1.0 1.681 2.847 -13.91 39.97 

but the critical values of ikln(k) times the usual pooled sta- 
tistic.) 

The quality of the smoothed critical values was tested by 
performing an additional 10,000 trials for each n, p com- 
bination (n ? 8). These tests demonstrated that if one uses 
the smoothed critical values, then the two-sided size will not 
be off by more than .01 for sizes .20 and .10, and by more 
than .005 for size .05. In fact these figures are fairly conser- 
vative. 

In the course of these tests we also investigated the ac- 
ceptability of replacing the smoothed critical values with ta- 
bled T critical values. In the pooled case the tabled T values 
yield good approximations to the critical values of the scaled 
statistic for p c .80. In the paired case the T approximation 
is satisfactory for p as large as .90. For low n, however, as p 
increases beyond .90, the actual size falls below the nominal 
size and a small amount of power (<. 15) is lost. 

To get an idea of the sample sizes needed for the asymp- 
totic critical values to be satisfactory, for each p size com- 
bination we fit a curve of the form ao + a1/n1/2 + a2/n 
+ a3/n3/2 to the counts of the times that the asymptotic 
critical values were exceeded in the 10,000 trials. (ao was 
fixed at 2,000, 1,000, 500, 200, or 100 depending on the size 
in question.) We then found the n's at which these curves 

Table 4. n Required for "Good" Asymptotics, Pooled Statistic 

Two-sided size 

p .20 .10 .05 .02 .01 

.40 20 35 50 39 50 

.45 20 38 52 46 71 

.50 20 35 59 39 52 

.55 20 31 63 42 66 

.60 22 32 50 39 52 

.65 21 32 62 43 59 

.70 25 36 53 46 60 

.75 24 36 56 46 59 

.80 29 43 90 50 60 

.85 36 60 80 55 76 

.90 48 74 116 77 98 

.95 88 126 227 140 231 

.99 309 381 430 264 281 
1.0 

descended below 2,200, 1,100, 550,250, or 125. These values 
are reported in Table 4 for the pooled T and in Table 5 for 
the paired T. Note that as the size decreases or p increases 
(for the pooled case), the n needed to achieve good perfor- 
mance of the asymptotic values also increases. On the other 
hand, for all but the highest p good performance is achieved 
for fairly small n ( < 100 in the pooled case). 

4. POWER STUDY 

We performed a power study that covered the cases in 
which p = .4(.l).8, .85(.05).95, .99, n = 2k = 12(12)48, 
72, 96; A/lay = .0(.25)1.5, and p = .4(A.).8, .85(.05).95, 
.99, n = 2k = 4(2) 14, A/ ay = .0(.5) 3.0. Here A is the mean 
difference between treatment 1 and treatment 2, and a2 is 
the variability of the y's. The study can be summarized as 
follows: 

* A predictor sort followed by a standard analysis yields 
poor power properties. (Because the unscaled statistic is 
"tight," for smaller A the power associated with it is 
actually lower than what one could obtain from standard 
random sampling.) Unfortunately, this is the approach 
currently taken by many wood strength researchers. 

* The gain in efficiency of the tight T (pooled or paired) 

Table 3. Monte Carlo Critical Values, Two-Sided Size = .05 
Table 5. n Required for "Good" Asymptotics, Paired Statistic 

Pooled Paired 
Two-sided size 

p n=4 n=6 n=4 n=6 
-- p .20 .10 .05 .02 .01 

T value 4.30 2.78 12.7 4.30 
.40 4.19 2.87 12.4 4.42 .40 34 56 94 71 85 
.45 4.45 2.81 13.5 4.20 .45 35 67 140 92 143 
.50 4.31 2.74 11.5 4.36 .50 32 73 134 87 113 
.55 4.59 2.86 12.7 4.37 .55 28 63 144 90 122 
.60 4.40 2.84 12.3 4.22 .60 31 59 122 74 109 
.65 4.26 2.83 12.2 4.27 .65 28 59 113 81 105 
.70 4.51 2.90 12.8 4.39 .70 31 57 120 78 118 
.75 4.55 2.84 12.4 4.11 .75 32 67 125 73 112 
.80 4.56 2.97 12.7 4.24 .80 31 69 159 98 112 
.85 4.66 3.09 12.1 4.06 .85 31 63 94 83 159 
.90 4.84 3.29 12.6 4.15 .90 34 69 i11 91 123 
.95 5.41 3.91 12.8 3.97 .95 36 66 150 97 192 
.99 9.08 7.09 11.8 3.69 .99 36 64 88 70 106 

1.0 1.40 1.69 11.1 3.58 1.0 
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predictor sort approach over a standard random sam- 
pling approach ranges from 33% to 800% as p increases 
from .5 to .99. 

