United States Department of Agriculture

Forest Service

Forest Products Laboratory

Research Paper FPL-RP-497

Moisture Content and Tensile Strength of Douglas Fir Dimension Lumber

David W. Green Roy F. Pellerin James W. Evans David E. Kretschmann

Abstract

Three grades and two sizes of lumber (Select Structural, No. 1, and No. 2; 2 by 4 and 2 by 8) were tested in tension parallel to the grain at various moisture content levels (green, 20, 15, and 10 percent). Results of this study indicate that the current ASTM D 245-88 and ASTM D 2915-88 standards are not valid for adjusting 2-in. dimension lumber for change in moisture content. Lumber was much less sensitive to changes in moisture content than predicted by ASTM D 245-88 and ASTM D 2915-88. Results indicate an optimum value in the relationship between moisture content and tensile strength. The tensile strength at 10 percent moisture content may be less than that at 15 percent moisture content.

Keywords: Tensile strength, moisture content, Douglas Fir, lumber, Weibull distribution

April 1990

Green, David W.; Pellerin, Roy F.; Evans, James W.; Kretschmann, David E. 1990. Moisture content and tensile strength of Douglas Fir dimension lumber. Res. Pap. FPL-RP-497. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1990. 33 p.

The terms Douglas Fir and Southern Pine are from the list "Commercial Names for Lumber," p. 343, in Checklist of United States Trees, Agric. Handb. 541, 1979.

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398. Laboratory publications are sent to more than 1,000 libraries in the United States.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

Contents

Introduction
Background
Clear wood
Lumber
Conclusions from clear wood and
lumber studies
Materials and methods $\ \cdot \ $
Experimental design and lumber selection 3
Drying and conditioning 4
Testing procedures 4
Results and discussion 5
Sample selection and testing speed 5
Verification of populations
Moisture effects 5
Mean ultimate tensile stress and tensile modulus of elasticity 5
Percentile estimates of ultimate tensile stress and tensile modulus of elasticity 5
Axial load and axial stiffness
Property distributions
Comparison of data sets
Comparison of groups
Ultimate tensile stress 8
Tensile modulus of elasticity
Literature cited
Appendix A-Distributional form of tensile data . 19
Normal distribution
Weibull distribution
Appendix B-Supplementary figures

Dago

Research Highlights

This paper presents the experimental results of a program to evaluate the effect of moisture content on the tensile parallel-to-grain properties of Douglas Fir 2-in. dimension lumber. These studies were initiated because previous research on the effect of moisture content on flexural properties had shown that ASTM D 245-88 procedures did not accurately predict the effect of moisture content on modulus of rupture.

A review of published literature indicated that clear wood tensile strength may show no increase, and may even show a decrease, when the wood is dried to moisture contents below 20 percent. Two previous studies on the effect of moisture content on tensile strength of lumber also indicated the possibility of no increase in strength with drying, especially in the lower end of the cumulative frequency distribution. One of these studies utilized lumber that had previously been kiln dried with a commercial schedule, and the other study used lumber that had been dried slowly.

Lumber of three grades (Select Structural, No. 1, and No. 2) and two sizes (nominal 2 by 4 in. and 2 by 8 in.) were sampled from a sawmill in the Pacific Northwest. For each grade-size combination, the sample was divided into four identical populations based on strength ratio and green modulus of elasticity. Three of the groups were then equilibrated to moisture content levels of 10, 15, and 20 percent prior to testing. Except for testing speed, all samples were tested in tension parallel to the grain following procedures given in ASTM D 198-84. The testing speed was about 10 times faster than the ASTM D 198 recommendation and is comparable to that now given in ASTM D 4761-88.

The results of our study show that moisture content influenced tensile strength throughout the range of properties, from weakest to strongest. The magnitude of the change for a given property was influenced by lumber grade, width, and moisture content level.

From the results of this study, we conclude the following:

- 1. The changes in ultimate tensile stress with changes in moisture content differ considerably from those observed in previous studies with modulus of rupture. The observed change in ultimate tensile stress values with change in moisture content is also much lower than the values assumed in ASTM D 245-88.
- 2. Throughout the range of the data, ultimate tensile stress tends to first increase, and then to decrease, as the lumber dries. The ultimate tensile stress at 10 percent moisture content may be considerably lower than that at higher moisture content levels.
- 3. Ultimate tensile stress may exhibit significant skewness and cannot usually be considered to follow a normal distribution. The three-parameter Weibull distribution was found to provide an adequate fit to tensile strength data at all levels of moisture content.
- 4. The change in tensile modulus of elasticity with changes in moisture content is less than that previously reported for bending modulus of elasticity and is not very sensitive to percentile level. Tensile modulus of elasticity can usually be considered to follow a normal distribution.
- 5. Cumulative frequency distributions of ultimate tensile stress for a given grade-size combination at various moisture content levels often intertwine because of the reduction in strength that occurs below an optimum moisture content level. For this reason, sole reliance should not be placed on cumulative frequency distribution plots when evaluating moisture content effects on tensile strength.
- 6. Results of this study indicate a need for additional data for lumber at moisture contents <8 percent.

Analytical models for adjusting the tensile strength of lumber for changes in moisture content are presented in a separate publication.

Moisture Content and Tensile Strength of Douglas Fir Dimension Lumber

David W. Green, Supervisory Research General Engineer Forest Products Laboratory

Roy F. Pellerin, Professor Washington State University

James W. Evans, Supervisory Mathematical Statistician David E. Kretschmann, General Engineer Forest Products Laboratory

Introduction

Recent studies on the effect of moisture content (MC) on the mechanical properties of Southern Pine and Douglas Fir nominal 2-in. dimension lumber have shown that the change in modulus of rupture (MOR) depends upon the initial strength of the lumber (Aplin and others 1986, McLain and others 1984). The MOR of strong (high-quality) lumber was more sensitive to changes in MC than predicted by the ASTM D 245-88 method (ASTM 1989), whereas the MOR of lowstrength (low-quality) lumber may not be affected by drying. Obvious decreases in MOR were observed for some lumber when dried from 15 to 10 percent MC.

The objective of this study was to investigate the effect of MC on the ultimate tensile stress (UTS) of Douglas Fir dimension lumber. This paper presents the experimental procedure and results. Analytical models for adjusting tensile strength for changes in MC are presented in a separate publication (Green and Evans 1988).

