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ABSTRACT

In this work, an analytical study on the bending
stiffnesses of corrugated board has been performed.
Formulations to calculate the bending stiffnesses D11, D22,
D12, and D66 of the equivalent plate representing the
corrugated board have been established, and then compared
to expressions suggested by other investigators. Several
methods for modeling the shape of the corrugated
orthotropic medium material have been considered including
sinusoidal, arc-and-tangent, and elliptical representations.
An extension of the membrane analogy method has been
used to calculate the torsional rigidity D66 of the corrugated
board In addition to the shape of the corrugated core
material, the developed stiffness formulations require the
thicknesses and material properties of the component
paperboards as input.

INTRODUCTION

Unlike fiber-reinforced composite materials, paper
(paperboard) is a multiphase composite composed of
moisture, fibers, voids, and chemical additives. Its three
dimensional structure is basically an assembly of discrete
fibers bonded together into a complex network. A single
preferred orientation of the fibers results from the
hydrodynamic forces present in the papermaking machine.
This orientation is called the machine direction (MD). The
in-plane direction perpendicular to the preferred direction is
called the cross-machine direction (CD). These directions of
material symmetry allow for paper to be modeled
macroscopically as an orthotropic solid.

The end-use performance characteristics of paperboard
products are often predicted using models based upon the
measured resistance of the utilized paper materiels to burst,
tear, fold, tension, compression, shear, and curl. However,
because paperboard is used extensively as a packaging

material, the flexural rigidity or bending stiffness of the
product is an especially important quantity. In such
applications, a stiff paperboard provides the necessary
resistance to bulging of the panels of the container, ensuring
a high degree of protection for its contents.

Corrugated containers, often referred to erroneously
as cardboard boxes, are the most prominent structural
application of paper. The corrugated board structural panels
comprising such packaging are formed from a pair of flat face
plates called liners which are separated by a periodic fluted
core referred to as the corrugating medium or medium.
Such composite sandwich plates are typically lightweight and
inexpensive, and have high stiffness-to-weight and strength-
to-weight ratios. Because it is composed of two primary
elements, corrugated board is also referred to as combined
board. Figure 1 illustrates the basic geometry and
component materials of a corrugated board sample. The
paper materials used for the liners are usually quite stiff and
strong so that the bending stiffness of the combined board is
high. The role of the medium material is to maintain
separation between the two liners.

New shipping requirements have changed the
paperboard market from one based on tonnage to one based
on performance. Hence, the structural performance of a
corrugated container is the major factor in its success in the
marketplace. Such performance is a function of a number of
factors including the quality of the input cellulose fibers, the
mechanical properties of the utilized linerboard and medium,
and the structural properties of the combined board. It is
generally agreed that one of the most important attributes
of a corrugated board are its bending stiffnesses or flexural
rigidities. In order to improve the design and manufacture
of corrugated board products, it is necessary to have a clear,
technically sound understanding of the contributions of all of
these factors to performance.

The primary engineering method for analyzing the
mechanical behavior of composite sandwich plate structures
such as corrugated board is the use of equivalent plate
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models. In such theories, the actual complicated sandwich
plate geometry is replaced by an equivalent orthotropic slab
of constant thickness having the same or similar bending
stiffness characteristics. Subsequent mathematical analyses
are then performed using the relatively simple small
deflection or large deflection plate theories for orthotropic
materials. This conceptual substitution of a single sheet of
uniform material for the true composite structural panel is
by its nature an approximation. However, the equivalent
plate technique has proved to be a useful, expedient, and
accurate method for predicting the transverse deformations
of stiffened plates such as corrugated board. The utility of
the equivalent plate method can be appreciated further by
considering the available alternatives. These include trial
and error procedures which lack predictive qualities, and
costly time-consuming three-dimensional finite element
analyses.

Equivalent plate models have been used for a variety
of stiffened structures including ribbed plates, plate girders,
reinforced or prestressed elements, and composite beam
gridworks. Such composite structural elements are often
referred to as being “technically orthotropic” since they are
modeled as a single orthotropic layer. Several extensive
reviews of the published applications of equivalent plate
models are available in the literature. These include the
works of Troitsky [1,2], and Bares and Massonnet [3].