* Because of the difference in degrees of freedom, the 
pooled approach yields greater power than the paired 
approach. For small n, the gain can be substantial. For 
example, for a = .01, n = 8, p = .7, and A/ay = 2.5, 
the paired tight T yields power .42 and the pooled tight 
T yields power .81. 

* For p < .85, the pooled tight T performs as well as an 
analysis of covariance. For small n (say, n < 14) the 
pooled tight T actually performs better than an analysis 
of covariance. For example, for a = .01, n = 6, p = .4, 
and A/ ay = 3.0, a predictor sort followed by an analysis 
of covariance yields a power of .29, and the pooled tight 
Tyields power .45- small n's and large A / ay's are com- 
mon in certain areas of wood strength research. 

* In the pooled case, for n > 12, p < .95, entering the 
critical value tables via estimated p's causes no problems. 
In our simulations, for each trial p was calculated as the 
average of the correlation between the predictor and the 
response for the treatment 1 sample and the correlation 
between the predictor and the response for the treatment 
2 sample. For p less than .40, standard T tables were 
used to obtain critical values. For p between .40 and 
.90, the interpolation was linear between the two nearest 
bracketing p's. For p greater than .90, the critical value 
was a quadratic interpolation/extrapolation of the crit- 
ical values for p = .90, .95, and .99. 

For n < 12, p < .95, entering the tables via p, can yield 
inflated sizes, but if p is known from experience to within 
.05-.10, nominal and actual sizes match well. In our 
simulations, for each trial "p from experience" was 
drawn from a N( p, .05 2) distribution for p < .90, from 
a N(p, .025 2) distribution for .90 < p < .95, and from 
a N(p, .005 2 ) distribution for p = .99. 

For p = .99, entering the tables via pj yields inflated 
sizes, but the inflation decreases to acceptable levels as 
n increases. For p = .99, entering the tables via a p 
"known from experience" is unacceptable. 

* Entering the critical value tables via estimated p's causes 
no problems in the paired case. 

* For the pooled tight T, power results can be approxi- 
mated well by taking a noncentral T approach with 
noncentrality parameter equal to 

(,A/ay)/ 2(1 - )/k 
and 2k - 2 degrees of freedom. Alternatively, power 
can be estimated by assuming that (Y2 - - A)! 
(Spooled 1- p2V7k) N(0, 1). The noncentral T ap- 
proach yields perfectly adequate approximations to the 
true power for p < .80. For higher p it tends to overes- 
timate power, but the overestimation decreases as n in- 
creases. The normal approach yields a more significant 
overestimate of power, and its use should probably be 
restricted to lower p and higher n. 

* Similarly, for the paired tight T, power results can be 
approximated by taking a noncentral T approach with 

the same noncentrality parameter as in the pooled tight 
T case, but with k - 1 degrees of freedom. Also, power 
can be estimated by the same normal approximation 
used in the pooled tight T case. Again, the noncentral 
T approach yields good power approximations for p 
< .80 and for higher p, n combinations. The power over- 
estimation associated with the normal approach is, of 
course, even more pronounced in the paired case. 

* The noncentrality parameter associated with a two- 
treatment analysis of covariance is 

(Aos 1 - 
2 _ _ _ _ _ _ _ _ _ _ __2_ _ _ 

Vk (Xi I- X.1)2 + M X2 -X2) 

Thus it pays to minimize X.2 - X. 1. For this reason an 
analysis of covariance associated with predictor sort 
sampling performs slightly better (a .01 -.10 increase in 
power) than an analysis of covariance associated with a 
standard random allocation. 

* If the relationship between the predictor and the response 
is misspecified, then, even for very high p, the tight T's 
can yield better power than an analysis of covariance. 
For moderate n, the misspecification can be difficult to 
detect. For example, for p = .95, n = 24, and A/loy 
= .0(.1).8, we list the powers associated with tight T 
analyses and an analysis of covariance in Table 6. The 
data sets for this analysis were generated by drawing 24 
x values from a N(20, 7 2) distribution and obtaining y's 
via y = X3 + X, where the e's were N(0, a2) with a chosen 
so that the sample correlation between the x's and y's 
was approximately .95. A (fairly) typical example of such 
a data set is presented in Figure 3. 

