United States
Department of
Agriculture

Forest Service

Forest
Products
Laboratory

Research
Paper
FPL-RP-502

&

Transverse Vibration
Nondestructive
Testing Using a
Personal Computer

Robert J. Ross
Earl A. Geske
Gary H. Larson
Joseph F. Murphy

Abstract

The objective of this research was to demonstrate the
use of personal computer technology in transverse vi-
bration nondestructive testing techniques. A laptop
personal computer with expansion unit was coupled
to a 100-Ib (45.4-kg) load cell via an analog-to-digital
converter. This system was used to collect data from
simply-supported lumber specimens subjected to trans-
verse vibrations. The data were used to compute dy-
namic modulus of elasticity for 30 specimens. Static
modulus of elasticity was determined using a flat-
wise bending test. Dynamic modulus of elasticity was
strongly correlated with static modulus of elasticity.

Keywords: Nondestructive, transverse vibration,
lumber

August 1991

Ross, Robert J.; Geske, Earl A.; Larson, Gary R.;
Murphy, Joseph F. 1991. Transverse vibration nondestruc-
tive testing using a personal computer. Res. Pap. FPL-
RP-502. Madison, WI: U.S. Department of Agriculture,
Forest Service, Forest Products Laboratory. 17 p.

A limited number of free copies of this publication

are available to the public from the Forest Products Lab-
oratory, One Gifford Pinchot Drive, Madison, W1 53705-
2398. Laboratory publications are sent to more than 1,000
libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in coopera-
tion with the University of Wisconsin.

Transverse Vibration
Nondestructive Testing
Using a Personal Computer

Robert J. Ross, Supervisory General Engineer
Earl A. Geske, Supervisory Electronics Technician
Gary R. Larson, Computer Programmer Analyst
Forest Products Laboratory, Madison, Wisconsin

Joseph F. Murphy, Consulting Engineer
Structural Reliability Consultants, Madison, Wisconsin

Introduction

During the 1960s, the forest products research commu-
nity devoted considerable effort to developing nonde-
structive testing (NDT) tools for evaluating the quality
of lumber products. Out of this effort evolved a pro-
cess of machine stress rating (MSR) lumber. The MSR
process, as currently practiced in North America, cou-
ples visual sorting criteria with nondestructive measure-
ments of the stiffness of a piece of lumber to assign an
established grade to the lumber (Galligan and others
1977). The most widely used tool in MSR of nominal
2-in.- (standard 38-mm-) thick lumber is based on a
flatwise bending test. Stiffness is measured by using
the load-deflection relationship of a simply supported
beam loaded at its midspan. Machines determine mod-
ulus of elasticity (MOE) of specimens by (1) measuring
the bending deflection resulting from a known load or
(2) measuring the load required to deflect the specimen
a given amount. Design stresses are determined from
MOE values using a regression relationship between
MOE and strength.

Other NDT tools have also been investigated for use in
grading structural lumber. One of the most promis-
ing is based on measurement of MOE by transverse
vibration (Pellerin 1965). Transverse vibration NDT
tools utilize the relationship between MOE and the fre-
qguency of oscillation of a simply supported beam. This
relationship is well known and can be obtained through
a rigorous examination of fundamental mechanics
(Timoshenko and others 1974).

The equation relating MOE to frequency of oscillation
of a simply supported beam is

_ fzwsa

where

Eq4 is dynamic MOE,
f natural frequency of transversely vibrating beam,
W weight of beam between supports,
S span of beam between supports,
I moment of inertia of beam (in vibrating direction),
g acceleration caused by gravity, and

C? a constant = 2.46 for beam simply supported at
ends.

In contrast to present MSR machines, transverse vibra-
tion NDT tools can be used on specimens thicker than
nominal 2-in. (standard 36-mm) specimens, panels, and
specimens with nonrectangular cross sections. In ad-
dition, because transverse vibration NDT tools require
that the weight of the specimen be known, gross den-
sity per volume or density per length can be calculated
and used in strength regression analyses.