Prior investigations on particular stiffened plate
configurations have adopted either analytical or experimental
strategies to obtain the required bending stiffnesses. In the
theoretical approach, analytical expressions are developed to
predict the equivalent orthotropic bending stiffnesses of the
stiffened plate. Input parameters to these formulas typically
include the mechanical properties of the component
materials and relevant geometrical dimensions and
characteristics. In the experimental approach,
measurements of the force versus deflection response of the
actual stiffened plate are used to establish the equivalent
flexural rigidities. The stiffnesses found using either
procedure are then typically used as input to the governing
equation of the classical small deflection orthotropic plate
theory. This equation for the transverse deflection of the
plate can be solved by a variety of relatively straight-forward
techniques including analytical closed-form solution
procedures and the finite element method.

Equivalent plate models for corrugated sheets formed
from isotropic materials and without face plates have been
considered by several investigators. Seydel [4] presented a
set of formulas for predicting the bending stiffnesses of a
sinusoidal corrugated sheet. He then applied the results to
predict shear buckling behavior. The same theoretical
equations for sinusoidal corrugations were later presented by
Lekhnitskii [5], Szilard [6], and Troitsky [1].

The flexural rigidities of isotropic panels with a
periodic corrugation made of straight line segments were
measured experimentally by Kinloch and Harvey [7]. The
shape of the corrugation in their investigation was nearly a
square wave. Essentially the same corrugation pattern had
been studied earlier by Libove and Hubka [8] using
analytical methods. In their work, twin face plates were
used to sandwich the corrugated core sheet. Also, a higher
order shear plate theory was considered

Expressions for the moment of inertia per unit length

of single sheets with arc-and-tangent type corrugation have
been given by Blodgett [9] and Wolford [10]. This type of
corrugation pattern is formed using circular arcs and straight
lines, and is often used for roofing, siding, and drainage
conduits. The straight lines connect to the circular arcs
along the tangent lines to the arcs, so that the slopes of the
corrugation are continuous.

There have numerous investigations on the bending
stiffnesses of the corrugated board used by the paper
industry. The majority of these studies have considered
either theories or experiments to find one or more of
flexural rigidities of the board. Since a plate theory analysis
was not considered in many of the investigations, the
bending stiffnesses were often defined using formulas
appropriate for beams instead of plates. In the beam
approach, the bending stiffness is defined as the product of
an elastic modulus term with a moment of inertia term (D
= EI). For plates, the bending stiffnesses typically have the
form of the beam bending stiffness multiplied by a Poisson’s
ratio interaction term which characterizes the two-
dimensional nature of the plate (D = EIf(v )). The use of
beam-like bending stiffnesses to characterize corrugated
board has been widely propagated by the popularity of the
so-called McKee formula [11-12] for the compression
strength of a corrugated box. This well-known equation
requires two beam bending stiffnesses of the corrugated
board as input. These are typically evaluated experimentally
by performing four point bending tests on corrugated board
strips (which behave as beams).

In the early theoretical studies of Kellicutt and Peters
[13], and Kellicutt [14], formulas were derived to calculate
the moments of inertia of the liners and medium comprising
corrugated board. These expressions were then used to
calculate the beam bending stiffnesses (D = EI) of several
kinds of corrugated board. The shape of the fluted medium
in these investigations was assumed to be semi-elliptical.

An improved methodology for calculating the
contributions to the bending stiffnesses of corrugated board
beams (D = EI) due to the medium was later suggested by
Banger [15] and Peterson [16]. In these separate but
identical studies, the shape of the corrugated medium was
modeled in a more representative manner using a periodic
sine function. The cross-sectional area of the medium was
assumed to have constant thickness measured perpendicular
to its sinusoidal middle surface. A numerical procedure was
suggested to calculate the moment of inertia of this area.
This method requires that the thin sinusoidal cross-sectional
area of the medium be divided up into a large number of
short segments which are nearly rectangular. The total
moment of inertia is then found by summing up the
contributions of these small area elements.

