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Abstract
Accurate modeling of the joint stochastic nature of the
strength properties of dimension lumber is essential to the
determination of reliability-based design safety factors. This
report reviews the major techniques for obtaining bivariate
distributions and then discusses bivariate distributions whose
marginal distributions suggest they might be useful for mod-
eling the joint distribution of two strength properties. Finally,
we pick a bivariate Weibull distribution and show that we
can write its likelihood function under a proof loading
scheme, offering the possibility that it can be used to model
the joint distribution of two properties that must each be
measured using a destructive test.
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Introduction
Essential to any realistic determination of reliability-based
safety factors for wood structures is the accurate modeling of
the joint stochastic nature of two or more strength properties
of single members. In this report, we will review some exist-
ing bivariate distributions whose marginal distributions1

suggest that they might be useful for modeling the joint
distribution of two strength properties. We must address two
situations in assessing the possible usefulness of a bivariate
distribution: (1) It is sometimes possible to observe two
properties on the same specimen, such as modulus of rupture
(MOR) and modulus of elasticity (MOE). In this case, infor-
mation is often lacking on the behavior of estimators even
when both components can be observed simultaneously. (2)
But often it is impossible to measure both properties on the
same experimental unit, such as ultimate tensile stress (UTS)
and ultimate compressive stress (UCS). For a bivariate dis-
tribution to be useful in this case, the parameters in it must be
amenable to estimation under a proof load scheme where a
specimen is loaded in strength mode 1 up to a specified load
L. If it fails, we record its mode 1 strength. Otherwise, we
load the specimen in strength mode 2 until failure. With
regard to estimation when strength data must be obtained
from proof loading schemes, only the bivariate normal distri-
bution has been previously considered (de Amorim and
Johnson 1986, Evans and others 1984, Green and others
1984, Green and Evans 1983).

1If two random variables X and Y have a joint density f(x, y),
the marginal distribution of X is the distribution defined by
the density where the y variable is integrated out, that is,
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In practical terms, it is the distribution we would get for X if
we never measured Y.

This report proceeds in four parts. First we review some of
the major techniques for obtaining bivariate distributions.
Next we look at some candidate bivariate distributions. Then
we pick a promising bivariate distribution and evaluate our
ability to estimate its parameters when both strength proper-
ties can be measured on the same specimen. Finally, we show
for this distribution that we can write its likelihood function
under a proof loading scheme, offering the possibility that its
parameters can be estimated through a search procedure that
maximizes the likelihood.

Procedures for Obtaining
Bivariate Distributions
When searching for bivariate distributions to model strength
properties of lumber, it seems reasonable to restrict our
search to those distributions whose marginal distributions
have proven satisfactory for describing a single strength
property. A number of families of bivariate distributions are
known that have marginal distributions of a specified form.
Johnson and Kotz (1972) discuss several procedures of
construction, and we reviewed those that seem most promis-
ing for our purposes.

Transformation Methods
In one method of construction, distributions with specified
marginals are generated from families of bivariate distribu-
tions that have uniform marginal distributions. For instance,
if (U1, U2) has a bivariate distribution and U1 and U2 are each
distributed uniformly on (0, 1), then
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have a joint distribution where X has marginal cumulative
distribution function (cdf) F1 and Y has marginal cdf F2.
Genest and MacKay (1986) studied the construction of bi-
variate distributions with uniform marginals.
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In a closely related transformation approach, families of
bivariate distributions are obtained by transforming to stan-
dard bivariate normal variables (Z1, Z2) having correlation ρ.
Johnson and Kotz (1972) review the original work of John-
son (1949a). In particular, they consider the transformations
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where, in their approach, h1(ã) and h2(ã) are each restricted to
be one of the following four transformations: log(ã) for a
lognormal, ã for a normal, log(ã/(1 − ã)) for the SB, and
sinh-1(v) for the so-called SU distribution. Thus, the choice is
somewhat limited.