Commercially available tools have been developed that
utilize Equation (1). Logan (1978) implemented the
MOE-to-frequency-of-oscillation relationship through
an innovative microprocessor-based electronics package.

\

Expansion with | A/D converter interface
\ /= chassis card box
Lap-top PC
Specimen]

JL

Figure 1-System for measuring and recording modulus of elasticity.

Weight and vibration information was obtained from

a load cell and input into a microprocessor through an
analog-to-digital converter. Dimensions of a rectangular
cross-section specimen were entered using thumbwheel
switches.

When the commercially available tools were developed,
low-cost data acquisition and processing technology
based on a personal computer (PC) was not available.
Consequently, considerable funds and time were re-
quired to manufacture the tools. The new PC tech-
nologies have shown promise for making transverse vi-
bration NDT tools available to a broader range of wood
products manufacturers and users. The PC systems are
available for a fraction of the cost of older electronic
packages and from a wide range of suppliers.

The objective of our research was to demonstrate how
relatively inexpensive PC technology can be used to
implement transverse vibration NDT techniques. We
developed a data acquisition system using a PC capable
of gathering and analyzing information from a simple
transverse vibration test. The system was then used to
determine the MOE of several lumber specimens. This
report presents the results of a comparison between
MOE values obtained from the data acquisition system
we developed with those obtained from static bending
tests.

Materials and Methods

Personal Computer and Associated
Hardware and Software

Figure 1 illustrates the measurement system. The hard-
ware used was as follows:

2

Load cell
transducer

1. lap-top PC (IBM-compatible), Toshiba’ model
3100/20,

2. expansion chassis, Advent Products, Inc., model
PC/3,

3. analog-to-digital (A/D) converter card, Metrabyte
model DAS-8,

4. interface box, built by Forest Products Laboratory
(FPL), and

5. 100-1b (45.4-kg) strain-gauge-type load cell trans-
ducer.

An interface box was built by the FPL to provide a
regulated 10-V excitation to the load cell and con-
nections from the load cell to the A/D card. A spe-
cialized software program was developed using (1) a
Microsoft C language compiler and (2) a fast Fourier
transformation (FFT) subroutine translated from the
Bingham (1974) Fortran IV FFT program to C lan-
guage. The program was developed to gather and
analyze the information necessary to calculate MOE.
Figure 2 is a flow chart of the software program.

To determine Eq4 for lumber from Equation (1), the di-
mensions of the lumber-length, width, and height-
are physically measured and the weight and natural
frequency of the lumber are automatically obtained.
Dimensions of a rectangular cross-section specimen are
measured by conventional manual methods and entered
into the software via the PC keyboard. The weight and
natural frequency are obtained using the strain-gauge
type load cell transducer interfaced to the computer via

! The use of trade or firm names in this publication is

for reader information and does not imply endorsement
by the U.S. Department of Agriculture of any product

or service.

Initialize and calibrate
load cell

h 4

Gather specimen data
via keyboard

Prompt operator to
vibrate specimen

Collect real-time
vibration data

Compute FFT and
determine natural frequency

Compute E, from natural
frequency and specimen data

y

Display results and
save to disk

Figure 2-Flow chart of software program. Be
cause specimen weight was measured for the full
specimen length, the resulting dynamic MOE
calculated by the program was multiplied by
span divided by length (S/L) to correct to speci-
men weight between supports.

an A/D converter card. A calibration routine was in-
corporated into the software to zero and scale the load
cell transducer output to a known weight placed on the
load cell.

The sequence in which the necessary measurements
are performed is controlled by the software. The speci-
men under teat is supported at one end by a knife-edge
support and at the opposite end by the load cell trans-
ducer with a load button. With the specimen in place
and at rest, the load cell transducer supports one-half
the total weight (assuming uniform density along the
length). The software then calculates the total weight
and requests a keystroke to enter the data.