Background

Clear Wood

The parallel-to-the-grain tensile strength of clear wood is much less sensitive to changes in MC than is bending strength. For softwoods, the average increase in MOR is 69 percent when the wood is dried from green to 12 percent (ASTM D 2555-88, ASTM 1989). The average increase in tensile strength is 13 percent (USDA Forest Service 1987). The effect of MC on the static mechanical properties of small, clear wood specimens was reviewed by Gerhards (1981). Of the 48 papers Gerhards reviewed, only those of Kollmann (1956), Kufner (1978), and Leont'ev (1960) provided data on the effect of MC on tensile strength parallel to the grain. Generally, mean tensile strength was found to increase as MC decreased (Fig. 1). The data of Kollmann (1956) suggest maximum strength at about 6 percent MC. Although not as pronounced as the maximum value obtained by Kollmann, most strength values obtained by Kufner (1978) also suggest a maximum value in this range. This reduction in strength is presumably a result of drying degrade that occurs at low MC levels.

Curry (1952) investigated the effect of MC on the tensile strength of aircraft-quality Sitka spruce. Based on his analysis of 1,600 separate specimens, Curry concluded that no correction is required for MC levels below 20 percent when considering the average tensile strength of a species (Fig. 2). Further analysis by Curry indicated that the magnitude of the correction for individual pieces varied with specific gravity (Fig. 3). Note that these results indicate maximum strength occurred between 15 and 20 percent MC. The room temperature data presented by Östman (1985) also indicate a peak in the UTS-MC curve at MC of about 15 percent.

Only Kufner's study (1978) measured tensile modulus of elasticity (TMOE). Depending on species, Kufner observed a maximum TMOE between 2 and 5 percent MC (as opposed to the maximum MC value between 5 and 8 percent he observed with tensile strength).

Figure 1—Effect of moisture content on tensile strength of wood parallel to grain relative to strength at 12 percent moisture content at about 20°C (52°F) (Gerhards 1981).

Figure 2—Average tensile strength of Sitka spruce at various moisture contents (Curry 1952).

Lumber

Historically, the procedures used for adjusting the bending strength of lumber for changes in MC have also been used to adjust tensile strength (Green 1982). Although its justification is not apparent, this practice is consistent with the historical practice of relating tensile strength to bending strength (Galligan and others 1979). Thus, the current design procedure (ASTM D 245-88, ASTM 1989) assumes that tensile strength and bending strength increase 25 percent as lumber is dried from green to an average MC of 15 percent.

Hoffmeyer (1978) conducted studies on the relationship of tensile strength to moisture content using lowgrade European spruce joists (including a substantial number of "rejects"). The 1.8- by 5.7-in. lumber was

Figure 3—Average tensile strength for three density ranges of Sitka spruce at various moisture contents (Curry 1952).

tested at equilibrium MCs of approximately 14, 24, and 56 percent. Half the specimens came from Sweden and half from Denmark. As has been observed with bending strength (Green 1982), the effect of MC on tensile strength was found to depend upon strength (Fig. 4). Below about the 50th percentile, drying had little influence on tensile strength. Dry to green ratios for tensile strength at different percentiles were found to be less than those observed for bending. Hoffmeyer cautions, however, that the tensile specimens warped to a certain extent during drying, which may have affected the results.

The Swedish specimens apparently behaved somewhat differently than the Danish specimens. The lower percentiles of the lumber obtained from Sweden showed a decrease in tensile strength with decreasing MC below 24 percent MC (Fig. 5). Note that the green values are plotted at a moisture content of 27 percent to match assumed green value for spruce (USDA 1987). With the Danish specimens, this decrease was only observed at the highest percentile level (Fig. 5). However, because of the small sample size (approximately 47 specimens per location), no definite conclusions were possible.

Figure 4—Effect of moisture content on tensile strength of European spruce (adapted from data given in Hoffmeyer 1978).

Figure 5—Effect of moisture content on tensile strength of European spruce from Sweden and Denmark (adapted from data given in Hoffmeyer 1978).

Madsen and Neilsen (1981) investigated the effect of MC on the tensile strength of No. 2 and better Hem-Fir nominal 2- by 6-in. lumber at 25 and 10 percent MC. All material used in this study had previously been dried using a commercial kiln schedule. The higher MC level was achieved by placing the lumber in a room maintained at high relative humidity so that the lumber adsorbed water. Below about 3,000 lb/in² (the 30th percentile), tensile strength appeared to be independent of MC (Fig. 6). The results may have been influenced by a moisture hysteresis effect not present in the Hoffmeyer (1978) study. Of the two studies reviewed, only Hoffmeyer (1978) reported TMOE results (Fig. 7). The effect of MC on TMOE was less dependent upon the percentile level than was tensile strength. The dry to green ratio for TMOE was only a little smaller than the ratio Hoffmeyer (1978) obtained for flexural MOE.

Conclusions From Clear Wood and Lumber Studies

Tensile strength parallel to the grain is less sensitive to changes in MC than is bending strength. Clear wood studies indicate no increase in strength, and possibly a decrease in strength, below some MC values. These MC values vary by study from 5 to 20 percent. Lumber studies, including one in which the lumber had previously been dried using a commercial schedule, also indicate no increase in strength with drying for lumber in the lower tail of the cumulative strength distribution. None of these lumber studies, however, contained material of several grade levels that would allow modeling of the relationship between MC and UTS for a wide range of quality levels.

Materials and Methods

Experimental Design and Lumber Selection

The objective of the sampling program was to produce a data set having a broad range of quality for future analytical modeling. Approximately 2,700 pieces of Douglas Fir nominal 2- by 4-in. and 2- by 8-in. dimension lumber (hereafter referred to as 2 by 4 and 2 by 8 lumber) were obtained from one mill in the Pacific Northwest. Each size was represented by three grades: Select Structural, No. 1, and No. 2. The grade was established on the basis of strength-reducing growth characteristics. That is, pieces that normally would be assigned to the No. 1 and No. 2 grades because of wane, splits, shake, and other appearance factors were not selected for the test samples, nor were pieces with decay selected.