In general, there are nine parameters, the correlation coeffi-
cient ! = Corr(Z1, Z2), and the four parameters associated
with each marginal distribution (í1, ì1, ê1, å1) and (í2, ì2, ê2,
å2). Most data sets of less than a few hundred observations
do not yield enough information to fit nine parameters. Fit-
ting such distributions to small or moderate-sized data sets
will result in “overfit.” That is, the fit to the particular data
will look good (too good), but it may not produce accurate
predictions for future values from the same population of
strength values. The case ê1 = ê2 = 0 and å1 = å2 = 1 yields
the standard forms of these distributions. If the standard form
is fit, the number of parameters estimated from the data is
reduced to five.

Johnson and Kotz (1972) presented several examples in-
cluding the case where (X ,Y ) is normal–lognormal so
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For these transformations, í1, ì1, and í2 are redundant and
there are six parameters in the reduced form.

For this whole class of distributions, it is the median rather
than the mean regression functions of Y on X that have easily
described forms (Johnson and Kotz 1972, table 2, p. 17).
Median regressions are equations to predict the median of Y
when X = x. They are functions of the parameters and x.

Farlie–Gumbel–Morgenstern Families
Another approach is to judiciously choose a formula for the
joint cdf that includes the marginal cdf’s and some parame-
ters. A series of papers, by several different authors,

produced the so-called Farlie–Gumbel–Morgenstern families
of bivariate cdf’s,
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where | ì | > 1 for a bivariate density to exist. The marginal
distributions are F1 and F2. Although the case of independ-
ence, ì = 0, is included, the range of dependence is quite
restricted. Schucany and others (l978) show that the correla-
tion of X and Y can never exceed 1/3 in absolute value, and
in many cases, such as the bivariate exponential distribution,
the bound reduces to 0.25.

This bivariate exponential distribution has cdf
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The term ì{l – F1(x)}{l – F2(y)}  can be replaced by a slightly
more general product term (Conway 1983).

Huang and Kotz (1984) studied an iterated Farlie–Gumbel–
Morgenstern family with a single iteration,
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and showed that the maximum correlation can be substan-
tially increased. However, the complicated form of the
density is likely to preclude the development of statistical
procedures.

Mixture Models
Marshall and Olkin (1988) provided a unified approach to
obtain many of the previously derived families of distribu-
tions as well as new ones. This approach begins with a bi-
variate distribution of a special form,
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which depends on the parameters (è1, è2). Let K(è1, è2) be a
mixing distribution that assigns probability 1 to positive
values of è1 and è2. Then the mixture
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defines a bivariate cdf.
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be the Laplace transforms of the marginal distributions of
K(è1, è2). If it is desired that H(x,y) have specified marginal
distributions H1(x) and H2(y), this is accomplished by taking
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as verified by Marshall and Olkin (1988). They also allow
for a more general integrand than
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Numerous examples of general families are given, but infer-
ence procedures are not discussed. The mixture approach
does not necessarily lead to nice forms for the densities that
are amenable to inference. It does, however, often lead to
simple procedures for simulating observations (X,Y) from
H(x,y).

Some Candidate Bivariate
Models for Strength Properties
In previous investigations, we studied statistical estimation
procedures for the case where the two strength properties
follow a bivariate normal distribution (Evans and others
1984, Green and others 1984, Green and Evans 1983). Our
ultimate goal is to develop similar procedures for non-normal
distributions. Based on our literature search thus far, we
found that at least four major categories of distributions merit
serious consideration as candidates for further study. The
properties of the models still require further study, and pro-
cedures for statistical inference need to be investigated.

Bivariate Weibull Distributions
One potential category of bivariate distributions is the family
of bivariate Weibull distributions. One potentially useful
bivariate Weibull distribution has marginal distributions that
are two-parameter Weibull distributions. Its survival function
is given by
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Hougaard (1986) derives this model as a mixture.

