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Abstract In this study, a mathematical equation was derived to separate the diffusion coefficient
and the surface emission coefficient in Newman’s solution of the unsteady-state diffu-
sion equation from an experimental sorption curve. Based on this derived equation,
a theoretical expression for the diffusion coefficient was also derived. Results of the
present study for sorption complement those of a previous study for desorption. Corre-
sponding resulting equations for sorption and desorption are not the same, and appli-
cation of these equations must be carried out with discretion.
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This paper presents a mathematical equation that can be used to separate the dif-
fusion coefficient D and surface emission coefficient S in Newman’s solution of the
unsteady-state diffusion equation (Newman 1931). The separation is achieved using
an experimental sorption curve that presents the average amount of diffusing substance
in a medium versus time in a sorption process. This study is a necessary complement
to a previous study by Liu (1993) in which a corresponding mathematical equation was
derived for the case of desorption, because the sorption process has special advantages
(Felder and Huvard 1980) and the derived equations for desorption and sorption are
not the same.

For certain porous solids such as wood, the thermal diffusion coefficient can be orders
of magnitude higher than the moisture diffusion coefficient (Liu 1991). In the process
of drying, we can assume that the temperature in such a medium is uniform and apply
the isothermal diffusion theory to predict the time-dependent distribution of the diffus-
ing substance C in the medium. Therefore, it is very important to study the properties
of the diffusion coefficient D to apply the diffusion theory with the desired results.

The diffusion coefficients of many solids including wood show a strong concentration
dependence (Hougen and others 1940, Van Arsdel 1947, Skaar 1954, Meroney 1969).
The influence of temperature on D is typically expressed as an activation energy based
on the Arrhenius equation (Waananen and others 1993). In Newman’s solution, both
D and S are assumed to be constant. From a set of sorption or desorption curves, each
curve corresponding to a different pressure of the surrounding medium in the testing
environment, we obtain a set of constant values for D and S; each pair of D and S
values corresponds to a different curve, Following the half-time technique by Crank
(1975), the constant D values thus obtained can be used to derive D as a function of C.

Crank and Park (1949) presented a set of curves obtained experimentally for the up-
take of chloroform by a polystyrene sheet; each curve corresponded to a different vapor
pressure. Crank (1975) used Newman’s solution with the assumption that S was in-
finity to obtain the constant D for each curve and then derived D as a function of the
concentration of chloroform. However, in many practical sorption or desorption tests,
the value for S is finite. In those cases, the analytical procedure in Crank (1975) can-
not be applied directly to derive a concentration-dependent diffusion coefficient D(C).

The mathematical equation derived in the present study provides the missing link in
applying Crank’s half-time technique (Crank 1975) to derive D(C) for a finite S and
includes the assumption of an infinite S as a special case in the sorption process. Be-
cause the diffusion coefficient of a porous solid can be obtained from either sorption
or desorption tests, the resulting formula for D in the present study for sorption also
verifies the corresponding formula in Liu (1993) for desorption.



Basic Equations
and Analyses

In a one-dimensional formulation with the diffusing substance moving in the direction
normal to a sheet of medium of thickness 2a, the diffusion equation can be written as

where C is concentration of the diffusing substance, t is time, D is diffusion coefficient
assumed to be a constant in this study, and X is space coordinate measured from the
center of the sheet.

Let the initial condition be

where    is a constant concentration in the medium, and let the boundary conditions
be

where S is surface emission coefficient and Ce is equilibrium concentration correspond-
ing to the vapor pressure in the atmosphere remote from the surface. Equation (4)
prescribes the boundary condition just within the surface of the sheet but not at the
surface (Crank 1975).

Although Equations (1) to (4) apply to sorption when in Equation (4) Ce > C and to
desorption when C, < C, the two cases are different in dimensionless formulation.

Sorption

Let                                                                    Equations (1) to (4) can be
put in dimensionless form in the same order as previously presented:

where L is transport ratio defined as

Desorption

Let                                                Equations (1) to (4) can
likewise be put in dimensionless form in the same order as previously presented:



Mathematical Development

Consider the sorption case. Let

The fraction of total concentration in the medium, E, is then

From Equations (5) to (8), (13), and (14), we obtain

Adding (1– E) to both sides of Equation (16) yields

We can write Equation (17) as

and make use of Equations (13) and (14) to obtain

Taking the derivative of Equation (19) with respect to               yields



From Equations (14) and (15), the derivative of (l/L) ln(l – E) with respect to r is
seen to be negligible compared with unity. We can therefore neglect the second term in
Equation (20) and obtain

Substituting Equation (9) into Equation (21) yields

If we set

and

we obtain from Equation (22)

which is satisfied if

Equation (26) has the same form as Equation (5). We need to find the initial and
boundary conditions for Equation (26) from Equations (6) to (8) by means of Equa-
tions (23) and (24).

From Equations (6), (23), and (24),

From Equations (7), (23), and (24),

From Equations (8), (23), and (24),

we find

we obtain

we obtain



Because               we must have         to satisfy Equation (29). However, this
result does not provide the needed boundary condition. Comparing Equations (26)
to (28) with Equations (9) to (11), we see a one-to-one correspondence. The needed
boundary condition must then be obtained from Equation (12). If we set         
Equation (12), we have                             Thus, we obtain the following
boundary condition replacing Equation (29):

The justification of Equation (30) as the needed boundary condition exists in the fact
that the boundary condition is defined just within the surface but not at the surface
(Crank 1975). Therefore, if we consider Equation (12) to be true at            with

        we can consider Equation (30) to be true at                                                Further

verification of the accuracy of Equation (30) as the needed boundary condition will be
shown in the next section.

