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ABSTRACT

In this project, the effects of moisture on the mechanical
behavior of paperboard has been investigated. In
particular, experiments under controlled environmental
conditions have been performed to determine the effects
of moisture content on the MD and CD initial elastic
moduli, the Poisson’s ratios, the initial shear modulus, and
the shapes of the MD and CD uniaxial stress-strain
curves. These results were then utilized to calculate the
input parameters to a set of biaxial nonlinear elastic
stress-strain relations for paperboard. The moisture
dependence of the material constants and of the strain
energy density function utilized within the nonlinear
model have been determined.

INTRODUCTION

Paper materials tend to exhibit nonlinear mechanical
behavior which is affected significantly by slight changes
in the surrounding environmental conditions. In addition,
most papers are capable of demonstrating every known
rheological phenomenon. Current uses of paperboard
provide several challenging problems in engineering
mechanics. For example, paperboard is often utilized in
structural applications such as corrugated containers
where it is subjected to complicated biaxial stress states,
including shear. At present, lack of accurate constitutive
relations and reliable strength predictions under biaxial
loading and variable environments hampers analysis of
such problems. Therefore, it has been common practice
in the paper industry to use trial and error, and empirical
approaches for optimizing the designs of paperboard

products. This current lack of technology limits creative
design improvements which could curtail the excess use of
materials and energy.

A paper sheet is basically an assembly of discrete cellulose
fibers bonded together into a complex network. The
fibers tend to lie predominantly in the plane of the sheet.
In addition, hydrodynamic forces present during sheet
formation align the fibers primarily along the direction of
web movement which is referred to as the machine
direction (MD). Macroscopically, paper is an orthotropic
solid. The in-plane directions of material symmetry are
the machine direction (1-direction), and the in-plane
direction perpendicular to MD which is called the cross-
machine direction (CD or 2-direction).

As surveyed by Perkins [1] and Suhling [2], paper and
paperboard have been modeled macroscopically using
elastic, viscoelastic, and inelastic formulations. In a
macromechanics or continuum approach, the material is
presumed homogeneous and the effects of its micro-scale
constituents are detected only as averaged apparent
properties. Continuum models have the advantage of
being applicable to complex structural design problems.
For paper materials, continuum theories are typically
established for a paper sheet or laminate viewed as three-
dimensional orthotropic solid medium. The theory of
linear orthotropic elasticity has been most often utilized
to model the macroscopic behavior of paper. Since the
mechanical behavior of most papers is highly nonlinear
even at low strains, a linear elastic approach is unsuitable
if high accuracy is desired.

There have been only a limited number of studies which
have considered nonlinear elastic or elastic-plastic
modeling of paper behavior. In the work of Thorpe [3], a
tangential nonlinear elastic finite element analysis of a
paper sheet in uniaxial extension was performed. An
incremental approach was used to update the stiffness
matrix. The utilized procedure calculated stiffness
reductions based on experimentally measured uniaxial
response. Such an approach allows no interaction
(coupling) of the stresses in biaxial situations. This
method is similar conceptually to earlier efforts for fiber-
reinforced composites by Petit and Waddoups [4], and
Sandhu [5]. A nonlinear finite element analysis of a
spherical ball penetration test for paper has been
performed by Ramasubramanian and Ko [6]. In their
work, an elastic-plastic constitutive model was
incorporated which included strain hardening patterned
after measured uniaxial stress-strain data. In a another
recent investigation, Paetow and Gottsching [7] adopted
a two parameter compliance model for the nonlinear
stress-strain curve of paper. They then proposed an
extension of this model for two-dimensional biaxial
loading.

Another approach to modeling nonlinear elastic behavior
is to use a so-called hyperelastic formulation. In such an
approach, a strain energy density function must be found
which accurately characterizes a material’s nonlinear
mechanical response. An advantage of this procedure is
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that it is predictive in biaxial situations while allowing for
stress interactions which are not directly dependent on
the material’s observed uniaxial response. Also, it can be
shown [8] that all nonlinear elastic models consistent with
the first law of thermodynamics must be obtainable from
a strain energy density function. A strain energy
approach for fiber-reinforced composites has been
presented by Tsai and Hahn [9] for addressing nonlinear
shear behavior. Conceptually similar nonlinear elastic
analyses of composites using a complementary energy
density function approach have been undertaken by
Pindera and Herakovich [10], and Luo and Chou [11].