While the marginal distributions are well understood, the
reasonableness of the bivariate model should be confirmed
by fitting some actual data sets. Its density is complicated,
and we will have to determine if any estimation procedure is

numerically tractable. Lu and Bhattacharyya (1990) give the
moments
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where ú is a gamma function. The correlation
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is a complicated function of ì, î1, and î2. Lu and Bhattacha-
ryya (1990) looked at the correlation when î1 = î2 = î for
î = 0.1, 0.25, 0.5, 1, 2, 4, and 10 and showed that the corre-
lation is almost linear in ì for equal shape parameters
î1 = î2 = 1, which could enhance estimation and/or simula-
tion procedures. A bivariate distribution having the three-
parameter Weibull distribution as marginals is obtained by
replacing x by x – ï1 and y by y – ï2.

The bivariate Weibull distribution is also related to the bi-
variate extreme value distribution (Gumbel l960). If (X,Y)
has the bivariate Weibull distribution discussed above, then
(log(X), log(Y)) has the bivariate extreme value distribution.
In particular, setting X2 = log X and Y2 = log Y, we have
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Notice that the survivor functions for the marginal
distributions
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are location-scale families. This fact allows us to find alter-
native estimators for the marginal parameters (Lawless
1982).

Another bivariate Weibull family, given by Lu and
Bhattacharyya (1990), has survival function
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This distribution has correlation restricted to the range
–0.20 to 0.32 and is unlikely to be amenable to inferences.

The bivariate exponential distributions of Gumbel (1960)
(the Farlie–Gumbel–Morgenstern family) and Marshall and
Olkin (1967) can be converted to Weibull distributions by

replacing x by 1βx and y by 2βy  (Lu and Bhattacharyya

1990). The Marshall and Olkin (1967) model suffers from
the drawback that P[X = Y] is positive. In the context of
system life length, the probabilistic interpretation is that a
Poisson shock will kill component one (X), a second Poisson
shock will kill component two (Y), and a third Poisson shock
will kill both components. As a consequence of this third
shock, there is positive probability that X = Y, a property
unlikely to hold for two strength properties of lumber. The
Freund (1961) bivariate extension does not have exponential
marginal distributions.

Bivariate Inverse Gaussian Distribution
The univariate inverse Gaussian distribution has been pro-
posed as a model for strength properties of various materials
but has not yet been emphasized in the wood literature. Re-
cently, Kocherlakota (1986) developed a bivariate distribu-
tion whose marginal distributions are univariate inverse
Gaussian distributions. Kocherlakota (1986) gives expres-
sions for conditional distributions and the joint density
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Kocherlakota (1986) also mentions a disturbing fact that,
with high correlation, the distribution may have several
peaks. This behavior should be verified and its extent better

understood. If true for realistic ranges of correlation, it is
unlikely to be a reasonable model for two strength properties
of lumber.

Bivariate SBB Distribution
It has been suggested (Pearson 1980, Warren 1979) that the
SB family of distributions provides a reasonable model for a
single strength property and that a bivariate version, the SBB

family (Johnson 1949a), provides a reasonable model for two
strength properties. This bivariate distribution is related via a
transformation to the bivariate normal distribution. Specifi-
cally, X has the SB distribution on the interval a1 to b1, if for
some í1 and ì1
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is distributed as a standard normal distribution. Draper
(1952) and Johnson (1949b) discuss estimation and give
numerical examples.

Sometimes practitioners can use previous studies to fix the
lower bound a1 and thus reduce the number of parameters
that must be estimated. However, this may not be easy in
lumber applications, and when four parameters are fit to
small or moderate-sized data sets, there is likely to be “over-
fit.” If also
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is distributed as a standard normal and (Z1, Z2) has a bivariate
normal distribution with correlation !, then (X, Y) is said to
have the bivariate SBB distribution on the intervals (a1, b1) and
(a2, b2). The bivariate SBB distribution has the single addi-
tional parameter !, which is the correlation between the
normal variables Z1 and Z2. On this transformed scale, the
parameters (í1, ì1, a1, b1) are estimated from the observations
on X and the parameters (í2, ì2, a2, b2) are estimated from the
observations on Y.

