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ABSTRACT 

The burst or Mullen test is used extensively by the paper 
industry as a quality assurance tool, however a thorough anal
ysis of this test method is lacking. This report provides infor
mation on previous burst test analyses and gives the details of 
a new analysis. The new analysis, based on membrane theory, 
allows unlimited deformation and no shape specification for the 
deformation. This theory is applicable when the deformation 
of the specimen is greater than the specimen thickness. This 
theory does not include bending effects, which is reasonable in 
most paper applications. 

Keywords: membrane, burst test, burst strength, numerical 
methods. 

INTRODUCTION 

The burst or Mullen test is used throughout the paper, pa
perboard, and corrugated paperboard industries as a measure 
of product integrity. The test has achieved wide acceptance 
because it is fast, easy to perform, and provides a measure of 
product acceptability. Converters of paper and paperboard of
ten include burst test results in their purchase contracts. The 
packaging industry manufactures boxes to meet burst specifi
cations. 

In the burst test, a paper specimen is clamped by circular, 
rigid clamps and loaded by a rubber diaphragm, which in turn 
is displaced by a fluid. The pressure causing the specimen to 
rupture is called the burst factor. This test was designed to 
simulate a papermaker's old test of paper, where the paper-
maker would hold a sheet of paper and try to puncture the 
paper with their thumb (1). 

Other researchers have analyzed the burst test geometry by 
one of two methods. The first method assumes a spherical de
formation from which stresses can be determined. The second 
method is an extension of von Karman plate theory to nonlinear 
orthotropic materials. This method is limited to a maximum 
deflection on the order of the specimen thickness. These the
ories have proved inadequate for predicting burst behavior of 
paper because the shape is not spherical and the deflection is 
very large compared to the thickness. This paper provides an 
alternative analysis which imposes no limitation on the shape 
of deformation or the material constitutive behavior. The sole 
limitation of this analysis is that bending effects are negligible. 

BACKGROUND 

Early work in the investigation of burst behavior assumed 
the shape of the deformed surface was a spherical cap (2-4). 
This shape was used because it simplified the analysis and 
seemed reasonable based on previous work (5). By assuming 
this shape and also assuming that paper is a linear elastic, 
orthotropic material, these researchers (2-4) related the burst 
strength to the machine-direction (MD) uniaxial tensile failure 
strain. 

Recently, Suhling (6) has found that the shape of the burst 
deformation of a paperboard specimen is not spherical, but 
more nearly parabolic. His analysis used a form of von Karman 
plate theory for nonlinear orthotropic materials. The system of 
partial differential equations was solved using the finite element 
numerical analysis technique. Suhling found that the contribu
tion of bending was negligible; the dominant effect. was due to 
membrane forces. 

Suhling has used the von Karman plate theory to analyze 
paperboard sheets undergoing cylindrical deformation (7) and 
paperboard sheets under in-plane loading (8). His small de
formation results agree with experimental measurements of the 
out-of-plane deformations. 

Experimental investigation of the burst test has found that 
basis weight, sheet densification and degree of pulp refinement 
affect the burst strength (9, 10). In addition, Johnson et al. (11) 
have listed several other papermaking variables which affect 
burst strength, such as, specimen thickness, formation, sizing, 
2-sidedness, and mechanical properties and bondedness of the 
fibers of the paper. Because the burst results depend on so 
many variables, the burst strength is not an intrinsic material 
property. 

Careful procedures are required to perform a burst test. 
Too high or too low clamping pressures produce erroneous re
sults (12-14); test room relative humidity should be carefully 
controlled (15, 16); rubber diaphragms should be kept in good 
condition and replaced periodically. 

The burst test geometry produces a biaxial stress state 
in the paper. Scientists have measured the biaxial strength 
of paper (17, 18) and found that the biaxial tensile strength 
of paper usually exceeds the uniaxial tensile strength of paper. 
Suhling et al. (19) have used tensorial failure theories to predict 
the failure of paperboard experiencing biaxial stress. Use of this 
result requires a biaxial strength test. 

MEMBRANE ANALYSIS 

Derivation of the equations for membrane behavior have 
been presented (20, 21), however, an alternative derivation is 
provided here to reveal assumptions and limitations of mem
brane theory. 
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Consider an undeformed two-dimensional body, and the 
deformed body, which is the result of mapping from 

into R3. The deformation gradient tensor, F, is defined as 

Using polar coordinates 

ordinates in R3, 

Then 


on the disk and cylindrical co
we have 

The Jacobian for the transformation is the square root of the 
determinant of FT F, i.e., 

The unit, normal to the surface is the cross-
product of the two columns of F, normalized to unit length. 
So, 

where M is the positive scalar which normalizes to have unit 
length. 