Relatively simple closed-form expressions for the
bending stiffnesses of corrugated board beams (D = EI) were
suggested by Carlsson, Fellers, and Jonsson [17]. In their
work, the shape of the middle surface of the cross-sectional
area of the corrugated medium was again represented using
a periodic harmonic function. However, the thickness of the
curved medium was allowed to vary slightly so that a pair of
cosine functions could be used to completely describe the
outside border of its cross-sectional area With these
approximations, a relatively simple formula for the moment
of inertia per unit length of the medium was found.
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Pommier, et al. [18] later used this moment of inertia
formula in a set of expressions they proposed for the four
plate bending stiffnesses of corrugated board (D = EIf(v ) ) .
Their formulations were based upon extending the bending
stiffness equations appropriate for a single layer orthotropic
plate. These authors have also used the finite element
method to calculate the equivalent plate bending stiffnesses
of corrugated board sheets [19]. In that work the corrugated
sheet was itself treated like an engineering structure, and
the liners and medium were meshed with plate elements.
The medium was modeled as a set of trapezoidal flutings,
similar to the model used by Urbanik [20]. The equivalent
plate bending stiffnesses of the corrugated board sheet were
then calculated by using the finite element predictions for
loading geometries where there are known analytical
solutions for analogously loaded single layer orthotropic
plates.

The orthotropic version of the von Karman large
deflection plate theory has been applied to an equivalent
plate representation of corrugated board by Peterson and
Fox [21], and Peterson [22]. In these investigations, the
Rayleigh-Ritz method was employed to predict approximate
displacement and stress fields in rectangular corrugated
board panels subjected to simple loadings. The required
plate bending stiffnesses were approximated using extensions
of the bending stiffness formulas for a single-layer
orthotropic plate, and the moment of inertia of the medium
was calculated using the method presented by Peterson [16].

The investigations by Pommier, et al. [19-20], and
Peterson, et al. [21-22] appear to be the only cases where
correct differentiations between the beam and plate bending
stiffnesses of corrugated board have been made. In this
work, an analytical study on the plate bending stiffnesses of
corrugated board has been performed. Formulations to
calculate the bending stiffnesses D11, D22, D12, and D66 of the
equivalent plate representing the corrugated board have
been established, and then compared to expressions
suggested by other investigators. Several methods for
modeling the shape of the corrugated orthotropic medium
material have been considered including sinusoidal, arc-and-
tangent, and elliptical representations. An extension of the
membrane analogy method has been used to calculate the
torsional rigidity D66 of the corrugated board. In addition to
the shape of the corrugated core material, the developed
stiffness formulations require the thicknesses and material
properties of the component paperboards as input.

THEORETICAL PRELIMINARIES

Orthotropic Stress-Strain Relations

A thin orthotropic plate is shown in Figure 2. The
coordinate axes have been chosen so that they are aligned
with the material symmetry directions of the material, and
so that the x-y plane is the middle surface of the plate. If
the material is linear elastic and in a state of plane stress,
the stress-strain relations are [1-3,5-6]

The material compliances Sij are defined by

(1)

(2)

where E1 and E2 are the elastic moduli, v12 and v21 are the
Poisson’s ratios, and G12 is the shear modulus. Equation (1)
can be inverted to give

(3)

where the so-called reduced stiffnesses Qij are given by

(4)

Orthotropic Plate Theory

The classical small deflection theory for linear elastic
orthotropic plates is a formulation describing the behavior of
thin plates subjected to transverse loading. The transverse
deflections of the plate are assumed to be small relative to
its thickness. The governing equation for the transverse
deflection is given by [1-3,5-6]

(5)

where w = w(x,y) is the transverse deflection of the middle
surface of the plate, h is the plate thickness, p(x,y) is the
transverse pressure loading on the plate, and
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(6)

are the bending stiffnesses or flexural rigidities of the
anisotropic plate. The term

(7)

is often called the total torsional rigidity. The stiffness D66
is often referred to as the apparent torsional rigidity or
simply the torsional rigidity.

The in-plane stresses for a plate subjected to
transverse loading are given by

where the bending moment resultants (bending moments
per unit length) are defined as

(9)

Equivalent Plate Models

The idea of applying the classical theory of orthotropic
plates to slabs stiffened by ribs was proposed and developed
by Huber [23]. The basic assumption he proposed for
estimating bending deflections in a stiffened slab, was to
replace such a slab by an equivalent orthotropic plate of
constant thickness having the same stiffness characteristics.
Since corrugated boards are composed of two liners and one
medium, the idea of an equivalent plate having the same
stiffness characteristics can be introduced However, it
should be understood that the actual corrugated board
obviously can’t be modeled accurately by the equivalent plate
in every respect.