Because there are nine parameters to estimate, there may be
“overfit” unless the data set is large. The excessive number
of parameters may also cause additional difficulties with
estimation from proof load data.

Bivariate Normal–Lognormal
Distribution
Johnson (1949a) also describes a transformed distribution
called a normal–lognormal distribution. If for some (í1, ì1)
and (í2, ì2)

XZ 111 δγ +=
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are standard normal variables that have a joint normal distri-
bution with correlation !, then (X, Y) is said to have a bivari-
ate normal–lognormal distribution. Slightly more generally, Y
could be replaced by Y – a2 if a2 is a lower bound for the
values of Y.

Picking a Promising
Bivariate Distribution
Because of the dearth of bivariate distributions with appro-
priate marginal distributions, no other good candidates are
available at this time. The correlation structure of the Farlie–
Gumbel–Morgenstern distributions is too restrictive. The
inverse Gaussian has a disturbing property that the density
has several peaks when the correlation is high. Consequently,
we will not pursue estimation of the bivariate inverse Gaus-
sian at this time. The only viable candidate distributions
appear to be the bivariate Weibull, the bivariate SBB distribu-
tions, and the bivariate normal–lognormal distribution on the
basis of complete samples (x1, y1), . . . , (xn, yn). The bivariate
Weibull has the advantage over the SBB distribution of having
fewer parameters that we would need to estimate, meaning
we might not need as large of sample sizes in a data set. In
addition, the univariate Weibull distribution has proved very
useful for modeling individual strength properties. We need
to evaluate our capability of estimating the five parameters of
this distribution to know if it can be done effectively.

Estimation of the Bivariate
Weibull Parameters
Each marginal distribution has a shape parameter îi and a
scale parameter èi. The fifth parameter ì introduces a non-
negative correlation between the two components. This
correlation is the complicated function of ì, î1, and î2 dis-
cussed in the Bivariate Weibull Distributions section. The
probability density function (pdf) for the bivariate Weibull is
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Maximum likelihood estimates of the parameters can be
obtained by minimizing –2 log L. To study estimation of the
parameters for this Weibull distribution, we wrote a com-
puter program to calculate these maximum likelihood esti-
mates. The program first estimated the shape and scale pa-
rameters from the marginal distributions. Given these
parameter estimates, a univariate search was performed using
the Davies, Swann, and Campey algorithm (Box and others
1969) to find ì, which minimized  –2 log L. These five pa-
rameter values were then used as a starting point for a five-
dimensional modified Nelder–Mead search (Evans 1979) to
find the five parameter values that minimized  –2 log L.

We then performed a simulation experiment to check the
accuracy of the maximum likelihood estimation procedure.
Data were generated for the bivariate Weibull distribution.
Lu and Bhattacharyya (1990), following Lee (1979), showed
that (X, Y) can be represented as

2
212

1
111 )1(, θθ ββδββδ VUYVUX −==

where U is distributed as a uniform (0,1) and independently,
V is distributed as the mixture of a standard exponential and
standard gamma (2). The pdf of V is

0,)1()( >−+= −− vevevf vv
v δδ

The procedure begins by generating five uniform random
variables (U1, U2, U3, U4, U5). We then take

1UU =

and
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We showed that this procedure could be implemented on a
computer and samples generated from the bivariate Weibull
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distribution. We thus have an approach to use in future stud-
ies of both estimation procedures and goodness of fit proce-
dures. Moreover, simulation studies are apt to provide the
main approach for studying statistical methods in the pres-
ence of proof loading.