Suhling, et al. [12] have presented a total strain
hyperelastic constitutive model for nonlinear orthotropic
media and then applied it to paperboard. The nonlinear
elastic constitutive equations presented were based on a
special assumed form for strain energy density function
suggested by Johnson and Urbanik [13]. Experimental
data measured at Tappi standard conditions of 23°C and
RH=50% were used to determine material constants and
obtain the optimum functional form for the strain energy
density function. Results from additional biaxial
experiments were then utilized to validate the adequacy
of the formulation. This nonlinear elastic formulation was
also used in latter studies by Lin, et al. [14-15] to analyze
the deformations, stresses, and strains of several
paperboard structural configurations including the burst
test. These studies showed that accurate correlations
with experimental data could be obtained for complicated
loadings and geometries using the nonlinear elastic
theory, while poor agreement was obtained with linear
elastic analyses.

It is well known that the most critical quantity
influencing the characteristic mechanical response of a
specific paper is its current and past history of moisture
content. The moisture content or regain of an element of
material is defined as the ratio of the difference between
current weight and dry weight to the dry weight. For a
particular sample of paper, the moisture content is
determined predominately by the chemical and structural
characteristics of its component fibers and the relative
humidity (RH) of the surrounding atmosphere. It is also
affected to a lessor degree by temperature, state of stress,
and past histories of stress, temperature, and humidity.
There has been relatively little research on the influence
of moisture content on the mechanical behavior of
paperboard. Also, the literature shows no experimental
data or analytical results which relate the moisture
content of a paperboard sheet to its constitutive response
under biaxial loading.

In this project, the effects of moisture on the nonlinear
biaxial mechanical response of paperboard has been
investigated. In particular, experiments under controlled
environmental conditions have been performed to
determine the effects of moisture content on the MD and
CD initial elastic moduli, the Poisson’s ratios, the initial
shear modulus, and the nonlinear shapes of the MD and
CD uniaxial stress-strain curves. These results were then
utilized to calculate the input parameters to the set of
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biaxial nonlinear elastic (hyperelastic) stress-strain
relations for paperboard presented by Suhling and co-
workers [12]. The moisture dependence of the material
constants and of the strain energy density function
utilized within the model have been determined.

A NONLINEAR ELASTIC
MODEL FOR PAPER

CONSTITUTIVE

General Hyperelastic Formulation

An ideally elastic (hyperelastic or Green-elastic) material
is defined as one for which a recoverable internal energy
referred to as the strain energy exists. The strain energy
density (per unit volume) is typically taken as a function
of the strains. Such a material has a natural state to
which the body will always return when the loading is
released. No energy dissipation is allowed, so that the
hyperelastic constitutive model is purely mechanical.

Using an energy balance equation obtained from the first
law of thermodynamics and the above assumptions, it can
be shown that the stress-strain relations in cartesian
coordinates for a hyperelastic material are [8]

__ 9W(e)
v asij
where o;; are the components of the familiar Cauchy
stress tensor and W is the strain energy density function.
In egs. (1), the assumption of small deformation gradients
has been made. For plane stress situations (053 = 013 =
ay3 = 0), egs. (1) simplify to
W W
- —_— ’ Gg = — ; T = iv* (2)
9e; ey 912
whe're W = W(e,, ey, v19) is now taken to be a function of
the in-plane strains, and the conventional notations ¢, =
€11, €3 = £99, and vy, = 2¢,, have been introduced.
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For isotropic linear elastic materials, the appropriate
gtrajn energy density function for plane stress situations
is
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where E is the elastic modulus and v is the Poisson’s

ratio. For linear orthotropic elasticity, the correct strain
energy density function for plane stress situations is
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where E; and E; are elastic moduli, v;; and v,; are
Poisson’s ratios, G, is the shear modulus, and the in-
plane strains ¢, &5, v, are now exclusively evaluated in an
X;-X, coordinate system aligned along the directions of
material symmetry. The familiar isotropic and orthotropic
versions of plane stress Hooke’s Law are obtained by



substituting eq. (3) and eq. (4) into eqgs. (2), respectively.

Nonlinear Elastic Constitutive Model

The linear orthotropic strain energy density function
given in eq. (4) can be rewritten in the form

- voiEy (5)
2(1 - vygvgy)
where e is a positive definite effective strain measure
given by
2 2
e = g1, %2 + 2e.85 + 97122 6
Va1 Va2 4

Constant C in eq. (6) is related to the shear modulus

c - 2 - vl %
vo By

For nonlinear orthotropic media under plane stress
conditions, a theory based on an assumed form for the
strain energy density function has been presented by
Suhling, et al. [12], and Johnson and Urbanik [13]. In
these studies, it was assumed that a class of materials
exists for which W can be expressed as a nonlinear
function of the single variable e found in the linear
orthotropic theory

W = W(e) ®)

Substitution of eq. (8) into egs. (2) leads to the stress-
strain relations (plane stress) for the suggested nonlinear
theory

o, = 2W/(e) £y €g
Va1

o, = 2W(e) £2 e
Vi2

} 9)
1

T2 = gW’(e) Y12

The material constants v, v4;, C and the functional form
of the strain energy density derivative W'(e) are to be

determined from experimental data. These equations are
for a coordinate system aligned with the directions of
material symmetry.