The natural frequency of the specimen is obtained af-
ter the specimen is deflected at its midspan, released,
and allowed to vibrate freely. After a keystroke, the
software collects the cyclic data (256 samples per sec-
ond with a 2-s sampling period for a total of 512 sam-
ples) from the load cell transducer and performs a FFT
(Bingham 1974) on the data to determine the natural
frequency of the specimen. The E; is then calculated,
displayed on the PC monitor, and written to a file for
a permanent record. The time required for the calcu-
lation of natural frequency and Eg is significantly re-
duced if a math coprocessor is incorporated in the PC.

Verification of Results

To examine the relationship between MOE values
obtained from our PC-baaed transverse vibration
measurements and static bending MOE values, we
tested 30 nominal 2- by 4-in. (standard 38- by 89-
mm) Spruce-Pine-Fir lumber specimens obtained from
a local lumberyard. All the specimens were 106 in.
(2,692 mm) long. After specimens were conditioned to
12 percent equilibrium moisture content (EMC), static
bending MOE was calculated using Equation (2). For
each specimen, a 10-Ib (4.4-kg) weight was placed at
the midspan (104-in. (2,642-mm) span), and midspan
deflection was measured.

PS3

B = 581 (2)

where

E, is static MOE,
P weight applied at midspan of beam,
I moment of inertia of beam (in deflecting direction),
and
D beam deflection at midspan.

Dynamic bending MOE (Eg4) was determined for each
specimen using our transverse vibration data acquisi-
tion technique and Equation (1). A simple linear re-
gression analysis was performed (E, regressed on E)
to examine the relationship between MOE values.

3.0

r=0.9887

E, (x10° Ib/in?)
o o
[=3 (4}

e
(4]

1.0 . . :
10 1.5 2.0 25 3.0

E, (x108 Ib/in?)

Figure 3-Correlation of dynamic and static
MOE values. (10° Ib/in? = 6.89 GPa)

Results and Discussion

The MOE values, obtained from both dynamic and
static testing, are listed in Table 1. Results of the re-
gression analysis are as follows:

E4 =0.0408 + 0.9790E, (r = 0.99)

Figure 3 shows MOE values obtained by both dynamic
and static measurements in conjunction with the re-
sulting regression equation (dotted line). The solid line
represents a perfect correlation. The E4 data corre-
late quite well with the E; data. These results compare
favorably with those reported by Logan (1978).

References

Bingham E.O. 1974. The Fast Fourier Transform. New
York: Prentice Hall, Inc.

Galligan, WL.; Snodgrass, D.V.; Crow, G.W. 1977.
Machine stress rating: Practical concerns for lumber
producers. Gen. Tech. Rep. FPL-GTR-7. Madison,
WI: U.S. Department of Agriculture, Forest Service,
Forest Products Laboratory.

Logan, J. 1978. Machine stress rating. Proceedings,
4th Nondestructive testing of wood symposium; 1978
August 28-30; Pullman, WA.

Pellerin, R.E. 1965. A vibrational approach to nonde-
structive testing of structural lumber. Forest Products
Journal 15(3): 93-101.

Timoshenko, S.; Young, D.H.; Weaver, W. 1974. Vibra-
tion problems in engineering. 4th ed. New York: John
Wiley and Sons, Inc.

Table 1-Dynamic and static MOE

data®
Eq E,
(x10% 1b/in? (x10° Ib/in?
Specimen (GPa)) (GPa))