Former theoretical investigations and experimental
data have indicated that the equivalent plate concept is
applicable to more complicated stiffened/sandwich plates
such as corrugated board under the following provisions [1]:

The ratios of the periodic length of the medium
to the plate boundary dimensions are small
enough to insure approximate homogeneity of
the stiffnesses.
The rigidities are uniformly distributed in both
directions.
The flexural and twisting rigidities do not
depend on the boundary conditions of the plate
or on the distribution of the vertical load.
A perfect bond exists between the liners and
the medium.

The substitution of an equivalent plate with the same
stiffness characteristics as corrugated board has been called
the method of elastic equivalence. By applying the principle
of elastic equivalence, the discontinuous structure of the
corrugated sandwich plate is represented by an idealized
constant thickness orthotropic plate, which reflects the
stiffnesses of the actual system. This substitution is
illustrated in Figure 3. When using the equivalent plate
method, structural orthotropy is replaced by natural
orthotropy, and eq. (5) is used as the governing differential
equation for the out-of plane displacements of the corrugated
plate. It should be noted, however, that stress distributions
in the corrugated board cannot be found using eqs. (8)
because of the discontinuous nature of the corrugated board
structure when compared to its equivalent plate
representation.

A common way to estimate the appropriate bending
stiffnesses to use in eq. (5) for complicated
stiffened/sandwich plates is to consider a simple extension
of the relations for single layer orthotropic plates in eq. (6).
These expressions can be recast in the form

where

(10)

(11)

is the area moment of inertia per unit length about the x
and y axes for the cross-sectional areas of the plate which
are normal to the y and x axes, respectively. Since these two
moments of inertia are typically different for a
stiffened/sandwich plate, the first two expressions in eqs.
(10) are typically generalized to [1-3]
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(12)

There is no clear way to generalize the last two expressions
in eqs. (10). The presence of unequal moments of inertia
will lead to discrepancies in the two expressions for D12 since
it is likely that

(13)

Also, it is not clear which of the two moments of inertia to
use in the expression for D66.

ANALYTICAL STIFFNESS CALCULATIONS FOR
CORRUGATED BOARD

Initial Assumptions

The characteristic geometry and dimensions of
corrugated board are shown in Figure 4. In this illustration,
h is the thickness of the liners, t is the thickness of the
medium, L is one half of the wave length of the periodic
fluting, and H is one half of the flute height (the distance
from the middle surface of the board to the middle surface
of the medium at its extreme positions). As indicated
previously in Figure 1, the x and y directions are chosen
along and perpendicular to the fluting “propagation”
direction.

Since the geometry of corrugated board is so
complicated, several intuitive assumptions need to be made
to simplify the modeling procedure and establish tractable
formulations for the stiffnesses. First, it is assumed that a
superposition principle exists where the flexural rigidities of
liners and medium can be added together to yield the total
stiffnesses. The stiffnesses then are given by

(14)

The superscripts 1 and m in eq. (14) refer to the liner and
medium papers, respectively. Second, it is assumed that
generalizations in eq. (12) can be applied individually to both
the liners and the medium. Therefore, the stiffnesses D11
and D22 for the individual components of the combined board
are given by

(15)

(16)

The quantities I1
xx and I1

yy in eq. (15) are the moments of
inertia per unit length of the liner about the x and y axes,
respectively. Similarly, the quantities Im

xx and Im
yy in eq. (15)

are the momenta of inertia per unit length of the medium
about the x and y axes, respectively. Combining eqs. (14-16),
The expressions for D11 and D22 of corrugated board can be
written as

(17)

Calculation of D11 and D22for the Liners

Referring to Figures 4 and 5, the liner moments of
inertia per unit length I1

x x and I1
yy are equal to each other

and given by

(18)

Substituting eq. (18) into eqs. (15), the flexural rigidities of
the liners then become

(19)

Plate bending stiffness expressions for the liners which are
equivalent to those in eq. (19) have been presented
previously by Pommier, et al. [18] and Peterson, et al, [21-
22].