If we write

we would obtain from Equation (24)

where r’ is associated with desorption and r with sorption. Therefore, the dimension-
less time for sorption defined by Equations (5) to (8) is related to the dimensionless
time for desorption defined by Equations (26) to (28) and (30) as

We note in Equation (32)

and solutions corresponding to r (L, E) and r’(co, E1) are available in Crank (1975).
Knowing either E or E1, the other can be evaluated from Equation (33).

Numerical Verification The solution to Equation (5) under the conditions of Equations (6) to (8) can be
and Application found in Crank (1975) as

in which β n are the positive roots of



For various values of L, the relationship between (1 – E) or E’ for desorption and r in
Equation (34) was obtained by Newman (1931) and plotted by Skaar (1954) (Fig. 1)
for determining the coefficient of moisture diffusion in wood.

From studying the separation of diffusion and surface emission coefficients in moisture
desorption of wood, Liu (1989) obtained from Equation (34) the relationship between
r and l/L for various values of E’ (Fig. 2). The straight lines in Figure 2 also verify
the linear relationship between r and l/L for various values of E in Equation (32) for
sorption, because the line for E’ = k is also the line for E = (1 – k) in Figure 2.

To evaluate T’(~, E’) in Equation (32), we need to solve Equation (26) under the con-
ditions of Equations (27), (28), and (30). The solution can be found
as

in Crank (1975)



For small times or E’ > 0.5, Equation (36) can be approximated by

For large times or E’ < 0.5, Equation (36) can be approximated by

When Equation (37) or (38) is substituted into Equation (32) with E’ replaced by
(1 – E) according to Equation (33), the results agree with those shown in Figure
2. Of course, we must also replace E’ in Figure 2 by (1 – E’) to demonstrate the
agreement. Thus, we have also obtained numerical verification of the accuracy of
Equation (30).

Equation (32) can be used to separate D and S using a sorption curve. The D val-
ues obtained from a set of sorption curves, each curve corresponding to a different va-
por pressure, and evaluated at half-times (that is, times corresponding to E = 0.5),
can be used to derive the concentration-dependent diffusion coefficient D(C) as de-
scribed by Crank (1975). To show how D can be separated from S, let us first write
Equation (32) in the following form:

where

and

We need to use a typical sorption curve with fraction of diffusing substance E as a
function of time t as shown in Figure 3. In Figure 3, E1 and E2 are two values on
the curve corresponding to t1 and t2. Writing r in explicit form, we obtain from
Equation (39)

where A and B are subscripted in correspondence with E or t, and D, a, and L are
constants.

Eliminating L from Equations (42) and (43) yields

Because A, B, and t all vary with E, as E 1 and E 2 approach 0.5 from opposite direc-
tions in Figure 3, Equation (44) can be put in the form



which is evaluated at E = 0.5.

Equation (45) can be expanded and simplified to

Using Equations (37), (40) with E’ replaced by (1 – E), and (41), we obtain from
Equation (46)

When we substitute t = Ta2/16D  and dt/dE = rra2/4D  obtained from Equation
(37) into Equation (47), we find Equation (47) is satisfied. Once D is obtained from
Equation (47), L can be evaluated from Equation (39) with E = 0.5 and S from the
definition of L following Equation (8). However, the application of the constant S
values obtained is beyond the scope of this study.

The formula for D derived from the desorption analysis in Liu (1993) has the form

In Equations (47) and (48), the t’s are the same. In Equation (47), dt/dE is positive,

and in Equation (48), dt/dE’ is negative; but dt/dE and dt/dE’  have the same abso-
lute value. This can easily be deduced from Equations (34) and (36) as well as from
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Conclusions

Nomenclature

Figure 1. Therefore, the constant D value in Newman’s solution can be obtained from
either Equation (47) for sorption or Equation (48) for desorption.

The dimensionless time of Newman’s solution for sorption as shown in Equation (32)
is different from the corresponding equation for desorption in Liu (1993). The formula
for D in Equation (47) derived from Equation (32) for sorption is also different from
the corresponding formula for D in Equation (48) derived in Liu (1993) for desorption.
The input data for Equation (47) are not the same as those for Equation (48). With
the correct input data, both Equations (47) and (48) yield the same value for D as
they should. The differentiation of Equations (47) and (48) must be carefully observed
to generate a set of correct D values from an appropriately designed test program. The
set of D values can be used to derive D(C) using the half-time technique whatever the
relationship between D and C (Crank 1975).

For nonhomogeneous porous solids such as wood, obtaining a representative sorption
or desorption curve is necessary to accurately evaluate D and S for each set of speci-
fied test conditions.

A Function of E’

a Half of medium thickness

B Function of E

C Concentration of diffusing substance

Ce Equilibrium concentration of diffusing substance

Co Initial concentration of diffusing substance

c, c’ Dimensionless concentration of diffusing substance

D Diffusion coefficient

E Fraction of total concentration in medium in sorption

E’ Fraction of total concentration in medium in desorption

L, L’ Transport ratio

M Total concentration in medium

S Surface emission coefficient

t Time

X Space coordinate

z Dimensionless space coordinate

Greek Symbols

c, 6’ Positive constant close to zero

T, T’ Dimensionless time
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