The experimental design (Fig. 8) was intended to produce four sample populations of lumber matched in terms of their estimated green strength and stiffness. The target cell size was intended to produce groups of approximately 100 specimens, but 115 boards were placed in each cell to account for expected grade changes caused by drying effects. A two-step procedure was used to assign pieces to the conditioning groups. First, pieces were graded at the mill by a qualified grader, and each board was marked with its green grade. The grade-controlling defect for the piece was noted as well as the maximum strength-reducing defect in the test span. The maximum edge defect in

Figure 6—Effect of moisture content (MC) on tensile strength parallel to grain (Madsen and Nielsen 1981).

Figure 7—Effect of moisture content (MC) on elastic modulus of European spruce (adapted from data given in Hoffmeyer 1978).

the test span was also recorded. Grade classification was determined on the basis of the entire length of each piece.

Next, the lumber was nondestructively tested to measure MOE of each piece (Table 1). Within each size-grade combination, the lumber was separated into E-classes. The exact number and width of each E-class were determined after examining the distributions of MOE values within a size-grade combination. The material within each E-class was then ranked according to estimated strength ratios.

To assign lumber within a size-grade combination to a particular moisture group, the four pieces with the highest estimated strength ratios within a particular E-class were randomly assigned to one of the four MC categories (10, 15, and 20 percent MC and green).

Figure 8—Experimental design for tests on relationship between equilibrium moisture content (EMC) and tensile strength.

The next four pieces were then selected for high strength ratios and the pieces assigned to groups. This procedure was followed until 115 specimens were assigned to each moisture level cell.

Drying and Conditioning

After the specimens were assigned to MC categories, the specimens intended to be conditioned to 20, 15, and 10 percent MC were loaded into conditioning chambers and allowed to come to equilibrium.

The initial setting for all 2 by 4 specimens was for a MC of 20 percent. Upon reaching 20 percent MC, the chambers containing the 15- and 10-percent MC specimens were reset for a MC of 15 percent, and the specimens intended for 20 percent MC were tested. This procedure, which was followed for all MC levels, allowed time for testing while subsequent MC levels were reached.

The 2 by 8 specimens were conditioned to the desired MC levels following similar procedures.

Testing Procedures

Specimens that reached the desired conditions were tested in tension parallel to the grain according to ASTM D 198-84 (ASTM 1989), except that a faster testing speed was used. A constant rate of loading was used such that the average specimen failed in approximately 1.5 min. The test span for tension was the middle 8 ft of each 2 by 4 specimen and the middle

12 ft of each 2 by 8 specimen. The number of growth rings per inch was recorded for each specimen. Both UTS and TMOE values were determined for each specimen using the actual cross-sectional dimensions at time of test. For the calculation of TMOE, a partial load-deflection curve was obtained for each specimen. Ovendry MC and specific gravity values were determined from cross-sectional samples removed from each specimen near the failure point.

Results and Discussion

Sample Selection and Testing Speed

The goal of the sampling program was to obtain a broad range of material quality in the samples to ensure that eventual analytical models would be applicable to a wide range of grades (Table 2). We did not intend that the exact percentage of changes found experimentally for individual grade-size combinations would be directly applicable to results obtained for equivalent grades and sizes of lumber sampled in the In-Grade Testing Program. We expected, for example, that eliminating lumber placed in a grade solely for "cosmetic" reasons could result in a lowering of the 5th-percentile strength relative to that which might be obtained had selection not been restricted to lumber with the required "strength-reducing" growth characteristic.

When this study was initiated, ASTM D 198-84 (ASTM 1989) was the only standard available for testing lumber. However, we know that tensile strength data were being collected in the U.S. and Canadian In-Grade Testing Programs at a faster rate than that specified in ASTM D 198-84. Therefore, the failure rate of approximately 1.5 min was chosen to correspond with the rate used in the In-Grade Programs (Shelley 1989). Since this study was completed, an additional ASTM standard has been approved that allows testing at a faster rate. The procedures used in this standard meet all requirements of ASTM D 4761-88 (ASTM 1989).

Verification of Populations

The green MOE and strength ratio values for any given grade-size combination indicate that distributions were matched effectively (Table 3). A pairwise comparison of the cumulative frequency distributions of green MOE using the Kolmogorov-Smirnov two-sample test statistic (Conover 1980) showed no significant differences between the treatment groups (p > 0.75) for virtually all pairwise comparisons. Likewise, analysis of variance by grade and by size showed no significant differences in the mean values for different MC groups.

Similarly, no persistent differences in specific gravity with MC groups are evident in Table 3.

Although slightly different from the target values, the mean MC values indicate the effectiveness of the conditioning procedure (Table 4). The minimum and maximum values also show that little overlap occurred in MC values.

Moisture Effects

Mean Ultimate Tensile Stress and Tensile Modulus of Elasticity

The effects of MC on the properties of Douglas Fir dimension lumber are summarized in Table 5. Weibull distribution fit to these data is summarized in Appendix A. Analysis of variance (Table 6) indicated a significant grade by size interaction for both UTS and TMOE. In addition, UTS has a significant size by MC interaction. On average, size, grade, and MC all have a significant effect on UTS and TMOE.

In general, mean UTS first increases and then decreases with drying, whereas mean TMOE consistently increases with drying (Fig. 9). Note that in Figure 9, green values are plotted at 23 percent to correspond with green values found acceptable for Southern Pine and Douglas Fir bending models (Green and Evans 1988). The occurrence of a maxium UTS value is consistent with clear wood results previously discussed, but this value is much more pronounced than the maximum value previously observed with mean MOR (Fig. 10) (Aplin and others 1986). The mean UTS plots are also noticeably flatter than the MOR plots. For many grade-size combinations, the UTS value at 10 percent MC is only slightly different than the value for green specimens (Table 5).

The TMOE of Douglas Fir was less sensitive to changes in moisture content than was bending MOE. In drying from green to 15 percent MC, TMOE increased about 7 percent (Table 7). In a previous study on bending properties, MOE increased about 15 percent in drying from green to 15 percent MC (Aplin and others 1986).