Calculation of D11 and D22 for the Corrugated Medium

As shown in Figure 6, the medium has corrugations
along the x- direction which is also its machine direction.
The thickness of the medium paper is usually very small.
Also, the moment of inertia Im

yytakes on several values
(including approximately zero when the medium cross-
sectional area is at z = 0) as different cross-sections are
considered along the x-azis. In this work, as in references
[18, 21-22], the conservative assumption

(20)

has been adopted Therefore, from eq. (16)

(21)

To calculate the moment of inertia Im
xx, the shape and

configuration of the corrugated medium material must be
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assumed. Once the moment of inertia is calculated, the
flexural rigidity of the corrugated medium can be
approximated using the second of eqs. (16). Referring to
Figure 7, the moment of inertia of the corrugated medium
per unit length can be calculated using

(22)

The functions ft(x) and fb(x) represent the top and bottom
boundary curves of the medium, respectively. The desired
moment of inertia is then the area moment of inertia of the
area Am between these lines, as shown in Figure 8. It is
often not easy to calculate the moment of inertia of this
area. The moment of inertia of the shaded area A’m shown
in Figure 9 is more easily calculated in some cases. This is
done by subtracting the moment of inertia I, of the shaded
area At under the top curve from the moment of inertia I, of
the shaded area Ab under the bottom curve, as shown in
Figure 10. Referring to Figure 11, the only difference
between the moments of inertia of the areas in Figures 8
and 9 is to calculate the moment of inertia of the small
triangular area A, instead of A2. Since these two areas are
very small and close to the x-axis, it is accurate enough to
calculate the moment of inertia Im

xx using the area in Figure
9 and the equation

(26)

(23)

where I, and I, are the moments of inertia of areas At and Ab
shown in Figure 10.

In order to calculate the moment of inertia Im
xx using

either eq. (22) or eq. (23), the function fc(x) describing the
middle surface of the corrugated medium must be assumed
There are several possible ways to represent this function.
In the past, it has been assumed to be elliptical [13],
sinusoidal [15-18,21-22] and composed of circular arcs and
straight lines (arc-and-tangent shape) [24]. Several methods
to calculate Im

xx are now presented and then compared.

[a]  Sinusoidal Medium - Constant Thickness

In this method, the middle surface is assumed as sine
curve, i.e.

(24)

Since the thickness of the medium is considered to be
constant, functions ft(x) and fb(x) are then separated from
fc(x) by a perpendicular distance of t/2. This is shown
graphically using points P, Q, and S in Figure 12. Using
vector methods and appropriate changes of variables, it is
possible to express the integrals It and Ib for the moments of
inertia of areas At and Ab (see Figure 10) as [25]

(25)

where functions Fi are defined by

and where

(27)

are the x-intercepts of the functions ft(x) and fb(x), as shown
in Figure 12.

Once the integrals in eqs. (25) are evaluated, the
moment of inertia of the medium per unit length, Im

xx, is
obtained by using eq. (23). Although the integrals in eqs.
(25) are difficult, they can be routinely evaluated using
numerical integration procedures.

[b]  Sinusoidal Corrugation - Approximate Method

Since the constant thickness calculation in the last
section is so complicated, an approximate method has been
developed where two different sine functions are used to
represent the top and bottom curves. This technique is very
similar to the procedure implemented by Carlsson, et al. [17]
using cosine functions. Referring to Figure 13, the function
for the sinusoidal middle line of the medium is again given
by eq. (24). The slope of this curve at the origin is

(28)

so that
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(29)

If the medium thickness is taken as t at the origin, the
distance oa is t/2. Using trigonometry, the distance ob is

(36)

(30)

The functions representing the top and bottom curves
are zero at points b and b' , respectively. Also, the amplitude
of the top curve is (H + t/2) at x = L/2 and the amplitude
of the bottom curve is (H - t/2) at x = L/2. The two sine
functions which satisfy these x-intercept and amplitude
conditions are

(31)

(32)

(38)

Using eqs. (31,32) to set up integrals for the moments
of inertia It and Ib, and then substituting the calculated
results into eq. (23) gives

(33)

Equation (33) is an approximate formula for a sinusoidal
corrugation shape which can be easily calculated by hand

[c] Semi-Elliptical Corrugation Shape

Kellicutt and Peters [13] have presented a moment of
inertia formula which is based on the assumption that the
shape of the medium is semi-elliptical, as shown in Figure
14. The formula for calculating the moment of inertia per
unit length of the corrugated medium is