Full details of the simulation studies used to estimate crit- 
ical values, to test these critical values, and to estimate power 
properties may be found in Verrill and Green (1993). 

5. TIGHT T's AS "PARTIALLY PAIRED" T's 

It is edifying to see how the noncentrality parameter de- 
scribed earlier, 

(A/ay)/ 2(1 -p2)/k, 

differs from those in the "pure" pooled and paired cases. 
(Bear in mind, however, that as p increases to 1, the non- 
central T approach to estimating power loses validity.) Con- 

Table 6. Power, p = .95, n = 24, Nominal Size = .01, 
Misspecified Model 

A/0 

Approach .0 .1 .2 .3 .4 .5 .6 .7 .8 

Tight paired T .01 .02 .09 .24 .45 .65 .78 .87 .91 
Tight pooled T .00 .01 .05 .15 .33 .55 .73 .85 .92 
ANCOVA 

(Predictor Sort) .00 .00 .03 .12 .30 .53 .73 .86 .93 
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Figure 3. y =x3 + e. 24 (x, y) pairs where x is drawn from a N (20, 7 2) 
distribution, y =x3 + C, ? is drawn from a N(O, -2 ) distribution, and o- is 
chosen so that the sample correlation between x and y is approximately 
.95. 

sider the following error model: 

(Y - t1Y)/UY = 3 + -)y + Cy 

and 

(X - AJ/ a., = 3 + Y."+ ex, 

where Y is the property of interest, X is the predictor, and 
'6, yy, yx, Cy, and ex are independent random variables with 
means equal toO0 and variances equal to o-2, 4-2 o2 -2, and 
or 2. (Thus o-2 + o-2 + o-2 = 1.) Here 3 represents the "natural 
variation" shared by Y and X, -y and -y,~ represent the natural 
variation unique to Y and X, and ey and ex are the measure- 
ment errors. In this case the noncentrality parameter appro- 
priate to a pure pooled T analysis would be 

( 
l 

l}~+ 
1__ 2(0-2+'+ 20 30 /~2) 

The noncentrality parameter that a statistician might rec- 
ommend and that a scientist might use (incofrectly) to cal- 
culate the sample sizes needed for a pure paired T analysis 
would be 

Because p = a 2 /(c2 + 0- + 0-) = 0-, the noncentrality 
parameter that one would use (coffectly) to calculate the 
sample sizes needed for a predictor sort experiment would 
be 

( Y- 2 Voo2 + r2)( 1 + oi2(Vk/ V). 

We see from this that the predictor sort approach succeeds 

in pariallsy blockin out inatural trado variatinble f s large 

vaincmariso niu to Y and X, (pd is high) tenr the tightreT 

Tenoncentrality parameter ishmuc lare sthtstcan theh precpole 

noncentrality parameter-the tight T yields a large increase 
in power. But the predictor sort approach does not succeed 
in blocking out all natural variation (the y's remain), and if 
a2 is not small in comparison to a 2 "standard" paired T 
power calculations can seriously underestimate the sample 
sizes needed. 

6. SUMMARY 
Cox (1957) showed that, applied to predictor sort data, 

blocked analysis of variance methods can be competitive 
with analysis of covariance provided that p < .60. We have 
noted that although the assumptions of a blocked analysis 
of variance are not strictly met in a predictor sort situation, 
the approach is asymptotically justified. Also, our simulations 
indicate that (neglecting a minor loss of power in high p, low 
n cases) the approach works well even for small samples. We 
have also suggested the use of a pooled tight T that is com- 
petitive with analysis of covariance for p < .85 and that per- 
forms better than an analysis of covariance in low n situa- 
tions. The tight T statistics can also perform better than an 
analysis of covariance when the relationship between the 
predictor and the response is misspecified. Finally, we have 
warned against careless power calculations in predictor sort 
situations. 

APPENDIX: 
Let H denote the inverse of the N(O, 1) distribution function. 
Lemma. Let Ul, denote the first order statistic from a sample of 

n uniform (0, 1)'s. Then H(U,1I)/ V4 converges in probability 
to 0. 