| 126 (8.69) 1.20 (8.28)
2 1.38 (9.52) 139 (9.59)
3 1.50 (10.34) 1.45 (10.00)
4 147 (10.14) 1.48 (10.21)
5 1.55 (10.69) 154 (10.62)
6 155 (10.69) 1.57 (10.83)
7 1.61 (11.10) 1.54 (10.62)
8 155 (10.69) 1.55 (10.69)
9 159 (10.96) 1.61 (11.10)
10 1.70 (11.72) 1.67 (11.52)
11 1.59 (10.96) 1.64 (11.31)
12 1.74 (12.00) 1.66 (11.45)
13 167 (1152) 1.69 (11.65)
14 1.66 (11.45) 167 (11.52)
15 1.78 (12.28) 1.79 (12.34)
16 1.70 (11.72) 1.76 (12.14)
17 1.82 (12.55) 1.83 (12.62)
18 181 (12.48) 1.85 (12.76)
19 1.90 (13.10) 1.90 (13.10)
20 1.88 (12.96) 1.95 (13.45)
21 2.01 (13.86) 1.95 (13.45)
22 1.97 (13.58) 1.97 (13.58)
23 2.03 (14.00) 1.97 (13.58)
24 1.99 (13.72) 1.94 (13.38)
25 1.92 (13.24) 2.02 (13.93)
26 202 (13.93) 1.97 (13.58)
27 206 (14.21) 2.10 (14.48)
28 2.27 (15.65) 221 (15.24)
29 2.33 (16.07) 231 (15.93)
30 266 (18.34) 2.68 (18.48)

®Dynamic and static MOE are
designated E4 and Eg, respectively,

in Equations (1) and (2).

Appendix-Computer
Program Listing

This Appendix contains a computer program listing in
C language and a typical program output. This pro-
gram is in the public domain. Neither the Forest Prod-
ucts Laboratory nor Structural Reliability Consultants
warrants the fitness of this program for any purpose.

In addition, the Forest Products Laboratory and Struc-
tural Reliability Consultants will not provide technical
support for this program.

ECMPINIT.C created: Thu Jun 27 11:49:02 1991 -1 -

static char *modver = "<<<"__FILE__ " " _ TIMESTAMP__ ">>>";
#include "ecomp.h"
#include <stddef.h>
#include <malloc.h>

bye()
{
pstat{"Program terminated, Press any key to Acknowledge"};
crt_getc(};
cls(};
curs_on();
puts("bye");
}
EcompInit()
{

if ((DatBuf = calloc(BufSize, sizeof{unsigned))} == NULL)

{
puts("ERROR Allocating scan buffer");
abort();
if (-1 == readcal("ecomp.cal™, 1, caldat))
{ .
puts("Error unable tc read calibration file, \"ECOMP.CAL\"");
abort();
}
rate = setr(SampleRate, isrd8);
ert_init(};
atexit(bye);
InitPIS(};

ECOMP.C created: Thu Jun 27 11:49:02 1991 -1

#include <stdioc.h>
#include {(string.h>
#include <ctype.h>
#include "ecomp.h"

static char *modver = "<<("_FILE__ " " _ TIMESTAMP__ ">»";
char -*Df1tFile = "ECOMP.PRN";

main(arge, argv, envp)
int argc;
char *argv(]:
char *anvp[];
{
int 1i;
FILE *outfile;
progid = " ECOMP V1.1 8/22/89 ";
EcompInit{);
for {i=1; icargc; i++)

?f (argv[i][0] == '-' || argv[i][0] == '/}
if (toupper{argv[i][1]} == 'S")
DataSave = 1;
}
else
DfltFile = argv[i];
}
if (NULL == {cutfile = fopen{DfltFile, "a")))
{
perr{"%s: %s -- FATAL <Ack>", _strerror{(NULL), DfltFile);
crt_getci);
exit(1l);
}
while(DoPIS{) '= -1)
{
if (test{) != -1}
{
if (Comp_E({&Data)!= -1)
if (DspRslts{) != -1}
Save(outfile);
}
}
fclose{outfile):

FFT.C created: Thu Jun 27 11:49:02 1991 -1 -

/*

HEADER:

TITLE: Fast Fourier Transform;

DATE: 05/18/1985;

DESCRIPTION: "Performs fast fourier transform using method described
by E. 0. Brigham. For details of the method, refer
to Brigham's book. THE FAST FOQURIER TRANSFORM";

KEYWORDS: Fourier, transform;

FILENAME: FFT.C;

WARNINGS:

"This program is self-contained, all that is needed is a manner of getting
the data into the array real_data (& imag data, if applicable). The
transformed data will reside in these two arrays upon return with the
original data being destroyed."