Percentile Estimates of Ultimate Tensile Stress and Tensile Modulus of Elasticity

Trends in the UTS-MC relationship for 5th percentile UTS appear similar to those of mean UTS at equivalent stress levels (Fig. 11). At the lower stress levels, however, UTS appears to increase only slightly between green and 20 percent MC. In general, UTS does not increase nearly as much in drying from green to 15 percent average MC (Table 7) as the 25 percent increase assumed in Table 11 of ASTM D 245-88 (ASTM 1989).

Figure 9—Effect of moisture content on average ultimate tensile stress (UTS) and average tensile modulus of elasticity (TMOE).

As was true with mean properties, 5th percentile TMOE generally improves with drying (Fig. 11). As noted in previous studies, the slope of the TMOE to MC relationship appears to be independent of percentile level. As was true with mean trends, the change in 5th percentile TMOE is only about half that previously observed for bending MOE.

The change in tensile strength between 15 and 10 percent MC is of particular interest as an indication of the potential effect of MC levels lower than 10 percent. As can be seen in Table 8, the lumber in most grade-size combinations generally lost strength between 15 and 10 percent. Even at the 50th percentile, this loss averaged about 8 percent. Thus, we anticipate that further loss could occur at lower MC levels.

Axial load and Axial Stiffness

Lumber design procedures could be simplified by the use of parameters that are not sensitive to changes in MC. Two potential parameters are axial load and axial stiffness.

Figure 10—Effect of moisture content on average modulus of rupture (Aplin and others 1986).

Axial load *P* is the product of UTS and cross-sectional area *A*:

$$\boldsymbol{P} = \boldsymbol{T} \times \boldsymbol{A} \tag{1}$$

where

T is ultimate tensile stress (lb/in²),

A cross-sectional area (in²), and

P axial load (lb).

For a given member type, length, and load configuration, axial load indicates the ability of the member to resist axial force.

Axial stiffness is the product of TMOE and crosssectional area. The elongation d of a uniform member pulled in uniaxial tension may be calculated from

$$EA = PL/d \tag{2}$$

where

L is length (in.),

E tensile MOE (1b/in²), and

EA axial stiffness.

Figure 11—Effect of moisture content on average and 5th-percentile ultimate tensile stress (UTS) and tensile modulus of elasticity (TMOE).

As lumber dries, it shrinks and the cross-sectional area decreases. These decreases might offset any increases in UTS and TMOE.

Descriptive statistics for the axial load and axial stiffness values obtained in this study are given in Table 9. Trends in axial load (Fig. 12) indicate that 2 by 4 lumber is less sensitive to changes in MC than 2 by 8 lumber. However, decreases in axial load with decreasing MC are still evident. Trends in axial stiffness (Fig. 13) indicate that 2 by 4 lumber is less sensitive to changes in MC than is 2 by 8 lumber. The general trend is that axial stiffness increases with

Figure 12—Effect of moisture content on axial load.

decreasing MC; the response of 2 by 4 lumber is almost nil (Fig. 13).

Property Distributions

The effect of MC can also be discussed in terms of its general effect on lumber property distributions. Changes in the distribution of UTS (or TMOE) can be discussed more conveniently than changes in particular percentiles. To enhance our understanding of the MC effect and to provide basic information needed for future analytical studies, the distributional form of the data is analyzed and described.

Inspection by grade and size of the experimental cumulative frequency distributions (CDFs) of the four MC groups did not indicate a consistency in the relationship between UTS and MC (Appendix B, Fig. B1). However, inspection of the CDFs alone may be misleading. As was seen in Figures 9 and 11, UTS tends to first increase with decreasing MC as the

Figure 13—Effect of moisture content on axial stiffness.

lumber dries from green to 15 percent MC and then to decrease with drying below 15 percent MC. Thus, intertwining of the CDFs obscures the real relationships in the data. Relationships between UTS and MC at various percentile levels may be seen in Appendix B (Fig. B3).

With TMOE, there is a definite trend toward increasing TMOE with decreasing MC (Appendix B, Fig. B2). This observation confirms trends seen in Figures 9 and 11.

Comparison of Data Sets

Comparison of Groups

Three tests were used to test the hypothesis that no differences occurred between grade-size-MC groups. First, a Kolmogorov-Smirnov two-sample test statistic (Conover 1980) was used to test the equality of distribution pairs. Mean values of the MC groups were compared within each grade-size combination using an analysis of variance for each variable and then conducting a multiple comparison of the group means, using a series of modified two-sample t-tests (Miller 1981). Finally, a modified chi-square test was used to compare 5th percentile values. With the sample sizes used in this study, the chi-square test lacks power (will tend to indicate equality for dissimilar data groups) when applied to 5th percentiles values. This is because of the scarcity of observations in the tail regions of the distributions.

The results for UTS and TMOE are presented in Table 10. If none of the groups could be considered equal (p < 0.2 for each comparison), then the entry is "none equal;" otherwise, the groups are listed. For mean and 5th percentile values, the groups are ordered from low to high with respect to the indicated property. Two groups that share a common underline cannot be considered different (p > 0.2). Groups that do not share a common underline are significantly different (p < 0.2).

Ultimate Tensile Stress

Tests of the equality of the means and equality of distributions indicated that green UTS values were different from the other MC values for Select Structural specimens (Table 10). For the other grades, no consistent pattern is present. For 5th percentile UTS, no significant differences between the different MC levels were detected for 2 by 4 lumber. For 2 by 8 lumber, distinct differences in 5th percentile UTS values were found for 10 percent MC with Select Structural, for 10 and 20 percent MC with No. 1, and for 20 percent MC with No. 2.

Statistical tests of the means and distributions generally indicated a distinct difference between grades (Table 10). The 5th percentile values, however, sometimes indicated no difference between adjacent grades.

The UTS also appeared to differ significantly by lumber size (Table 10). In all but one case, significant differences between sizes were found for distribution, mean values, and 5th percentile values.

Tensile Modulus of Elasticity

Tests for the equality of means and distributions for TMOE of 2 by 4 lumber indicated that MOE values for green and 20-percent MC lumber were equal (Table 10). Distinct differences may be found at the 15- and 10-percent MC levels. For 2 by 8 lumber, the mean and distributional values were not significantly different at the 15- and 20-percent MC levels.

Literature Cited

ASTM. 1989. Designations D 198-84 (p. 80), D 245-88 (p. 99), D 2555-88 (p. 368), D 2915-88 (p. 404), and D 4761-88 (p. 507). Annual Book of ASTM Standards, Wood, Vol. 04.09. Philadelphia, PA: American Society for Testing and Materials.