A simulation experiment to study the maximum likelihood
estimators employed

sample sizes of 20, 100

pairs of shape (2.0, 2.0) (2.0, 3.6) (2.0, 6.5)
(3.6, 3.6) (3.6, 6.5) (6.5, 6.5) 

ì  = 0.1, 0.5, 0.9

and, without loss of generality, scale parameters 7. That is
true because neither the sample correlation nor the popula-
tion correlation depends on the values of the underlying scale
parameters of the marginal distributions. Further, the distri-
bution of the estimates for the shape parameters does not
depend on the true scale parameters è1, è2 and neither does
the distribution of

( )2211
ˆ,ˆ θθθθ

The values selected for the shape parameter of each marginal
distribution were meant to span the range of those typically
encountered for the strength properties of lumber. See for
example Green and Evans (1988a,b,c,d) and Evans and
Green (1988a,b,c,d) for fits of two- and three-parameter
Weibull distributions to lumber strength properties for sev-
eral wood species.

A series of 100 trials were conducted for each combination
of sample size, pair of shape parameters, and value of ì. The
results of this simulation experiment are summarized in the
Appendix. The entry Corrf corresponds to the calculation of
correlation using the formulas in the Bivariate Weibull Dis-
tributions section evaluated at the maximum likelihood esti-
mates, and the entry Corr corresponds to Pearson’s correla-
tion coefficient. Generally, all the parameters can be
estimated with reasonable accuracy when the sample size n =
100. For sample size n = 20, the results were far less satis-
factory. Our algorithm was based on a simplex method (Ev-
ans 1979) and did not contain the restraint that 0 < ì > 1. For
instance, in the case where n = 20 and both shape parameters
are 6.5, 21 of the 100 trials resulted in estimates of ì > 1 so
the estimate Corrf was negative when the true ì = 0.9. This
was reduced to 1 in a 100 when ì = 0.5, and there were no
negative estimates when ì = 0.1. The situation improved for
the larger sample size n = 100 where there were only 6 of
100 cases with estimates of ì >1 when the true ì = 0.9.

Because è1and è2 are scale parameters,

( )2211
ˆ,ˆ θθθθ

has a distribution that is free of (è1, è2). For any value of

(è1, è2), ( )21
ˆ,ˆ θθ  is distributed as( )]7[22

1
]7[11

1 ˆ7,ˆ7 θθθθ −−

where ( )]7[2]7[1
ˆ,ˆ θθ  are the maximum likelihood estimates for

the case when the true scale parameters are 7.0 as in our
simulation study. Therefore, the properties of the maximum
likelihood estimators for any other case can be deduced from
the case considered in the simulation by multiplying each
mean and standard deviation entry by 7–1èi.

Example Using Real Data
As a final test, we employed our computer program to fit a
data set consisting of MOR and MOE for 412 specimens of
visually graded Southern Pine 2 by 10 No. 2 boards tested in
bending. We first fit a bivariate normal distribution and
found that

for MOR, mean = 5.916 × 103 lb/in2 (40.79 MPa)
standard deviation = 1.857

for MOE, mean = 1.491 × 106 lb/in2 (10.28 GPa)
standard deviation = 0.379

correlation = 0.71625

Marginal normality was investigated by calculating the
Kolmogorov–Smirnov (KS), the Anderson–Darling (AD),
and the Shapiro–Wilks (SW) test for each component. The
MOE goodness-of-fit values were nonsignificant for all these
tests. The P values for MOR are less than 0.01 on the KS test
and 0.05 on the AD test, respectively, indicating a poor fit to
MOR.

The maximum likelihood estimates of the parameters in the
bivariate Weibull distribution are

for MOR, shape = 3.5771, scale = 6.5672

for MOE, shape = 4.3916, scale = 1.6284

ì = 0.5137, Corrf = 0.68818

where Corrf is the estimate of the correlation using the for-
mula for the bivariate Weibull distribution. Marginal Weibull
fits were investigated by calculating the KS, AD, and SW
tests for each component. For MOE, all these goodness-of-fit
values were nonsignificant. For MOR, only the KS test
showed significance with P < 0.01.