AUTHORS: Jim Pisano;

COMPILERS: DeSmet;

REFERENCES: AUTHORS: E. 0. Brigham;
TITLE: "THE FAST FOURIER TRANSFORM";
CITATION: .

ENDREF
*/
/* file name fft.c

program name fft() ... Fast Fourier Transform

Perform fast fourier transform using method described by E. 0. Brigham.
For details of the method, refer to Brigham's book

Translated to C from FORTRAN by
Jim Pisano
P.0. Box 3134
University Station
Charlottesville, VA 22603

This program is in the public domain & may be used by anyone for commercial
or non-commercial purposes.

real _data ... ptr. to real part of data to be transformed

imag _data ... ptr. tc imag " " " "on "

inv Switch to flag normal or inverse transform

n_pts ... Number of real data points

MU caoeoss logarithm in base 2 of n_pts e.g. nu = 5 if n_pts = 32.

This program is self-contained, all that is needed is a manner of getting
the data intoc the array real data (& imag data, if applicable). The
transformed data will reside in these two arrays upon return with the
original data being destroyed.

* % ¥ ¥ % ¥ % &k ¥ ¥ ¥ % % % ¥ ¥ *k ¥ ¥ ¥ % ¥ ¥ ¥ ¥

*/

#include {stdic.h>

#include <{math.h> /* declare math functions to use */
#define PI 3.1419527

void Fft(real_data, imag _data, n_pts, nu, inv)
double far *real_data, far “imag_data;

FFT.C - created: Thu Jun 27 11:49:02 1991 -2 -

int n_pts, nu, inv;

{
int n2, j, j1, 1, i, ib, k, k1, k2;
int sgn; :
double tr, ti, arg, nul; . /* intermediate values in calecs. */
double ¢, s5 -/* cosine & sine components of Fourier trans. */
= n_pts / 2; 7
1 =nu - 1.0;
= 03
: /* : . e
* gsign change for inverse transform
* . ‘ &

sgn = inv 7 -1 1;

" '

* Calculate the componets of the Fourier geries of the function
»* / _

for{ 1 = 0; 1 != nu; l++)

{
do
for{ i = 0: i !'= n2; i++)}
{ ‘
=k / (pow{ 2.0, nul))s
ib = bit_swap(j, nu };
arg = 2. o* PL * ib / n_pcs,_
c= cos(arg); .
s = sgn ¥ sin{ arg);
kl = k;
k2 = k1 + n2;
tr = *(real_data+k2) * c + *(imag_data+k2) * s;
ti = '(1mag data+k2) * c - *(real . _data+k2) * s;
- *(real_data+k2) = *(real_data+kl) - tr;
*(1mag data+k2) = *(zuag data+k1) - ti;
*{real_data+kl) = *(real . _data+kl) + tr;
*(inas datarkl) = *(xmas_data+k1) + ti;
k++:
|
k += nz;.
} .
while{ k < n_pts - 1);
k=03 .
nul -=.1.0;
n2 /= 2;
Y- _ C ,
for{ k = 0; k != n_pts; ke«)
{ T . '
ib = bit_swap(k, nu);
if{ ib > k)
‘swap{ (real_data+k), {real_data+ib));
swap((imag_data+k), {imag_data+ib));
}

* If calculating the inverse transform, must divide the data by the number of

FFT.C - created: Thu Jun 27 11:49:02 1991 -3 -

* data points.

*/
if{ inv) .
for{ k = Q0: k != n_pts; k++)
{
*(real_data+k) /= n_pts;
*(imag_data+k) /= n_pts;
}
| S :
/™ '

* Bit swaping routine in which the bit pattern of the integer i is reordered.
* See Brigham's bock for details
» / ‘
bit_swap(i, nu)
int i, nu;
{
int ib, i1, i2;

ib = 0;
for{ il = 0; 1l != nu; il++)

i2 =1/ 2;
ib=ib * 2+ 41 -2 % i2;
i = i2; '

return{ ib);