Aplin, E.N.; Green, D.W.; Evans, J.W.; Barrett, J.D. 1986. The influence of moisture content on the flexural properties of Douglas-fir dimension lumber. Res. Pap. FPL 475. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Conover, W.J. 1980. Practical nonparametric statistics. 2d ed. New York: John Wiley and Sons.

Curry, W.F. 1952. The effect of moisture content on the tensile strength of Sitka spruce. Aircraft Engineering. XXIV(279).

D'Agostino, R.B.; Stephens, M.A. 1986. Goodness-offit techniques. New York: Dekker Publishing.

Evans, J.W.; Johnson, R.A.; Green, D.W. 1989. Two- and three-parameter Weibull goodness-of-fit tests. Res. Pap. FPL-RP-493. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Galligan, W.L.; Gerhards, C.C.; Ethington, R.L. 1979. Evolution of tensile design stresses for lumber. Gen. Tech. Rep. FPL-28. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Gerhards, C.C. 1981. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood and Fiber. 14(1): 4-36.

Green, D.W. 1982. Adjusting the static strength of lumber for changes in moisture content. Proceedings of the workshop on research needs on effect of the environment on design properties of lumber; 1980 May 28-30; Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Green, D.W.; Evans, J.W. 1988. Moisture content and the mechanical properties of dimension lumber: decisions for the future. In: In-grade testing of structural lumber. U.S. Forest Products Laboratory, April 25-26, 1988. D.W. Green, B.E. Shelley, H.P. Volley, eds. Proceeding 47363. Forest Products Research Society, Madison, WI. Hoffmeyer, P. 1978. Moisture content-strength relationship for spruce lumber subjected to bending, compression, and tension along the grain. Proceedings of IUFRO Wood Engineering group meeting, August 1978; Vancouver, BC. p. 70-91.

Kollmann, F. 1956. Investigations on the tensile strength of wood perpendicular to the grain. Report from the Institute of Wood Research and Wood Technology of Munich University. Forster. Cbl. 75: 304-318. (In German.)

Kufner, M. 1978. Modulus of elasticity and tensile strength of wood species with different density and their dependence on moisture content. Holz als Rohund Werkstoff. 36(11): 435-439. (In German.)

Leont'ev, N.L. 1960. The strength of wood at varying moisture content. Derev. Prom. 10: 17-18. (In Russian.)

Madsen, B.; Neilsen, P.C. 1981. Investigation of test parameters in parallel-to-grain tension. Rep. 24. Vancouver, B.C.: Department of Civil Engineering, University of British Columbia.

McLain, T.E.; DeBonis, A.L.; Green, D.W.; Wilson, C.L.; Link, C.L. 1984. The influence of moisture content on the flexural properties of southern pine dimension lumber. Res. Pap. FPL 447. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Miller, R.G., Jr. 1981. Simultaneous statistical inference. New York: Springer-Verlag. 272 p.

Östman, B.A.L. 1985. Wood tensile strength of temperatures and moisture contents simulating fire conditions. Wood Science and Technology. 19: 103-116.

Shelley, B.E. 1989. Testing machines: development, calibration, and comparative studies. In: In-grade testing of structural lumber. U.S. Forest Products Laboratory, April 25-26, 1988. D.W. Green, B.E. Shelley, H.P. Volley, eds. Proceeding 47363. Forest Products Research Society, Madison, WI. p. 15-26.

Snedecor, G.W.; Cochran, W.G. 1967. Statistical methods. 6th ed. Ames, IA: Iowa University Press.

USDA Forest Service. 1987. Wood handbook: Wood as an engineering material. Agric. Handbook 72. Washington, DC: U.S. Department of Agriculture, Forest Service. 466 p.

			Modulus of elasticity (× 10 ⁶ 1b/in)							
Size ^a (in.)	Grade ^b	Number of specimens	Mean	Standard deviation	5th percentile	50th percentile	95th percentile			
2 by 4	SS	456	1.99	0.37	1.37	2.01	2.61			
	No. 1	460	1.81	0.36	1.24	1.81	2.43			
	No. 2	460	1.71	0.36	1.18	1.66	2.36			
2 by 8	SS	456	2.10	0.34	1.59	2.08	2.72			
•	No. 1	460	1.75	0.31	1.31	1.68	2.33			
	No. 2	460	1.65	0.34	1.19	1.59	2.29			

Table 1—Flatwise modulus of elasticity values, by grade, for Douglas Fir lumber in the green state

^aNominal dimensions.

^bSS is Select Structural.

			Estimated strength ratio (percent)						
Size ^a (in.)	Grade ^b	Number of specimens	Mean	Standard deviation	5th percentile	50th percentile	95th percentile		
2 by 4	SS	456	89.4	10.0	69.9	91.0	100		
	No. 1	460	72.9	14.6	49.0	75.0	96		
	No. 2	460	63.5	18.7	34.0	62.5	100		
2 by 8	SS	456	79.9	9.8	63.0	81.0	94		
Ū	No. 1	460	11.7	11.7	50.0	69.0	88		
	No. 2	460	58.1	17.9	24.0	59.0	84		

Table 2—Estimated strength ratios for the test span of each specimen, by grade, for Douglas Fir lumber in the green state

^aNominal dimensions.

^bSS is Select Structural.