To try to visually show this improved fit, we calculated the
difference between the empirical cumulative distribution of
the data and the predicted values based on the bivariate
normal and Weibull distributions. So for any percentile of the
data, we had the actual data point and estimated values based
on the two different fits. We then plotted the absolute value
of the difference in the actual and predicted values, so
smaller values indicate a better fit. Since we are most inter-
ested in predicting the lower tail for MOR and mean values
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for MOE, we will confine our plot to those regions. Figure 1
shows the absolute difference in MOR predictions for the
lower 25% of the data. Figure 2 shows the absolute differ-
ence in MOE predictions for the data between the 25th and
75th percentile. As Figures 1 and 2 show, it is clear that the
bivariate Weibull distribution fits these parts of the data
better.

Using the Bivariate Weibull Distribution
in a Proof Loading Procedure
As discussed in the introduction, it is often not possible to
measure two strength properties on the same specimen and
we must rely on a proof loading procedure to give us pa-
rameter estimates. We shall now look at whether the bivariate
Weibull distribution appears amenable to estimation under
such a scheme. We begin with the bivariate Weibull
distribution. The likelihood is the product of contributions
from each specimen. If the specimen fails in mode 1 at X = x,
the contribution is

( ) ( ) 11

11

11

1
11,

βθ
β

θθ
ββθ x

X e
x

xf −
−
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
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When the specimen survives the proof load to load L in mode
1 and fails in mode 2 at Y = y, the contribution to the likeli-
hood is
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That is, if R = { i: Xi< L} denotes the index set of the
specimens that failed the proof load, then the likelihood is
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Thus, the likelihood for the proof load case can be expressed
simply. What remains is to assess our ability to estimate the
parameters. It may be that more than one proof load is neces-
sary or that symmetric loading schemes are required to ade-
quately address the estimation problem. The situation where
the marginal distributions are known may be realistic in cases
where a large amount of data is available on the individual
strength properties.

Future Work
It is clear from the skewness exhibited by the distribution of
many lumber strength properties that statistical estimation
procedures need to be developed for bivariate and even
higher dimensional distributions. The current investigation
established the feasibility of fitting a five-parameter bivariate
Weibull distribution. Many directions remain to be explored
if we are to make maximum use of the bivariate Weibull
distribution in modeling lumber strength properties:

1. Perform a more extensive study of the maximum likeli-
hood estimator and incorporate a better search procedure
that would not have as much difficulty with boundaries
for the range of ì.

2. Expand the study to include proof loading as indicated in
the section on using a bivariate Weibull distribution in a
proof loading procedure. The first step would be to treat
the marginal distributions as known. The proof load
scheme could vary in complexity. It could be (i) a
scheme that proof loads only on one variable, (ii) a
symmetric scheme that proof loads part of a sample on
one variable and the rest of the sample on the other
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variable, or (iii) a scheme that combines proof load data
with data on the marginal distributions.

3. Expand the study to the bivariate distribution that has as
marginals the three-parameter Weibull distribution.

4. Consider and evaluate other bivariate distributions, such
as the inverse Gaussian, the SBB, and the normal–log-
normal distributions.

5. Develop confidence statements concerning percentiles of
one variable, say bending strength, given that the speci-
men was proof loaded (or tested) in another variable, say
tension. This should be done after acceptable models are
obtained and goodness of fit is investigated.
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Appendix—Summary of Simulation Results

(100 trials per simulation)

Shape 1 Scale 1 Shape 2 Scale 2 Delta Corrf Corr

Sample size = 100

True value 2.0 7.0 2.0 7.0 0.9 0.1406
Mean 2.022 6.969 2.040 6.990 0.897 0.144 0.141
SD 0.159 0.339 0.170 0.402 0.064 0.089 0.098

True value 2.0 7.0 2.0 7.0 0.5 0.6600
Mean 2.022 6.978 2.022 6.913 0.496 0.665 0.665
SD 0.147 0.364 0.159 0.341 0.039 0.042 0.060