}

»
* Simple exchange routine where *x1 & *x2 are swapped.
swap{ x1, x2)
double far *x1, far *x2;
{
int *temp_iy;
double temp x;

temp_x = *x1;
*x1 = *x2;
*x2 = temp_x;

ISRD8N.C ' © - e¢reated: Thu Jun 27 11:49:02 1991 -1~

#include <conioc.h>
#include "ecomp.h” : -
static char *modver = "<<<("_FILE__ " " _ TIMESTAMP__ ">>>";

static unsigned char STAT = '-';
/* #pragma intrinsic{inp, outp) */
void interrupt far isrd8()

{
outp (D8CNTRL, CHAN); /* disable 48 interrupts and set mux chan */
outp{D8CVT, 0); /* start conversion */
outp (CMND8259, SPEOI); - /* issue EOI */
STAT = '+';

} /* "iret" return turns interrupts back on */

union u_word {
unsigned Word;
unsigned char Bytes([2];
int _Int;

}s

collect(buff, buffend)
union u_word *buff, *buffend;

{
union u_word *ptr;
for {ptr=buff; ptr<buffend; ptr++)
if (-1 == ADRead(ptr))
perr("A/D time out"); .
return -1;
}
}
return 0;
}
ADRead(ptr)
union u_word *ptr;
{ ‘
unsigned TimeQut = 0;
STA = 1ot :
outp(DBCNTRL, INTE | CHAN): /* Enable interrupts set channel */
while (STAT == '-') /* wait for conversion to be started */
if (++TimeOut == 65534)
{
perr{"ERROR -~ No Interrupts");
return ~1;
}
}
‘TimeOut = 0;
while (inp(D8STAT) & Ox80) /* wait for EOC , */
{

if (++TimeOut == 5000)
return -1;

ISRD8N.C created: Thu Jun 27 11:49:02 1991 - -2 -

/* read data */ h
ptr->Bytes{0] = inp(D8DATA}:

ptr->Bytes{1] = inp(DSDATA+1).

ptr=>Word >>= 4,

ptr->_Int -= 2048;

return 0; : ' .

NATFREQ.C . created: Thu Jun 27 11:49:02 1991 -1~

#include <{stddef.h>
#include <malloc.h>
#include <assert.h>
#include "ecomp.h”)
static char "modver = "<<K“__FILE _ " " _ TIMESTAMP__ ">>>";
#define NONE O
#define ABOVE 1
#define BELOW -1
#define MAXINTRVL 300
static double *Periods;
struct HistRecord{
int Ctr:
double Sum;
}s
static struct HistRecord HistoGram{MAXINTRVL];
static struct HistRecord Winner.,

/* Determine most prevelant frequency by counting Zero crossings */
double NatFreq{double Rate, int "Stert, int "End)
{

int Zero;

int *Ptr, *First, "Last;

long Sum = QI;

double Cycles = 0.0;

double Samples, AveFreq. Tx;

double PSum = (.0;

double Crossings = 0. 0-

double YO, Y1; o

double *PPtr:

double NPeriods:

double AvPeriod;

double Result: =

int dodah = Q;

int State, QldState;

int 1i;

int Under = O°'

int OQver = 0O;

int Hindex;

Fiprgt a NULL;

0ldState = NONE;

12

pstat("C

omputing Natural Frequency");

/* initalize Histogram */

Winner.C
Winner.S

tr = 0;
um = Q.0;

for {i=0; i<MAXINTRVL; i++)
HistoGram{i] = Winner;

if (Periods == NULL)
f (!(Periods = calloc{MAXPERIODS, sizeof{double))))
{ _
perr{"ERROR -- Memory allocation \"Periods\""};
abort();
}
PPtr = Periods;
/* find Zero Offset = Average value of data */
for (Ptr=Start; Ptr<End; Ptr++)
NF_FFT.C created: Thu Jun 27 11:49:04 1991
#include <malloc.h>
#include <math.h>
#include <assert.h>
#include <stdio.h>
#include "ecomp.h”
static char *modver = "<<"__FILE _ " " __TIMESTAMP__ "
void fft(double far *r_data, double far *i_data, int n_pts. int nu, int inv);

void SaveVect(double far *data, int length).