It is often convenient to express egs. (9) in matrix form

9. €
ay| = zwl(e) [Qij] €, (10)
T12 Y12

where symmetric components Q; of the stiffness matrix
are given by

1 1
Qu=-— , Qp=Qu-1 , Qp-—
Va1 Vig. a1
C
Qaa'z ’ Q13"'Q31'Q23"Q32‘0
Equation (10) can be inverted to give
€1 Gt
(12)

2W'e) | e5| = [S;] |os
Y12 T12

where the compliance matrix [Sy] is the inverse of the
stiffness matrix [Q;]. The compliance coefficients S; are
given by

v v
Sy-_'» g .__ Vi
" (1 - vipvey) # (1 - vygvyy)
Y 4 (13)
S12"821"—12—1— s Saa‘—
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It should be noted that in general, the strains can not be
determined from the stresses using eq. (12). This is

because the nonlinear function W/(e) multiplies each of
the strain components.

Nonlinear Theory - Uniaxial Loading

For uniaxial extension in the x;-direction (¢, = 1,5 = 0),
egs. (12) become

2W'(e) e, = S;;04
2W'(e) e, = Sy50, (14)
2W'(e) y15 =0

Algebraic manipulation of these expressions yields the
following relationships:

oy(e;) = 2W/e) ‘1112_“11} e (15)
Va1

€y = —Vi9€; (16)

Yi2=0 an

Equation (16) demonstrates that the nonlinear theory
predicts that parameter v, is a constant Poisson’s ratio
just as in the linear orthotropic theory.

The effective strain for this loading is simplified by
substituting egs. (16,17) into eq. (6)

e, (18)

1 - vv
e - 12V21
Va1
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Combining egs. (15,18) by using a chain rule yields

dW de
o,(ey) s d_el 19)
or
o,(e) - dWisl) (20)
1

Equation (20) can be integrated directly to obtain W(e,)
when o,(e;) is represented by an experimentally
determined empirical formula. Function W(e) is obtained
from this result by substituting

e | (21)
1 - vigvy

Differentiation of eq. (15) with respect to ¢; leads to an
expression for the tangent modulus of the 1-direction
uniaxial stress-strain curve

(22)

1-vv,

2
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From eq. (22), the initial (zero strain) elastic modulus is
given by

1-vy9vg

E, = E;(0) = 2W/(0) (23)

Va1

Analogous results can be derived for uniaxial extension in
the 2-direction. In this case, the relevant equations are

dWi _
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o - |17 Vil (26)
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Equation (24) can also be integrated to determine function
W(e) if o,(ey) is represented by an experimentally

determined empirical formula. Elimination of W(0) from
egs. (23,27) gives the relation

vieEy = vy By (28)

This is an extension of the familiar linear elastic formula
since E, and E, are initial moduli in the nonlinear
material model being considered.

The nonlinear constitutive theory predicts constant
Poisson’s ratios while allowing for nonlinear uniaxial
stress-strain curves. Also, no normal-shear coupling is
present with uniaxial testing in the directions of material
symmetry. The paper experimental data measured by
Suhling, et al. [12] at Tappi standard conditions have
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demonstrated that these attributes are desirable in a
nonlinear stress-strain model for paper. If these trends
are found to be valid at other moisture levels, then there
exists a high potential that the nonlinear stress-strain
relations will accurately model paper elastic behavior over
a wide range of moisture contents. Inelastic behavior can
also be modeled if only loading situations are considered.

Nonlinear Theory - Pure Shear Loading
In the case of on-axis pure shear loading (o; = o5 = 0),
eqs. (9) simplify to

g, = ey =0 (29)

Tig = g Wi(e) vy 30)

The effective strain for this loading is evaluated by
substituting eqs. (29) into eq. (6)

C, 2
e = — (31)
1 Y12
A prediction for the instantaneous (tangent) shear
modulus of the shear stress-strain curve is obtained
through differentiation of eq. (30) with respect to v,

2
oty - 292 Cygugy 42y Cype) (32
d'Y12 4 2

The material constant C in the nonlinear theory camr be
related to the initial (zero strain) shear modulus by
setting y,5 = 0 in eq. (32)

2Gy,

W(0)

(33)

Measurement of the Input Parameters to the Nonlinear
Theory

The input parameters to the nonlinear theory are the
three material constants vqy, v4;, C, and the functional
form of the strain energy density function derivative

W(e). These quantities should be determined using data

obtained from experimental testing at various moisture
levels. Once the dependence of the input parameters on
moisture is found, the biaxial nonlinear elastic behavior of
paper at various moisture contents can be predicted.
Through use of the expressions presented above, the
needed material characterization at a given moisture level
can be completed using the data obtained from uniaxial
tests in the 1- and 2-directions, and pure shear tests.