True value 2.0 7.0 2.0 7.0 0.1 0.9822
Mean 2.047 7.044 2.045 7.047 0.103 0.981 0.982
SD 0.152 0.394 0.149 0.393 0.011 0.003 0.004

True value 2.0 7.0 3.6 7.0 0.9 0.1493
Mean 2.042 6.987 3.626 6.974 0.896 0.153 0.157
SD 0.182 0.350 0.304 0.203 0.070 0.102 0.106

True value 2.0 7.0 3.6 7.0 0.5 0.6726
Mean 2.026 6.959 3.643 6.986 0.507 0.664 0.660
SD 0.148 0.368 0.274 0.201 0.048 0.050 0.055

True value 2.0 7.0 3.6 7.0 0.1 0.9712
Mean 2.040 6.950 3.665 6.974 0.101 0.971 0.973
SD 0.176 0.352 0.318 0.198 0.013 0.003 0.004

True value 2.0 7.0 6.5 7.0 0.9 0.1531
Mean 2.017 6.964 6.554 6.992 0.893 0.162 0.158
SD 0.158 0.355 0.453 0.133 0.062 0.093 0.108

True value 2.0 7.0 6.5 7.0 0.5 0.6709
Mean 2.013 6.940 6.469 6.968 0.497 0.671 0.674
SD 0.156 0.371 0.461 0.111 0.056 0.057 0.066

True value 2.0 7.0 6.5 7.0 0.1 0.9506
Mean 2.050 7.025 6.657 7.005 0.101 0.951 0.953
SD 0.152 0.402 0.485 0.125 0.011 0.003 0.008

True value 3.6 7.0 3.6 7.0 0.9 0.1606
Mean 3.669 6.989 3.611 7.014 0.914 0.137 0.143
SD 0.264 0.234 0.265 0.182 0.059 0.093 0.094

True value 3.6 7.0 3.6 7.0 0.5 0.6998
Mean 3.684 6.997 3.648 7.005 0.505 0.693 0.695
SD 0.270 0.205 0.284 0.198 0.045 0.047 0.055

True value 3.6 7.0 3.6 7.0 0.1 0.9860
Mean 3.666 6.951 3.659 6.956 0.101 0.986 0.986
SD 0.276 0.202 0.271 0.206 0.012 0.003 0.004

True value 6.5 7.0 3.6 7.0 0.9 0.1661
Mean 6.589 6.991 3.699 6.979 0.906 0.154 0.165
SD 0.503 0.106 0.314 0.226 0.062 0.099 0.099

True value 6.5 7.0 3.6 7.0 0.5 0.7076
Mean 6.729 6.998 3.667 7.016 0.502 0.704 0.710
SD 0.560 0.112 0.322 0.202 0.050 0.052 0.054

True value 6.5 7.0 3.6 7.0 0.1 0.9815
Mean 6.577 7.003 3.646 7.007 0.100 0.982 0.982
SD 0.536 0.125 0.296 0.224 0.012 0.002 0.004

True value 6.5 7.0 6.5 7.0 0.9 0.1729
Mean 6.562 7.014 6.560 6.978 0.897 0.175 0.181
SD 0.513 0.113 0.528 0.113 0.070 0.117 0.116

True value 6.5 7.0 6.5 7.0 0.5 0.7221
Mean 6.606 7.004 6.571 6.994 0.498 0.722 0.721
SD 0.479 0.121 0.516 0.115 0.047 0.048 0.057

True value 6.5 7.0 6.5 7.0 0.1 0.9879
Mean 6.623 7.009 6.621 7.010 0.102 0.987 0.987
SD 0.522 0.111 0.528 0.111 0.012 0.003 0.003
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Shape 1 Scale 1 Shape 2 Scale 2 Delta Corrf Corr

Sample size = 20

True value 2.0 7.0 2.0 7.0 0.9 0.1406
Mean 2.084 6.821 2.105 6.833 0.893 0.146 0.136
SD 0.340 0.808 0.406 0.892 0.132 0.182 0.209