(34)

where the characteristic dimensions of the ellipse a, a1, c, c1
are defined in Figure 14. By comparing Figure 14 to Figure
13, these distances can be related to H, L, and t:

(35)

Substitution of eq. (35) into eq. (34) yields

[d] Arc-and-tangent Corrugation Shape

Blodgett [9] and Wolford [10] have calculated the
moment of inertia per unit length of a corrugated plate with
arc-and-tangent type corrugation as shown in Figure 15. In
addition to the dimensions H, L, and t used for other
corrugating shapes, the arc-and-tangent form has three
additional geometric parameters m, α, and r. Only four of
these six parameters are unique. Trigonometry can be used
to obtain the dependence relations

(37)

The moment of inertia per unit length is obtained by
combining of the moments of inertia of the tangent line and
the arc

where IL is the moment of inertia of the straight tangent
line with respect to x-axis, and IA is the moment of inertia of
the circular arc with respect to the x-axis.

The moment of inertia of the straight line, IL, can be
calculated using the integral

(39)

where S and T are a set of cartesian coordinate axes rotated
by an angle α from the x and z axes.

The moment of inertia of the arc with respect to the
x-axis is equal to the moment of inertia of the arc with
respect to a parallel axis through the center of the circle
added to appropriate parallel axis theorem terms.
Performing this calculation gives

(40)

Substituting eqs. (39,40) into eq. (38) yields the desired
moment of inertia per unit length
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In this work, eq. (48) was evaluated numerically using eq.
(47) and a sinusoidal middle surface corrugation shape.

(41) Comparison of the Methods for Im
x x

Three corrugation shapes referred to as A, B, and C
flute, have been used as examples to compare the various
methods of modeling the medium which were discussed in
the last several sections. Typical characteristic dimensions
for these flute sizes are given in Figure 17. The results for Im

xx

using the various methods applied to the three flute sizes
are shown in Figure 18. All but those of the semi-elliptical
method match very closely. This suggests that the
sinusoidal corrugation approximate method (Im

xx from eq.
(33)) provides the best compromise between speed and
accuracy.

In this work, the shape of the arc-and-tangent curve
was specified using four parameters which were the length
L, height H, thickness t, and angle α. Parameters m and r
could then be easily found using eqs. (37). The values for L,
H, and t of a medium are usually specified regardless of the
assumed shape of the periodic fluting. In order to get the
value of a, a trial and error method was used. This
procedure attempted to find the closest match of the arc-
and-tangent shape to a sinusoidal middle surface.

[e]   Ranger-Peterson Method

Banger [15] and Peterson [16] have presented a
method for calculating the moment of inertia for the
corrugated medium which relies upon summing the
moments of inertia of a set of rectangular areas making up
the medium’s cross-sectional area. Referring to Figure 16,
the moment of inertia of an arbitrary rectangular segment
is

(42)

where

(43)

is the area of the rectangle, and Z is the distance from dA to
the X-axis. The (X,Z) and (S,T) coordinates are related by
the transformation

(44)

Using eq. (44), the integral in eq. (42) can be rewritten as

(45)

where

(46)

Evaluating the integral in eq. (45) gives

(47)

The total moment of inertia of the medium per unit
length can be found by adding up the contributions from a
set of N rectangles which comprises the medium’s cross-
sectional area

Calculation of D11 of D22 for the Combined Board

Using eqs. (14-17,19,21), final expressions can now be
presented for the stiffnesses D11 and D22 of corrugated board:

(49)

Several possible formulas for the moment of inertia Im
xx have

be given in the previous sections (see eqs. (25-
27,33,36,41,48)).

Calculation of D12

The formula for D12 of a single layer orthotropic plate
was shown in eq. (10). As presented earlier in eq. (14), it is
assumed that the total stiffness of corrugated board can be
expressed as a sum of contributions from the liner and
medium

(50)

The liner and medium stiffnesses needed in eq. (50) can be
approximated by extending the single layer plate results in
eq. (10)

(51)

Using eqs. (19) and the relationship v12E2 = v21E1 between
the properties of an orthotropic material, it can be easily
established that both expressions for D1

12 give the same
result

(52)

However, the two expressions for Dm
12 give contradictory
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results since the moments of inertia Im
xx and Im

yy are not
equal. To avoid such contradictions, it is suggested that the Dm

12
expressions in eq. (51) be modified to weight the two
possibilities equally. This yields

(53)

where eq. (21) has been used to simplify the expression.
Substitution of eqs. (52,53) into eq. (50) gives the final
expression for D12

(54)

In references [18,21-22], it has been suggested to neglect the
contribution of the medium in eq. (54).