In the first step of the material characterization
procedure, uniaxial extension tests in the 1- and 2-
directions should be performed. In these experiments, the
axial stress, axial strain, and transverse strain must all be
monitored. The Poisson’s ratios v,, and v, can be
evaluated using linear regression fits to the transverse
strain vs. axial strain data. The functional form of strain
energy density function W(e) can then be found by



integrating an empirical representation of the uniaxial 1-
direction stress-strain data using eq. (20) or by integrating
an empirical representation of the uniaxial 2-direction
stress-strain data using eq. (24). The values of the
Poisson’s ratios must be known before either of these
integration procedures can be implemented. The

derivative W’(e) can be easily found by differentiating this
result either analytically of numerically.

In the second step of the procedure, pure shear testing
should be performed (such as torsion of cylindrical tubes).
The initial shear modulus G;; can be determined from
measurements of the initial slope of the shear stress-
strain curves. Constant C can then be evaluated by
substituting the value of G, and the zero strain value of
the strain energy density derivative into eq. (33).

MATERIAL CHARACTERIZATION AT VARIOUS
MOISTURE LEVELS

In order to evaluate the input parameters to the
nonlinear constitutive relations at different moisture
levels, uniaxial extension tests and pure shear
experiments have been conducted under controlled
environmental conditions. All testing in this study was
performed on 100% Lakes States softwood unbleached
Kraft paper (basis weight 205 g/m? mass density 670
kg/m?). Experiments were performed in a specially
constructed environmental chamber conditioned to
different levels of relative humidity. Environmental
conditions were adjusted in the chamber using a
microcomputer-based feedback control system
incorporating input from a humidity transducer and
output to a flow control valve which mixed humid and dry
air. Figure 1 shows a photograph of the chamber and the
conditioning unit.

Characteristic Adsorption Curve

The environmental conditions for the various experiments
were changed by adjusting the relative humidity of the
surrounding air. All specimens for the mechanical tests
were first preconditioned in a desiccant chamber for
several days. Then before loading, they were placed in
the chamber and allowed to adsorb moisture and
equilibrate at the particular relative humidity level of the
test being performed. The temperature for all
experiments was maintained at a constant level of 23°C.

To relate the observed material test results to sheet
moisture content, the characteristic moisture adsorption
curve of the paper under consideration was measured
according to TAPPI standard T 412 om-83. The samples
for the adsorption measurements were preconditioned
inside a desiccant chamber for several days to allow the
paper to achieve sorption equilibrium at approximately 0%
RH. Dry weight measurements were first done by
heating the paper specimens inside an oven at a
temperature of 105°C, placing them in a bottle of known
weight, and then weighing the bottle and specimen. The

specimens were then removed from the bottle and placed
on a sensitive scale in the environmental chamber.
Specimen weights were recorded at relative humidity
levels of 40%, 50%, 60%, 70%, 80%, 90%, 93%, 96%, and
98%. The samples were allowed to equilibrate for one
hour at each RH level before the weight was recorded. At
a given RH, the moisture content of each specimen was
calculated from the recorded weight at that RH and the
dry weight. Figure 2 shows the obtained relationship
between the moisture content of the paper and the
relative humidity of the surrounding air. Each data point
represents the average of six specimens. The data plotted
in Figure 2 is tabulated in Figure 3.

Uniaxial Extension Data

Uniaxial extension experiments were performed at
relative humidity levels of 40%, 50%, 60%, 70%, 80%, 90%,
and 95%. Between six and fifteen uniaxial tensile tests
were performed in both the MD and CD at each specific
RH level, and all specimens were loaded to failure.
According to ASTM & TAPPI testing standards, the
uniaxial specimens were prepared by cutting out 15.24 by
5.08 cm rectangular samples which were then cut into a
dogbone shape. A pair of loading tabs were glued to the
ends of the dogbone specimens using a hot melt adhesive.
Figure 4 shows specimen assemblies before and after
testing. As discussed above, all specimens were placed
inside a desiccant chamber to allow the glue to dry
thoroughly and to allow the paper to reach sorption
equilibrium at a very low moisture level prior to testing.
Just before testing, specimens were introduced into the
environmental chamber and maintained at the desired RH
for one hour before beginning an experiment.