/* Dete

rmine most prevelant frequency by FFT */

static double far "RVect;
static double far *IVect;

{
unsi
int
int
int
doub.
doub
doub
psta

double NatFreq{(double Rate, int *Start, int ¥“End)

gned uTemp = BufSize;

1;

ct=0;

MaxIndex = 1;

le Freq;

le far *RCheckVect;

le far *ICheckVect;
t("Computing FFT . . ."});

/* get some work space if we haven't already ‘/
if (RVect == (double far *)0)

if (

if (! (RVect = _fmalloc{BufSize * sizeof(double}}})

perr{"Fatal Error -- Memory allocation \"Rvect\"")
abort();

}
IVect == (double far *)Q)
if (! (IVect = _fmalloc(BufSize * sizeof(double))))

perr("Fatal Error -- Memory allocation \"Ivect\“”);
abort():

RCheckVect = RVect:;
ICheckVect = IVect;
/* Initalize the memory */
for (i=0; i<BufSize; i++)
{
RVect[i]
IVect[i]

{double) Start[i];
0.0;

}
if (DataSave}
SaveVect (RVect, BufSize):
/* determine order of buffer */
while (! {uTemp & 1)) '

{
uTemp >>= 1;
++ct;

fft{RVect, IVect, BufSize, ct, 0):

NF_FFT.C created: Thu Jun 27 11:49:04 1991

pstat("Computing FFT . . . done");
assert{RVect == RCheckVect);
agsert(IVect == ICheckVect):

/* Find Highest Amplitude */
RVect(0Q] /= BufSize;
for (i=1; i<BufSize/2+1; i++)

-2 -

{
/* compute magnitude */
RVect[i] = sqrt(RVect[i] * RVect[i] + IVect[i] * IVect[i]):
if {RVect[i] > RVect[MaxIndex]) .
~ MaxIndex = i;
}

if (DataSave)
SaveVect(RVect BufSize/2+1).

/* compute frequency */
Freq = (double)MaxIndex * Bate / (double)BufSize;

perr("Freq = £7.3f, MexIndex = ¥3d", Freq, WaxIndex);

return Freq;
}

void SaveVect(double far *data, int length)
{ e e
int i;
FILE *fp;
fp = fopen(Data.SpID, "a"};
for (i=0; i<length; i++)
fprintf(fp, "%3d %7.3f\n", i, *data++);
fprintf(fp, "\n"};
felose(fp);

13

PIS.C created: Thu Jun 27_11:49:04 1991 -1 -

/* Primary input screen */

‘#include <stddef.h>

#include <crt_gl.h>

#include <crt_g2.h>

#include <formsl.h>

#include <memory.h>

#include <conio.h>

#include "ecomp.h” :

static char "modver = "<<{<"_FILE__ " " __ TIMESTAMP__ "»>>";
int GetWeight(void);

static char *Prompt(] =

"Enter Specimen Identification Number",
"Enter Specimen Length in Inchss",
"Enter Specimen Width in Inchesg”,
"Enter Specimen Height in Inches”,
"Enter Specimen Weight In Pounds"

}i L B

struct dblrec L = {-

2.0 ", 56.0, 400 0 &Data Length}.
struct dblrec B = {:

"3. ", .75, 20.0, &Data Width};
struct dblrec H = {

*1. ", .25, 20.0, &Data.Height}; -
struct dblrec W = {

*10.0 ", 5.0, 400.0. &Data.Weight};

#define PISITEMS 12
static union item *Iptr;

union item *InitPIS()