Torsional Rigidity D66

The formula for D66 of a single layer orthotropic plate
was shown in eq. (10). As presented earlier in eq. (14), it is
assumed that the total stiffness of corrugated board can be
expressed as a sum of contributions from the liner and
medium

The liner and medium stiffnesses needed in eq. (55) can be
approximated by extending the single layer plate results in
eq. (10)

Arguments similar to those made in the last section for D12
can now be made. Again, it is suggested that to avoid
contradictions, the expressions in eq. (56) for the medium be
modified to weight the two possibilities equally. Using eqs.
(19,21), this leads to:

(57)

In reference [18], it has been suggested to modify eq. (57) to
include twice the contribution of the medium. In references
[21-22], it has been suggested to neglect the contribution of
the medium in eq. (57).

Bares and Massonnet [3] have developed a alternative
method to calculate the torsional rigidity of an open slab
stiffened with beams, and of hollow box sections with upper
and lower plates of equal thickness. In this method, the
theory of torsion and the method of membrane analogy is
utilized Using their technique, a new formula for the
torsional rigidity D66 of corrugated board has been calculated
[25]

(58)

SUMMARY AND CONCLUSIONS

In this work, an analytical study on the plate bending
stiffnesses of corrugated board has been performed.
Formulations to calculate the bending stiffnesses D11, D22
D12, and D66 of the equivalent plate representing the
corrugated board have been established, and then compared
to expressions suggested by other investigators. Several
methods for modeling the shape of the corrugated
orthotropic medium material have been considered including
sinusoidal, arc-and-tangent, and elliptical representations.
An extension of the membrane analogy method has been
used to calculate the torsional rigidity D66 of the corrugated
board.
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Figure 3 - Orthotropic Equivalent Plate Model
for Corrugated Board

Figure 4 - The Characteristic Geometry and
Dimensions of Corrugated Board
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Figure 5 - Geometry of The Liners

Figure 6 - Principal Material Directions of the
Corrugated Orthotropic Medium Material

Figure 9 - Area A'  m for Approximate Evaluation of
the Moment of Inertia Per Unit Length
of the Medium

Figure 7 - Top and Bottom Curves Which Enclose the
Cross-Sectional Area of the Medium

Figure 10 - Area A' m can be Expressed as the
Difference of Area At and Ab

Figure 11 - The Differences between the Areas Am and A ' m

Figure 8 - Area Am for Evaluation of the Moment of
Inertia Per Unit Length of the Medium
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Figure 12 - Sinusoidal Corrugation with Constant Thickness

Type L (in.) H (in.) t (in.)

A Flute .167 .083 .01

B Flute .120 .047 .01

C Flute .143 .071 .01
Figure 13 - Geometry and Dimensions for the Sinusoidal

Corrugation with Variable Thickness

Figure 14 - Geometry and Dimensions for the
Semi-Elliptical Corrugation

Figure 16 - Geometry and Dimensions for the Line
Segments Used in the Ranger-Peterson Method

Figure 17 - Typical Dimensions of Standard
Corrugated Mediums

A Flute B Flute C Flute
Method of Moment of Moment of Moment of
Calculation Inertia Per Inertia Per Inertia Per

Unit Length Unit Length Unit Length
(in3) (in3) (in3)

Sinusoidal
(Constant 4.32 x 10-5 1.40 x 10-5 3.16 x 10-5

Thickness)

Sinusoidal
(Approximate) 4.09 x 10-5 1.27 x 10-5 3.00 x 10-5

Semi-Elliptical 5.42 x 10-5 1.66 x 10-5 3.97 x 10-5

Arc-and-
Tangent 4.26 x 10-5 1.23 x 10-5 3.14 x 10-5

Ranger-
Peterson 4.31 x 10-5 1.29 x 10-5 3.15 x 10-5

Figure 18 - Calculations of the Moment of Inertia Per
Unit Length for Typical Corrugated Mediums

Figure 15 - Geometry and Dimensions for the
Arc-and-Tangent Corrugation
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