All experiments were performed using a modified version
of the vacuum restraint apparatus developed by
Gunderson [16]. In this work, a pressure differential was
not maintained across the specimen, and the restraint
system was used primarily as a lateral support mechanism
for the horizontally loaded specimens. The flat surface
supporting the specimens was formed by the ends of an
array of slender rods of circular cross-sectional area. The
ends of rods touching the specimen were free to rotate as
the specimen deformed. One significant advantage of the
lateral support method is that one surface of the specimen
is fully accessible for measurement of deformation and for
observation of failure phenomena. A specially designed
load frame was used to test the specimens within the
environmental chamber. Figure 5 shows the entire
uniaxial extension testing unit.

A PC-based data acquisition and control system was used
to control the load frame motor speed and maintain a
constant strain rate. The load frame was servo-driven so
that it achieved a specified strain rate of 0.0015 sec™
independent of load magnitude. The quantities recorded
during the uniaxial tests were axial extension, transverse
contraction, and load. Two perpendicular extensometers
were used to measure the extension and contraction as
shown in Figure 5. A load cell attached to the load frame
was utilized to monitor the load. In addition to
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controlling the strain rate, the PC-based data acquisition
system was also used to record the load and deformation
signals from the extensometers and the load cell. Typical
test durations varied from 10 to 40 seconds.

Figure 6 shows the obtained uniaxial MD and CD stress-
strain curves at the seven different levels of relative
humidity (moisture) considered. These curves clearly
illustrate highly nonlinear mechanical behavior. Response
is partially elastic into the nonlinear parts of the curves
but not all the way to failure. The nonlinear stress-strain
data shown in Figure 6 have been modeled accurately
using a three parameter hyperbolic tangent empirical
representation

o(e) = C;tanh(Cye) + Cge (34)

This model was originally suggested by Andersson and
Berkyto [17], and has later been adopted by several
investigators. Differentiation of eq. (34) leads to an
expression for the initial (zero strain) elastic modulus

E -CC,+Cy (35)

Constants C,, C,, and C; were determined for the MD and
CD test results at the different humidity levels by
performing nonlinear regression analyses of eq. (34)
through experimental data points from the tensile
experimental curves in Figure 6. The commercially
available program NREG77 was utilized on a IBM-PC
compatible computer to perform the regression
calculations. This numerical routine calculated the
optimum coefficients which gave the best fit of the model
to the data in the least- squares sense. For each testing
orientation and moisture level, experimental data from all
of the stress-strain curves were fit simultaneously in the
regression analysis.

Figure 7 tabulates the calculated regression coefficients,
and the initial elastic moduli evaluated with eq. (35). In
Figure 8, the correlations of equation (34) with the
uniaxial experimental curves are presented. In these
plots, the thinner curves represent the experimental
stress-strain data while the thick curves were obtained by
using the hyperbolic tangent model and the calculated
regression coefficients. At all moisture levels, the
empirical model correlates extremely well with the
experimental data. Figure 9 illustrates the observed
variation of the initial elastic moduli E; and E, with
moisture content. A pair of linear regression fits to this
data have been included to demonstrate the approximate
linear variation of the moduli. The exponential model
suggested by Nissan [18] was also found to fit this data
well.

The Poisson’s ratios v,;and v,; were determined from the
axial and transverse strain data measured during the
uniaxial tests. Figures 10 and 11 contain plots of the
experimental strain-strain data at different relative
humidity levels for the MD and CD uniaxial extension
tests, respectively. The shapes of these experimental
strain-strain curves agree qualitatively with limited
results for paper given previously by Brecht and Wanka
[19], and Gottsching and Baumgarten [20]. The slopes of
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the strain-strain curves for MD extension tests tend to
increase monotonically with strain. However, the strain-
strain curves for the CD extension tests were slightly "S"
shaped where the slopes first decrease and then later
increase. At all moisture levels, the observed strain-strain
curves can be adequately approximated using straight line
representations. Therefore, it is a reasonable engineering
approximation to assume that the Poisson’s ratios of
paperboard are independent of strain.

A set of composite data was formed for each testing
direction and moisture level by combining all of the data
from the tests at a given set of conditions. For each of
the 14 combined sets, a linear regression analysis was
performed to find the best straight line fit to the
experimental data points in the least-squares sense. The
Poisson’s ratio values were taken as the slopes of these
optimum straight line fits to each combined data set. The
values of the calculated Poisson’s ratios are tabulated in
Figure 12. Figure 13 contains plots of the Poisson’s ratios
versus moisture content. Both the values of v, and vy,
were observed to increase with increasing moisture level.
This trend was also reported by Brecht and Wanka [19]
using very limited data. In addition, the data measured
in this investigation illustrate an approximate linear
dependence of the Poisson’s ratios with moisture content.