		Moisture	Gre	en flexural MOE ^c	Maan strangth	Mean	
Size ^a (in.)	Grade ^b (percen		Mean	Standard deviation	ratio (percent)	specific gravity ^d	
2 by 4	SS	10	1.990	0.371	88.5	0.531	
		15	1.996	0.378	89.8	0.531	
		20	1.991	0.376	89.4	0.524	
		(green)	1.995	0.370	89.4	0.525	
	No. 1	10	1.809	0.360	71.8	0.509	
		15	1.810	0.355	71.0	0.502	
		20	1.813	0.365	73.2	0.501	
		(green)	1.809	0.364	73.3	0.493	
	No. 2	10	1.710	0.365	61.5	0.500	
		15	1.711	0.372	64.5	0.492	
		20	1.710	0.365	63.3	0.496	
		(green)	1.704	0.363	63.0	0.487	
2 by 8	SS	10	2.096	0.340	79.8	0.495	
		15	2.099	0.340	80.1	0.493	
		20	2.100	0.340	80.1	0.489	
		(green)	2.103	0.350	79.8	0.487	
	No. 1	10	1.745	0.320	68.8	0.461	
		15	1.749	0.320	69.1	0.464	
		20	1.749	0.320	68.8	0.463	
		(green)	1.749	0.310	69.0	0.458	
	No. 2	10	1.651	0.330	57.6	0.460	
		15	1.656	0.350	58.2	0.461	
		20	1.655	0.340	57.9	0.457	
		(green)	1.644	0.330	58.0	0.456	

Table 3—Effectiveness of sorting procedure used with green lumber

^aNominal dimensions.
^bSS is Select Structural.
^cModulus of elasticity.
^dSpecific gravity based on ovendry weight and ovendry volume.

		Moisture)	Moisture content (percent)						
Size ^a (in.)	Grade ^b	group (percent)	Mean	Standard deviation	Minimum	Maximum				
2 by 4	SS	10	10.2	1.1	8	12				
·		15	15.1	1.1	13	17				
		20	19.4	0.9	18	21				
		(green)	36.6	16.9	23	119				
	No. 1	10	9.3	0.4	8	10				
		15	14.7	1.1	13	18				
		20	19.6	1.2	17	22				
		(green)	41.5	22.3	22	162				
	No. 2	10	9.6	0.4	9	11				
		15	14.9	1.0	13	17				
		20	19.6	1.2	17	22				
		(green)	42.7	22.6	24	159				
2 by 8	SS	10	10.4	1.1	9	12				
·		15	15.3	0.5	14	17				
		20	21.0	0.9	18	23				
		(green)	40.3	18.5	24	122				
	No. 1	10	10.8	0.9	9	12				
		15	15.2	0.5	14	16				
		20	20.5	0.8	19	23				
		(green)	40.2	22.6	24	157				
	No. 2	10	10.7	1.0	8	12				
		15	15.2	0.5	13	17				
		20	20.3	0.9	18	23				
		(green)	36.8	15.6	23	127				

Table 4—Effectiveness of conditioning process

^aNominal dimensions. ^bSS is Select Structural.

		МС		TM	OE (×1	0 ⁶ lb/in ²)	TMOF	UT	'S (× 10) ³ lb/in ²)	UTS
Size ^b (in.)	Grade	group (percent)	Sample size	Mean	SD	5th per- centile ^c	COV (percent)	Mear	n SD	5th per- centile ^c	COV (percent)
2 by 4	SS	10	102	2.389	0.466	1.633	19.501	7.385	2.034	3.577	27.537
-		15	113	2.252	0.443	1.470	19.652	7.242	1.947	3.973	26.882
		20	106	2.165	0.415	1.498	29.159	6.982	1.944	3.512	27.838
		(green)	111	2.160	0.392	1.500	18.143	6.618	1.740	3.536	26.287
	No. 1	10	96	2.188	0.474	1.416	21.670	5.156	2.127	1.867	41.252
		15	105	2.032	0.427	1.363	21.036	5.157	2.106	1.862	40.825
		20	110	1.921	0.311	1.260	21.950	5.036	1.873	2.526	37.186
		(green)	114	1.898	0.442	1.232	23.266	4.826	1.878	1.790	38.907
	No. 2	10	96	1.961	0.521	1.210	26.590	3.940	2.331	1.524	59.166
		15	102	1.915	0.480	1.179	25.079	4.392	2.279	1.741	51.890
		20	108	1.769	0.465	1.024	26.267	4.069	2.087	1.459	51.289
		(green)	111	1.737	0.451	1.086	25.946	3.743	1.614	1.536	43.134
2 by 8	SS	10	109	2.169	0.363	1.615	16.740	5.216	2.361	1.919	45.272
·		15	113	2.036	0.346	1.488	17.014	5.755	2.176	2.818	37.811
		20	114	1.994	0.351	1.475	17.597	5.349	2.173	2.792	40.616
		(green)	113	1.835	0.324	1.380	17.670	4.551	1.599	2.470	35.133
	No. 1	10	113	1.744	0.335	1.211	19.211	3.041	1.505	1.293	49.499
		15	114	1.649	0.316	1.145	19.165	3.258	1.391	1.572	42.682
		20	115	1.618	0.805	1.198	18.853	3.394	1.472	1.862	43.370
		(green)	115	1.527	0.286	1.128	18.701	3.063	1.194	1.551	38.971
	No. 2	10	113	1.671	0.364	1.157	21.782	2.494	1.259	0.993	50.480
		15	114	1.516	0.353	0.998	23.270	2.720	1.257	1.118	46.214
		20	114	1.503	0.332	1.080	22.095	2.783	1.305	1.320	46.881
		(green)	113	1.409	0.320	0.940	22.716	2.419	0.975	1.108	40.321

Table 5—Descriptive statistics for tensile modulus of elasticity and ultimate tensile stress of Douglas Fir^a

^aSS is Select Structural; MC, moisture content; TMOE, tensile modulus of elasticity; SD, standard deviation; COV, coefficient of variation; UTS, ultimate tensile stress.

^bNominal dimensions.

_cNonparametric estimate of 5th percentile value (ASTM D 2915-88; ASTM 1989).

	Degrees	Ultim tensile st	ate tress ^a	Tensile modulus of elasticity ^a	
Effect	freedom	F-statistic	p > F	F-statistic	p > F
Size	1	600.55	0.0000	227.62	0.0000
Grade	2	564.41	0.0000	262.44	0.0000
Moisture content	3	11.09	0.0001	84.47	0.0000
Grade by size	2	3.75	0.0237	15.51	0.0001
Size by moisture content	3	1.29	0.2749	3.89	0.0087
Grade by moisture content	6	1.79	0.0972	0.58	0.7461
Size by grade by					
moisture content	6	0.88	0.5116	0.64	0.7011

Table 6—Partial analysis of variance for ultimate tensile stress and tensile modulus of elasticity

^aThe null hypothesis is that the factor or interaction had no effect on ultimate tensile stress or tensile modulus of elasticity; p is the probability of rejecting this hypothesis when it is true.