{
memset{Data.SpID, ' ', 10);:
if ((Iptr = newform(PISITEMS)) != NULL)
{

frm_item(Iptr, SAY, 4, 4, "Spec. No.");

frm_item(Iptr, GET, 4, 16, Data.SpID, "", Prompt{0]);

frm_item({Iptr, SAY, 6, 4, "Length");

frm_item(Iptr, DGET, 6, 16, &L, L.low, L. hzgh L.target, "", Prompt[1]);
frm_item(Iptr, SAY, 8, 4, "Width");

frm_item(Iptr, -DGET, &, 16 &B, B.low, B.high, B.target, "*, Prompt[2]);
frm_item(Iper, SAY, 10, 4, "Height"); -

frm_item(Iptr, DGET, 10, 16, &H, H.low, H.high, H.target, "",

Prompt{31]};
fem_item{Iptr, SAY, 12, 4, "Weight");
#if ! defined(foo) : s
frm_item(Iptr, DGET, 12, 16, &W, W.low, W.high, W.target, "",
Prompt[4]):
#endif

}
}

DoPIS{)

clS().
box{coord(0,0), coord(22 79), 3);
14

2.0;

PIS.C . © created: Thu Jun 27 11:49:04 1991 -2 -

crt_center(0,79, 0, progid);
if (doform(Iptr) == ~1)
return -1; Lo
#if defined (foo)
if (GetWeight({) == -1)
return -1
#endif
return O;

}

#if defined (foo)

#define NumAve 100 R
int GetWeight(void) -

{
unsigned value;
int 1i;
double sum;
pstat("Place specimen on load cell for weight determination");
while (1)
{
sum = 0.0;
for (i=0: i<NumAve; i++) .
{ _
if (ADRead(&value) == =-1).
. perr{"Error == A/D Timout");. =
sum += ((double)value * caldat[CHAN].slope + caldat[CHAN].offset) *
}
Data.Weight = sum / NumAve;
locate({12,16);
ert_printf("[%7.3f]", Data.Weight);
if (kbhit() t= Q)
if (crt_getc() == '\033')
return -1;
else
return 0;
}
}
#endif

15

16

SAVE.C

created: Thu Jun 27 11:49:04 1991

#include <stdio.h>
#include "ecomp.h"
static char *modver = "<("_FILE " "

#define COL 40
Save(FILE *fp)

{
forintf(fp,
fprintf(fp,
fprintef(fp,
fprintf(fp,
fprinef(fp,
ferintf(fp,
fprinef(fp,

} .

DspRslts()
(,

"\"%s\" ", Data.SplD);
"%7.3f ", Data.Length);
"%7.3f ", Data.Width);
"%7.3f ", Data.Height};
"%7.3f ", Data.Weight);
"%7.2f ", Data.Freq);
"%7.3E\n", Data.Ed);

locate(16, i);

crt_printf("Frequency = %5.2f Hertz", Data. Freq).
locate{18, #4);

crt_printf("Dynamic E = %9.2E",
pstat("Press any Key to SAVE results.'

if (ért_getc() == '\033')

{

perr("Cancelled”); J
return -1;

}

return 0;

__TIMESTAMP _ ">>>";

Data.Ed);

<Bsc> to Cancel");

TEST.C created: Thu Jun 27 11:49:04 1991

#include <malloc.h>
#include <{stdio.h>
#include "ecomp.h"

static char *modver = "<<<"__FILE__’“ " __TIMESTAMP __ ">>>";
test()
{ .
pstat("Press any key to begin test");
crt_getc(); -
if (=1 == collect(DatBuf, DatBuf+BufSize))
{
perr("ERROR ~-- A/D Time Out");
return -1;
}
return 0Q;
}
Typical output
Speciﬁen Moisture Log
14 Height Base Length content Density MOE dec Date Time
1 L7500 2.50 96.0 12.0 27.11 1.767E+06 35.23 910325 1852
2 L7500 2.50 96.0 12.0 27.12 1.766E+06 35.32 910325 1852
3 7500 2.50 96.0 12.0 27.94 2.271E+06 99.99 910325 1853
4 .7500 2.50 96.0 12.0 27.22 1.787E+06 34.91 910325 1902
5 L7500 2.50 96.0 12.0 39.98 .3161E+06 5.05 910325 1902

¥rU.S. GOVERNMENT PRINTING OFFICE:1991/543-045/40004

17