Proof Because (H( U,n) - H(1 / n)) V21n ( n) converges in dis- 
tribution to an extreme value distribution, and -H( 1/n) 
- V21n(n) (see, for example, David 1981, sec. 9.3), the lemma 
follows. 

A. 1 Proof of the Main Result 

For ease of exposition, we will present the proof for the one-way 
case. The extension to a proof of the n-way case is straightforward. 

Let {Xi,i= 1,...,n},{Zii 1,... ,n}beiidN(0, 1)random 
variables. define Yi pXi + 1 -p2Z.i Then the Yi's are iid 
N(O, 1) and 

corr(Xi, Yj) = p if i =j, 

= 0 otherwise. 
Because the ANOVA F statistics are invariant under changes in 
location and scale, it is clear that we can obtain statistics that have 
the relevant distributions by ordering the X's, bringing along the 
Y's, and randomly dividing Y(1_1)J+l n,. . -, - Yi,namong the Jtreat- 
ments. (Here Yl,, is the Ith order statistic among the Y's.) 

Let Wij denote the ith Y that is assigned to treatment j. Then 
Wij = PXk(i,J),n + 81- p2Pi,, where k(i, j) E {(i - 1)J + 1, 
... , iJ} and the Pij are iid N(0, 1) and are independent of the X's. 
(Here X1,n is the /th order statistic among the X's.) 

A. 1.J The Numerator of the F Statistics. The numerator of 
both the blocked and unblocked F statistics equals i I( W.j 
- W. .)2, where I = n/J. This equals 
J 

I(p2 (Xk(.), 2 

j=l 

+ 2p /1 -p P(Xk(.,J),f Xk(.,.),n)(P. i P..) 

+ (1 -p2)(F.J - p..)2). 
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Now 

J J I 2 

z I(Xk(.,j),n - fk(-,)n) I 2 (Xk(i,j),n Xk(i,-),n)/I 
j=1 J=l i=l 

< z ( z -(XiJn-X(i-I)J+,n)) /I < z (Xn,n - XI,n)2 /I 

which converges in probability to 0 by the Lemma. Also, it is clear 
that J 

I(P.j - P..)2 X2 1. These results, together with the 
Cauchy-Schwarz inequality, imply that 

J~~~~ 
I( ff. _f/ )2 D lp2)X2_l A1 J-1 ~(A. 1) 

j=1 

A.1.2 The Unblocked F Denominator. We have i 

X(W W.j)2(j(-- 1) = 2iJ 2I= (Wj- W.. + W.. 
- -j)2j( _1) = 2-I 1 I= (WiJV - W..)2/j(I - 1)- J- 
X ( W.j - W. .)21j(- 1). It is clear that the first term in the last 
sum converges to 1 in probability as I = n/J goes to infinity. By 
(A. 1), the second term in the last sum converges in probability to 
0, so the unblocked denominator converges in probability to 1. 

A.1.3 The Blocked FDenominator. We have 

J I 

z (WiJ, - Wi. - W. + W..)2/(I- 1)(J- 1) 
j=1 i=1 

(Wij- fi.2 - 2(Wij - 97.)(W.j -W..) 
J I + ( Wj -W a/)2.(A2 

By (A. 1), the last term in (A.2) converges in probability to 0 as I 
= n/J goes to infinity. The first term equals ,J-I zI= (P(Xk(Q,I),n 

- Xk(i,.)) + 81 - p2(Pij - Pl.))2/(- 1)(J- 1). Clearly, 
J I 

(Xk(i,j),n - Xk(i,.) )2/(I-_ 1)(J- 1) 
j=1 1=1 

J I 

' (XiJ,n -X(,-I)J+I,n )2/(I_ 1)(J_ 1). 
j=1 1=1 

Then, because 1 a P- 0 implies that z a2 P 0, and I (XiJn 
-X(i-?)J+In) - XI,1n, the Lemma, together with the Cauchy- 
Schwarz inequality, implies that the first term in (A.2) converges 
in probability to 1 - p2. Making one last use of the Cauchy-Schwarz 
inequality (to show that the second term in (A.2) converges in prob- 
ability to 0), we see that the blocked denominator converges in 
probability to 1 - p2. 

[Received January 1991, Revised February 1992.] 
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