		Mois	ture co	ntent o	f lumbe	er ^b (per	cent)
		2 by 4 in.			2 by 8 in.		
Property	Grade ^a	20	15	10	20	15	10
	ME	AN VAI	LUES				
Ultimate tensile stress	SS	5.5	9.4	11.6	17.5	26.5	15.6
	1	4.3	6.8	6.8	10.8	6.4	-0.7
	2	9.2	17.8	5.7	13.0	14.9	1.3
Tensile modulus of							
elasticity	SS	0.2	4.7	11.0	8.7	11.0	18.3
, see a s	1	1.4	6.2	15.3	5.9	8.0	16.2
	2	2.9	10.4	13.0	6.7	8.5	18.6
Ę	5TH PERG	CENTIL	E VAL	.UES			
Ultimate tensile stress	SS	-0.7	12.4	1.2	13.0	14.1	-22.3
	1	41.1	4.0	4.3	20.1	1.4	16.6
	2	-5.0	13.3	-0.8	19.1	0.9	-10.4
Tensile modulus of							
elasticity	SS	8.9	-2.0	8.9	6.9	7.8	17.0
0	1	2.3	10.6	14.9	6.2	1.5	7.4
	2	-5.7	8.6	11.4	14.9	6.2	23.1

Table 7—Percentage of change in mean and 5th percentile ultimate tensile stress and tensile modulus of elasticity of lumber during drying from the green condition

^aSS is Select Structural.

^bNominal dimensions.

		Change in ultimate tensile stress (percent)								
	Se Stru	elect Ictural	N	o. 1	N					
Percentile	2 by 4	2 by 8	2 by 4	2 by 8	2 by 4	2 by 8	Mean			
5	-10.0	-31.9	0.3	-17.7	-12.5	-6.1	-13.0			
10	-7.1	-29.1	-3.3	-14.3	-20.1	-14.1	-14.7			
25	-1.4	-15.1	-5.7	-7.6	-12.4	-15.4	-9.6			
50	1.8	-11.8	-3.1	-11.8	-11.9	-9.6	-7.7			
75	4.3	-1.2	1.9	-11.9	-9.2	-3.9	-3.3			
90	2.8	-4.6	6.2	6.4	-4.3	-10.1	-0.6			
95	2.9	-4.0	-8.3	10.1	-9.6	-9.0	-2.0			

Table 8—Percentage of change in ultimate tensile stress from 15 to 10 percent moisture content for Douglas Fir lumber

				Axial stiffness (× 10^6 lb)			Load (× 10^4 l)	
Size ^b (in.)	Grade	MC group (percent)	Sample size	Mean	SD	5th percen- tile ^c	COV (percent)	Mear	n SD	5th percen- tile ^c	Load COV (percent)
2 by4	SS	10	102	12.411	2.249	8.801	18.125	3.841	1.042	1.881	27.117
U		15	113	12.051	2.279	8.009	18.911	3.881	1.038	2.122	26.742
		20	106	11.826	2.206	8.336	18.651	3.815	1.052	1.920	27.568
		(green)	111	12.074	2.190	8.347	18.141	3.700	9.734	1.979	26.310
	No. 1	10	96	11.341	2.340	7.524	20.638	2.672	1.093	0.991	40.911
		15	105	10.815	2.174	7.911	20.106	2.744	1.100	0.996	40.075
		20	110	10.491	2.237	6.994	21.323	2.748	1.009	1.388	36.707
		(green)	114	10.592	2.449	6.915	23.122	2.693	1.046	0.998	38.832
	No. 2	10	96	10.228	2.603	6.365	25.446	2.053	1.201	0.794	58.511
		15	102	10.179	2.476	6.397	24.321	2.331	1.188	0.641	50.969
		20	108	9.665	2.486	5.676	25.728	2.222	1.135	0.801	51.088
		(green)	111	9.689	2.501	6.093	25.808	2.087	0.895	0.847	42.909
2 by 8	SS	10	109	23.547	3.806	17.654	16.164	5.658	2.540	2.080	44.897
·		15	113	22.621	3.767	16.695	16.653	6.393	2.398	3.148	37.501
		20	114	22.717	3.930	16.890	17.300	6.099	2.477	3.190	40.610
		(green)	113	21.438	3.761	15.848	17.544	5.316	1.853	2.926	34.856
	No. 1	10	113	19.146	3.597	13.395	18.788	3.337	1.634	1.429	48.955
		15	114	18.497	3.428	12.925	18.532	3.651	1.537	1.755	42.090
		20	115	18.589	3.394	13.819	18.257	3.896	1.658	2.168	42.563
		(green)	115	17.899	3.344	13.210	18.682	3.590	1.395	1.846	38.877
	No. 2	10	113	18.410	3.861	12.928	20.973	2.745	1.369	1.087	49.887
		15	114	17.044	3.917	11.286	22.981	3.057	1.408	1.278	46.058
		20	114	17.305	3.795	12.358	21.930	3.203	1.500	1.510	46.829
		(green)	113	16.455	3.692	11.077	22.437	2.826	1.136	1.327	40.192

Table 9—Axial stiffness and load of Douglas Fir at various moisture contents a

 a SS is Select Structural; MC, moisture content; SD, standard deviation; COV, coefficient of variation. b Nominal dimensions.

 $^{\rm c}$ Nonparametric estimate of the 5th percentile value (ASTM D 2915-88, ASTM 1989).