In linear orthotropic elasticity theory, the Poisson’s ratios
are to be evaluated for small strains. Separate small
strain values of the Poisson’s ratio were obtained by
evaluating the slopes of the initial linear portions of the
strain-strain curves. Initial values of v, were found by
averaging the values of the slopes of the initial linear
portions of the curves in Figure 10, and initial values of v4;
were found by averaging the values of the slopes of the
initial linear portions of the curves in Figure 11. The
calculated initial Poisson’s ratios are tabulated in Figure
12, and Figure 14 shows the measured variation of the
initial Poisson’s ratios with moisture content. Only a
slight variation of the small strain Poisson’s ratios was
observed. A similar result was also obtained by Baum,
Brennan, and Habeger [21] using ultrasonic
measurements.

Shear Modulus Data

Pure shear stress-strain curves for paperboard have been
obtained at several moisture levels by subjecting specially
fabricated cylindrical tube specimens to torsional loading.
Initial shear moduli were evaluated from the initial slopes
of the measured shear stress-strain curves. The torsion
testing technique utilized here was a modified version of
the method presented originally by Setterholm and co-
workers [22]. The quantities measured during the
experiments were the applied torque and the angle of
twist. A picture of a specimen assembly in the torsion
device is shown in Figure 15. The applied torque was
obtained by using a load cell to measure the force
transmitted by a torque arm attached to one of the
loading heads. A new technique was used to measure the
angle of twist continuously with an extensometer. The
edges of the extensometer rested on aluminum rods



attached to plexiglas rings which engaged the paper
specimen via pointed retaining pins. The output of this
extensometer has been related to the relative angle of
twist between the two rings by using trigonometry and
the alternating series convergence theorem [23]. Sets of
torque-twist data points were recorded by feeding the
electrical signals from the extensometer and load cell into
a PC-based data acquisition system. The shear stress and
shear strain in a torsion specimen are related linearly to
the torque and twist, respectively. Therefore, shear
stress-strain data could be obtained easily with minor
scale factor adjustments.

A total of fifty-four paper samples were tested with the
improved version of the torsion apparatus. Six torsion
tests were performed at relative humidity levels of 16%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 95%. Figure 16
illustrates a typical measured shear stress-strain curve.
A pure shear failure could not be obtained with present
torsion apparatus because buckling occurred perpendicular
to the maximum compressive stress (at an angle of 45°
from the axis of the cylinder). The initial shear modulus
for each experiment was obtained by applying a linear
curve fit to the initial linear portion of the stress-strain
curve. At each moisture level, the initial shear modulus
was calculated by averaging the slopes for all tests at that
humidity. The calculated average values of the initial
shear moduli are tabulated in Figure 17. A plot of initial
shear modulus versus moisture content is shown in Figure
18. The observed variation is approximately linear.

INPUT PARAMETERS TO THE NONLINEAR
THEORY

As discussed previously, the input parameters to the
nonlinear theory are the three material constants v, v41,
C, and the functional form of the strain energy density

function derivative W(e). Each of these quantities have

been evaluated for the paper material under consideration
using the uniaxial and shear data presented in the last
section. The results of these calculations are now
discussed.

Poisson’s Ratios

As discussed above, the Poisson’s ratios v, and v,; have
been found as a function of moisture content. The
obtained values are tabulated in Figure 12 and plotted in
Figure 13. It is recommended that linear regression fits
to the strain-strain curves over the entire strain range be
used to find the Poisson’s ratios needed for the nonlinear
theory, and that initial (zero strain) values of the
Poisson’s ratios not be used. The greatest advantage of
the nonlinear stress-strain relations is its ability to model
mechanical behavior in situations where the strains are
not small and nonlinear effects have occurred. Therefore,
Poisson’s ratios valid over a wide range of strain levels
provide the best input to the nonlinear constitutive
theory.

Strain Energy Density Function Derivative

Once the Poisson’s ratios have been obtained, it is
possible to find the functional form of the strain energy
density function W(e) using either eq. (20) or eq. (24).
The experimental MD and CD uniaxial stress-strain data
for paperboard presented earlier have been accurately
represented at all levels of moisture by the three
parameter hyperbolic tangent empirical model given in eq.
(34). At a given moisture level, the stress-strain curves
can then be modeled by the expressions

0,(ey) = C;M tanh(C,MP e)) + C,MP ¢, (36)

ay(ey) = C,°P tanh(C,P e,) + C,P ¢, 37

Calculated values of the MD and CD regression
coefficients at various moisture contents have been
tabulated in Figure 7.