To derive the equations describing the deformation of the 
membrane, we consider a small subdomain P of The de
formed membrane contains the subdomain (P) and we assume 
that the boundary transform nicely, i.e., At 
a point q in (P) the outer normal to (P) in the tangent 
plane to will be denoted is the unit tangent vector 
to assuming the usual orientations. 

We now consider the static force balance on the membrane. 
This is simply the balance between the pressure force and the 
force due to stretching of the materials on each portion. Math
ematically this is expressed as 

where is the constant applied pressure per unit area, T is the 
stress tensor, is the arc length along (P). Notice that be
cause membrane theory assumes negligible thickness, the stress 
tensor has units of force per unit length. 

Our first form of the force balance equation comes from 
applying the divergence theorem to the above equation. We 
obtain 

and since P is an arbitrary domain, 

Together with a constitutive relation, expressing T as a function 
of F, and other quantities, the above equation describes the 
deformation of the membrane under the pressure force. 

From a computational standpoint the above equation is 
unsatisfactory since the divergence operator is defined in terms 
of the unknown surface. We now reformulate the problem to 
use derivatives on the undeformed region. This is essentially a 
change of variables in the integrals. 

By definition of the Jacobian we have 

using dA as the measure of area on P. Also, 

where is the outer unit normal on 

and L is arc length on Applying the divergence theorem 
on P we have 

giving the equation 

(1) 

We use the notation of Gurtin (22) to distinguish the divergence 
operator div on the deformed membrane and the divergence op
erator DIV on the undeformed membrane. The above equation 
is a nonlinear partial differential equation for the position vector 
of the deformed membrane as a function of its position in the 
undeformed membrane. It expresses the balance between the 
normal pressure force and the stresses within the membrane. 

To solve equation (1), the constitutive relation relating T 
to the displacement must be specified. First, the invariance 
under observer changes, see (22), shows that T must have the 
form 

where 

no stresses 

is a function of only FT F. Moreover, since there are 
when there is no strain, = 0. Writing S = TG, 


we have 


More than this, little can be said about the constitutive 
relation. For deviations that are not too large we can expand 

in a Taylor series about the state of no deformation. We have 
that can be expanded as a a linear matrix-valued function 
of FT F - I plus higher-order terms in FT F - I. However, a 
linear isotropic matrix-valued function mapping square n × n 
matrices to n × n matrices is necessarily of the form 

for some constants µ and see (22). For the rest of this paper 
we restrict restrict to the case of isotropic membranes with 
deflections that are relatively small, thus we may take 
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AXISYMMETRIC ANALYSIS 

As a first attempt at solving equation (1), we make the 
assumption that the solution is axisymmetric. This assumption 
is certainly allowable for isotropic materials. Joshi and Murphy 
(20) have argued that compatibility equations from differential 
geometry require that the deformation be axisymmetric. (They 
assumed that one of the lines of principle curvature was a plane 
curve.) The system of differential equations in equation (1) 
become 

(2) 

(3) 

The assumption of axisymmetric behavior is further justified 
by the experimental work of Suhling (7), who showed using 
the optical technique of shadow moire, that the deformation 
for a paper specimen in the burst test geometry is axisymmet
ric. Lekhnitskii (23) developed an analytic solution which was 
axisymmetric for the case of a anisotropic circular plate under 
uniform pressure loading with clamped edges. We plan fur
ther numerical analysis of the generalized system of equation 
to examine the axisymmetry of this problem. 

NUMERICAL SOLUTION 

While equations (2) and (3) are very simplified from equa
tion (1), an analytic solution probably does not exist, therefore 
numerical solution of these equations is required. 

The finite difference technique offers unique advantages 
for solving these equations as compared to the finite element 
method. Finite difference programs are generally smaller and 
written for specific applications whereas finite element pro
grams are usually very large and engineers generally use com
mercial programs. Because the shape of the boundary for this 
problem is regular and smooth, accurate solutions can be ob
tained with as few as 5 difference points in the radial direction. 

The partial differential equations (2) and (3) were approx
imated by the following finite difference scheme. Equation (2) 
was approximated as 

(4) 

and equation (3) was approximated as 

(5) 

where 

with 

and 

The tensor was computed as 

where the Euler strain tensor Ei+1/2 is 

The Jacobian Ji+1/2 is 

Ji+1/2 

For the left-hand side of equations (2) and (3) we used 

and 

where 

with 

Notice that second-order accurate differencing and averag
ing is used throughout. 