True value 2.0 7.0 2.0 7.0 0.5 0.6600
Mean 2.084 7.070 2.085 7.050 0.501 0.652 0.661
SD 0.372 0.745 0.361 0.840 0.124 0.149 0.160

True value 2.0 7.0 2.0 7.0 0.1 0.9822
Mean 2.180 7.062 2.178 7.060 0.101 0.982 0.982
SD 0.447 0.816 0.440 0.831 0.026 0.008 0.011

True value 2.0 7.0 3.6 7.0 0.9 0.1493
Mean 2.088 6.829 3.783 6.894 0.896 0.148 0.149
SD 0.340 0.804 0.724 0.491 0.142 0.209 0.204

True value 2.0 7.0 3.6 7.0 0.5 0.6726
Mean 2.087 7.071 3.758 7.017 0.502 0.662 0.672
SD 0.372 0.741 0.646 0.463 0.124 0.149 0.153

True value 2.0 7.0 3.6 7.0 0.1 0.9712
Mean 2.182 7.063 3.924 7.021 0.101 0.971 0.974
SD 0.450 0.826 0.798 0.468 0.026 0.007 0.010

True value 2.0 7.0 6.5 7.0 0.9 0.1531
Mean 2.107 6.843 6.770 6.937 0.893 0.155 0.153
SD 0.402 0.893 1.086 0.251 0.133 0.194 0.197

True value 2.0 7.0 6.5 7.0 0.5 0.6709
Mean 2.090 7.054 6.784 7.014 0.501 0.661 0.672
SD 0.362 0.846 1.196 0.231 0.119 0.138 0.149

True value 2.0 7.0 6.5 7.0 0.1 0.9506
Mean 2.179 7.055 7.088 7.007 0.101 0.952 0.956
SD 0.433 0.834 1.434 0.254 0.026 0.007 0.017

True value 3.6 7.0 3.6 7.0 0.9 0.1606
Mean 3.761 6.894 3.788 6.893 0.895 0.159 0.162
SD 0.615 0.453 0.722 0.494 0.134 0.208 0.201

True value 3.6 7.0 3.6 7.0 0.5 0.6998
Mean 3.754 7.031 3.754 7.017 0.501 0.690 0.693
SD 0.676 0.419 0.644 0.466 0.118 0.139 0.151

True value 3.6 7.0 3.6 7.0 0.1 0.9860
Mean 3.923 7.019 3.921 7.017 0.102 0.985 0.985
SD 0.805 0.461 0.795 0.468 0.026 0.007 0.009

True value 6.5 7.0 3.6 7.0 0.9 0.1661
Mean 6.779 6.938 3.787 6.893 0.897 0.159 0.168
SD 1.084 0.251 0.727 0.494 0.142 0.229 0.200

True value 6.5 7.0 3.6 7.0 0.5 0.7076
Mean 6.781 7.015 3.764 7.017 0.502 0.694 0.699
SD 1.203 0.223 0.660 0.465 0.125 0.156 0.150

True value 6.5 7.0 3.6 7.0 0.1 0.9815
Mean 7.093 7.009 3.924 7.021 0.101 0.981 0.981
SD 1.452 0.255 0.791 0.465 0.026 0.006 0.009

True value 6.5 7.0 6.5 7.0 0.9 0.1729
Mean 6.775 6.936 6.838 6.937 0.897 0.165 0.176
SD 1.103 0.252 1.304 0.273 0.136 0.224 0.202

True value 6.5 7.0 6.5 7.0 0.5 0.7221
Mean 6.773 7.012 6.784 7.005 0.503 0.706 0.708
SD 1.215 0.231 1.186 0.256 0.125 0.157 0.151

True value 6.5 7.0 6.5 7.0 0.1 0.9879
Mean 7.090 7.008 7.083 7.007 0.102 0.987 0.987
SD 1.443 0.257 1.417 0.259 0.026 0.007 0.008