An expression for the strain energy density function W(e;)
= Wyp(e;) can be obtained by substituting the MD
hyperbolic tangent empirical model in eq. (36) into eq.
(20), and performing the integration. Using eq. (21) to
change variable ¢, to e leads to

CI;ID MD \’219
Win(e) = —5 Loglcosh(Cy | —2 )] +
C, L - vigvy 38)

Cy® Vg€
2(1 - vyvyy)

Performing an analogous calculation using the CD
hyperbolic tangent empirical expression in eq. (37) and
eqs. (24,26) yields another expression for the strain energy
density function

C(I;D CD Vg€
Won(®) = 1 Logleosh (O | -2 )7
= V19V
C2 12¥21 (39)

CD
C3 V19€

2(1 - vypvgy)

The derivatives of the functions in eqs. (38,39) are

Cl;m Va1 MD P
Wipe) = — | —2_ tanh(C,” |~ )+
2\/e— 1 - vpvy 1 - vy (40)

CaMDVzl
2(1 - viv,)
Wi(e) = o? '_”12___ tanh(C® |_"12¢ .
2\/e_ 1 - vpvy 1 - vy (41)
an"lz
2(1 - vyvy)

The biaxial stress-strain relations of the nonlinear
orthotropic constitutive theory have been presented in eq.
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(9). These expressions could be used with either the
function W/yp(e) in eq. (40) or the function W/¢p(e) in eq.

(41) to characterize the nonlinear mechanical behavior of
paperboard. Which of the two derivative expressions is
more suitable depends on the type of accuracy required.

If the strain energy density function derivative Wyp(e) is

used, the nonlinear theory degenerates to eq. (36) for the
case of MD uniaxial extension. That is, the theory
matches the MD uniaxial experimental data in an
optimum manner. Similarly, the nonlinear theory will
match the CD uniaxial experimental data in an optimum
manner by predicting the response in eq. (37) when the

function W’¢p(e) is utilized.

A detailed analysis using the available uniaxial data for
paperboard has demonstrated that neither of the strain
energy density function derivatives in eq. (40) or eq. (41)
will allow the nonlinear constitutive theory to accurately
predict both MD and CD uniaxial response at a given
moisture level. Therefore, another expression for the
strain energy density function derivative has been
formulated. This "compromise" strain energy density

function derivative W',,,,,(e) allows the nonlinear theory

to correlate satisfactorily with both MD and CD uniaxial
data. A formula for the compromise strain energy density
function derivative can be established by a balancing of
the discrepancies between the MD uniaxial predictions of
the nonlinear theory and the observed MD uniaxial
experimental data with the discrepancies between the CD
uniaxial predictions of the nonlinear theory and the
observed CD uniaxial experimental data. This may be
expressed mathematically by equating the percent error
between eq. (36) and the MD uniaxial prediction of the
nonlinear theory when using the compromise function
derivative with the percent error between eq. (37) and the
CD uniaxial prediction of the nonlinear theory when using
the compromise function derivative. Using egs.
(15,18,24,26,36,37,40,41), the balancing of percent errors
condition described above can be expressed
mathematically at a fixed level of effective strain e. This
calculation leads to [24]

chomp(e) - W,M])(e)
W/MD(e)

] | Woms(®) - Wop®) | (49)
Wop(e)
Rearrangement of eq. (42) yields a general closed-form

expression for the compromise strain energy density
function derivative

2 Wyp(e) Wep(e)
Wip(e) + Wep(e)

W (43)

comp(e) =

At a given moisture level, the compromise strain energy
density function derivative can be seen to depend on a
total of eight material constants by substituting egs.
(40,41) into eq. (43). These constants are the Poisson’s
ratios v;; and vg;, and the six hyperbolic tangent
regression coefficients C,®, C,*®, C,™P, C,°?, C,°, C,.
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The strain energy function itself could be obtained by
integrating eq. (43). However, this calculation is not

necessary since only W/(e) appears in the stress-strain
relations in egs. (9).

The compromise strain energy function derivative has
been evaluated at several moisture levels for the paper
material under consideration in this work. These
calculations were performed using eq. (43) and the
regression constants tabulated in Figure 7 and the
Poisson’s ratios tabulated in Figure 12. Plots of the
compromise strain energy function derivative at seven
moisture levels are given in Figure 19. Also included in

these graphs are plots of the functions Wiyp(e) and

Wp(e). A combined plot of the compromise strain energy

function derivative versus e at all of the different
moisture levels is shown in Figure 20.