These equations were solved by a modified successive-over
relaxation method, in which the values of ri and zi were up
dated by multiples of the residuals of the two equations. 

If Ri is the residual obtained by subtracting the left-hand 
side of equation (4) from the right-hand side, and Zi is obtained 
similarly from equation (5), then the iterative method can be 
written as 

where 

The factor Di was needed to prevent growth due to nonlinear 
effects. The choice of iteration parameters, that is 
has a critical effect on the number of iterations necessary for 
convergence. 
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COMPUTATIONAL RESULTS 

In this section we compare numerical results with the ex
perimental results of Gleyzal (24). Gleyzal subjected a circular, 
clamped steel membrane to a uniform pressure load. 

Figure 1 shows the computed shape of a steel membrane 
at different pressures. Properties of the steel membrane are: 

Elastic Modulus, = 207 MPa 
Poisson's Ratio, v = 0.29 

Thickness, t = 3.18 mm 

We used Hooke's Law, a linear elastic constitutive relation, that 
is, 

The most important factor in using these equations, illustrated 
by Figure 1, is that they are applicable when the deformation 
is very large. In this case, the central deformation is about 3 
times the thickness for a pressure of only 345 kPa. 

The results shown in Figure 1 agree with the experimen
tal measurement of Gleyzal. At larger pressures, above 1723 
kPa, the results are not similar. The plastic deformation of the 
membrane, not taken into account in this analysis, dominates 
the deformation at larger pressures. 

Figure 1. Deformation shapes for various pressures. 

Figure 2 shows the effect of pressure on the center deflec
tion of a steel membrane. The figure clearly shows the nonlinear 
behavior of the equations. Also shown is the fit with a curve 
giving the deflection proportional to This relation is de
rived from a perturbation analysis of the system of equations. 

Since the behavior of the membrane is axisymmetric, a 
circle drawn on the undeformed membrane remains a circle on 
the pressurized membrane. Figure 3 shows the change of radial 
position of a point at different locations with respect to the 
undeformed membrane. The abscissa gives the location in the 
undeformed membrane, and the ordinate gives the change in ra
dial position. Notice that the grid point located at the 152 mm 
location in the undeformed membrane undergoes the greatest 
radial displacement. This result is independent of pressure for 

this case. While the largest strain is at the origin, the largest 
radial displacement is located midway between the origin and 
the boundary because the out-of-plane displacement dominates 
the overall displacement. 

Figure 2. Center deflection versus pressure. 

Figure 3. Radial displacement for various pressures. 

Richardson extrapolation, or extrapolation to the limit, 
(25) provides an improved estimate of a calculated value based 
on the order of accuracy used in the numerical procedure. In 
this case, we have used second-order accurate finite differences. 
Table 1 shows the values of the central deflection for 3 grid 
spacings at 2 pressures. Also shown are the percent deviations 
from the extrapolated values. 

Pressure 
(kPa) 
6,890 

13,780 

5 10 20 extra
divisions divisions divisions polated 
22.997 22.924 22.890 22.880 

(0.51%) (0.19%) (0.04%) 
28.941 28.849 28.819 28.809 

(0.46%) (0.14%) (0.04%) 

Table 1. Center deflection (mm) as a function of grid spacing. 

Even for very coarse grids, e.g., 5 divisions, accurate results 
are achieved. The finer grids may be useful for determining 
stress and strain at locations in the membrane. Because the 
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system is elliptic and the scheme is second-order accurate the 
stress and strain will be second-order accurate (26). 

SUMMARY 

This paper has presented a derivation of equilibrium equa
tions for the burst test geometry when membrane stresses are 
dominant. The system of equations were further simplified us
ing axisymmetric arguments and were solved using a finite dif
ference technique. 

This technique has advantages over previous burst test 
analyses, in’ that this derivation allows unlimited deformation, 
any conformable shape, non-uniform but smooth stress distri
butions, pre-tensioning of the membrane, inhomogeneous ma
terial, and any reasonable constitutive behavior. 

The results agree with previous experimental work. The 
numerical procedure can be readily implemented on personal 
computers. 

FUTURE WORK 

Several efforts are planned to extend this work. Among 
them are an analysis of nonlinear, orthotropic paper mem
branes. This will require the solution of the equations without 
assuming axisymmetry. A perturbation analysis of the nonlin
ear system of partial differential equations (1) is in progress. 
The results of the calculations may provide comparisons with 
the prediction of failure with several failure theories. It is pos
sible to include effects relating to inhomogeneous materials. 

We plan to modify the current approach to analyze the ball 
burst geometry. The ball burst geometry (27) has been used to 
more accurately describe material performance in some cases. 
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