The compromise approach described above was chosen to
achieve a balance between the accuracies of the MD and
CD uniaxial predictions of the nonlinear theory. In Figure
21, the uniaxial MD and CD predictions of the nonlinear
constitutive theory using the compromise strain energy
density function derivative are correlated with the
paperboard experimental stress-strain data from Figure 9
at seven different moisture levels. The theoretical curves
were generated using egs. (15,24) and the strain energy
function derivatives calculated with eq. (43). The input
data for these calculations were taken from the tables in
Figure 7 and Figure 12. The nonlinear theory predictions
are represented by the thick lines in Figure 21. They do
not match the experimental data quite as well as the
hyperbolic tangent empirical fits shown in Figure 8.
However, the nonlinear constitutive model has the
advantage of being able to predict response in biaxial
stress states.

Constant C

The final input property needed for the nonlinear theory
is the material constant C present in the shear stress-
strain relation found in the third of egs. (9). This
constant can be evaluated at particular moisture levels
using eq. (33) and the measured values of the initial shear
modulus G, and the strain energy function derivative

W/(0) at zero strain. The general expression for constant

C in eq. (33) can be further specified by substitution of
the compromise strain energy density function in eq. (43).
This calculation yields

G Wiyp(0) + Wiep(0)]
Wiyn(0) Wep(0)

C (44)

If the expressions for the MD and CD strain energy
density function derivatives in egs. (40,41) are evaluated
at e = 0 and then substituted into eq. (44), the following
expression for constant C is found



- 26 (1 - vipvy) [vy, (CF7 + G CFP) + v, (C + €SP OS]

viavar (G + G C™) (CTP + G5 C5)

c (45)

In this relation, constant C has been expressed in terms
of the initial shear modulus G,,, the Poisson’s ratios v,
and vy, and the six hyperbolic tangent regression

coefficients C,;*P, C,MP, C;™, C, P, C,°P, C,P.

Material constant C has been evaluated at several
moisture levels for the paper under consideration using
eq. (45) and the experimental data tabulated in Figures 7,
12, and 17. The results of these calculations are tabulated
in Figure 22 and plotted in Figure 23. A nearly linear
variation with moisture content has been observed.

SUMMARY AND CONCLUSIONS

In this project, the effects of moisture on the mechanical
behavior of paperboard has been investigated. In
particular, experiments under controlled environmental
conditions have been performed to determine the effects
of moisture content on the MD and CD initial elastic
moduli, the Poisson’s ratios, the initial shear modulus, and
the shapes of the MD and CD uniaxial stress-strain
curves. Seven different moisture levels were considered.
The variations of the initial elastic moduli, the Poisson’s
ratios, and the initial shear modulus with moisture
content were found to be approximately linear. The
Poisson’s ratios dramatically increased with increasing
moisture content. In fact, a value of v, exceeding .6 was
measured at 95% RH. At all levels of moisture, a three
parameter hyperbolic tangent model accurately fit the
observed nonlinear stress-strain curves. The results of
these material characterization experiments were then
utilized to calculate the input parameters to a set of
biaxial nonlinear elastic stress-strain relations for
paperboard. The moisture dependence of the three
material constants and of the strain energy density
function derivative utilized within the nonlinear model
have been determined. The nonlinear model will be used
in future studies to predict nonlinear elastic behavior of
paperboard in biaxial stress situations at various moisture
contents.
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Figure 5 - Uniaxial Testing Unit
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RH(%) m (%) CM MPa)  CM CMMPa) C,°MPa) GC®  C (MPa)
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80 11.51 16.20 253.8 1240 9.80 174.0 203.1
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Figure 7 - Calculated Hyperbolic Tangent Regression
Coefficients at Various Levels of Moisture
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Figure 13 - Poisson’s Ratios Versus Moisture
Content




0.6 4
0.5 4
0.4 _E M Mo (42)
V 0.3 ]
0.2 ? M cD (V)
0.1 RH (%) m (%) Gy, (MPa)
0.0-IIII]llll|llll|lll|||l|l[
0 5 10 15 20 25 16 2.10 2503
m (%) 30 5.00 2212
40 6.63 1912
50 7.42 1734
Figure 14 - Initial Poisson’s Ratios Versus Moisture 60 8.56 1644
Content 70 9.65 1560
80 11.51 1123
90 15.14 671
95 20.01 446

Figure 17 - Tabulated Values of the Shear Modulus
Versus Moisture Content
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Figure 20 - Combined Plot of Strain Energy Density
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Derivative Versus Effective Strain
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