Sizod		Moisture content	Tensile m elast	odulus of icity	Ultimate tensile stress			
(in.)	Grade^{e}	group (percent)	Distribution	Mean	Distribution	Mean	5th percentile	
			MOI	STURE CON	TENT ^f			
2 by 4	SS		<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>G 20 15</u> 10	<u>20 G 10 15</u>	
	No. 1		<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>G 20 10 15</u>	<u>G 15 10 20</u>	
	No. 2		<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>10 G 20 15</u>	<u>G 10 20</u> 15	<u>20 10 G 15</u>	
2 by 8	SS		<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>G 10 20 15</u>	<u>G 10 20 15</u>	<u>10 G 20 15</u>	
	No. 1		<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>10 G 1</u> 5 20	<u>10 G 15</u> 20	<u>10 G 15 20</u>	
	No. 2		<u>G 20 15 10</u>	<u>G 20 15 10</u>	<u>10 G 20 15</u>	<u>10 G 20 15</u>	<u>10 G 15 20</u>	
				GRADE ^g				
2 by 4 2 by 8		10	None equal None equal					
2 by 4		15	<u>2 1 SS</u>	None equal	None equal	None equal	<u>2 1 S</u> S	
2 by 8			None equal					
2 by 4 2 by 8		20	None equal None equal	None equal None equal	None equal None equal	None equal None equal	<u>2 1 SS</u> <u>2 1 SS</u>	
2 by 4 2 by 8		(green)	None equal None equal	None equal None equal	None equal None equal	None equal None equal	<u>2_1</u> _ <u>SS</u> None equal	

Table 10—Test of equality of experimental parameters for tensile modulus of elasticity and ultimate tensile ${\rm stress}^{a,\,b,\,c}$

(Page 1 of 2)

Sized	Moisture content	Tensile mo elasti	odulus of city	Ultimate tensile stress			
(in.) Grade ^e	(percent)	Distribution	n Mean	Distribution	Mean	5th percentile	
			SIZE ^h				
SS No. 1	10 15 20 (green) 10 15 20 (green)	Not equal Not equal Not equal Not equal Not equal Not equal Not equal Not equal	Not equal Not equal Not equal Not equal Not equal Not equal Not equal Not equal	Not equal Not equal Not equal Not equal Not equal Not equal Not equal Not equal	Not equal Not equal Not equal Not equal Not equal Not equal Not equal Not equal	Not equal Not equal Not equal Not equal <u>8 4</u> Not equal Not equal	
No. 2	10 15 20 (green)	Not equal Not equal Not equal Not equal	Not equal Not equal Not equal Not equal	Not equal Not equal Not equal Not equal	Not equal Not equal Not equal	Not equal Not equal Not equal	

Table 10—Test of equality of experimental	parameters f	for tensile	modulus o	of elasticity
and ultimate tensile stress ^{<i>a, b, c</i>} —con.	-			-

^aEquality of groups not rejected at p = 0.2.

^bTests of distribution based on Kolmogorov-Smirnov tests of means based on analysis of variance and modified multiple comparison t-test. Tests of 5th percentiles based on a modified chi-square test.

^{*c*} Groups sharing a common underline cannot be considered different ($p \ge 0.2$). Groups that do not share a common underline can be considered different (p < 0.2). For distributions, order of groups does not represent order of distribution. For means and 5th percentiles, groups are ranked from low to high.

^dNominal dimensions.

^eSS is Select Structural.

^fMoisture content groups: G, green; 10, 15, and 20 percent.

^gGrades: 2 is No. 2; 3 is No. 3.

^{*h*}Nominal size: 4 is 2 by 4; 8 is 2 by 8.

(Page 2 of 2)

Appendix A—Distributional Form of Tensile Data

Normal Distribution

The data were tested for normality using the Kolmogorov-Smirnov (KS), the Anderson-Darling (AD), and the Shapiro-Francia (SF) tests. Details of these goodness-of-fit tests can be found in D'Agostino and Stephens (1986). Skewness (lack of symmetry) and kurtosis (degree of flatness) were also examined. Because the sample sizes used in this study were smaller than required to assure that the coefficients of skewness and kurtosis were normally distributed, critical values for these coefficients were obtained from Table A6 of Snedecor and Cochran (1967).

All three normality tests indicated a lack of normality for ultimate tensile stress (UTS), especially the more sensitive Anderson-Darling (AD) test for goodnessof-fit (D'Agostino and Stephens 1986). In 19 of 24 grade-size combinations (Table Al), the UTS data exhibited significant skewness. Only the two higher grades of nominal 2- by 4-in. lumber tended not to be significantly skewed. Kurtosis was significant only 10 of 24 times, mostly in No. 2 grade nominal 2- by 8-in. lumber. Distributions that exhibited significant kurtosis tended to be flatter than would be expected for a normal distribution.

Tensile modulus of elasticity (TMOE) tended to be normally distributed for 2 by 4 lumber and Select Structural 2 by 8 lumber, but not for No. 1 and No. 2 grade 2 by 8 lumber. With TMOE, skewness was also the primary reason to reject normality. Normality was rejected 10 of 24 times, mostly with No. 2 grade lumber. Kurtosis was significant only 2 of 24 times. These results are similar to those obtained with bending MOE in previous studies (Aplin and others 1986; McLain and others 1984).

Results of normality tests for axial stiffness and axial load are not presented because they were virtually identical to those for TMOE and UTS, respectively.

Weibull Distribution

Tables A2 through A5 present the estimated parameters for the three-parameter Weibull distribution fit to the data using a maximum-likelihood estimation procedure. Tables A6 through A9 present the estimates for the two-parameter Weibull distribution. The Weibull distribution was selected because of its flexibility in fitting both right-skewed' (shape parameters less than about 3.6) and left-skewed² (shape parameters greater than about 3.6) distributions.

As noted previously for bending (Aplin and others 1986; McLain and others 1984), the UTS distribution of 2 by 4 Select Structural lumber tends to be normal or skewed to the left (Table A2). Unlike MOR, UTS of 2 by 8 Select Structural lumber is right skewed. The UTS of the lower grades also tends to be right skewed for both widths. As with bending MOE, tensile MOE tends to range from normal to skewed slightly to the right for all grades and sizes. As noted, the skewness of axial stiffness and load parallels that of MOE and UTS.

The goodness-of-fit of the two- and three-parameter Weibull distribution was evaluated using the KS test, AD test, and a Shapiro-Wilk-type correlation test (CT) (Evans and others 1989). For complete data sets, all the tests have good power against a number of distributional alternatives. The three-parameter distribution appears to provide a satisfactory fit to both UTS and TMOE (Table A10). The two-parameter Weibull distribution does not usually provide an adequate fit to the data, especially for lower grade and wider lumber (Table All). For two-parameter and three-parameter distributions, percentage differences between Weibull and nonparameteric point estimates are shown for comparison.

A right-skewed distribution has a relatively long "tail" toward increasing values of the property.
² Warren, W.G. 1978. Program for maximumlikelihood estimation of Weibull parameters. Personal communication to Forest Products Laboratory, Madison, WI.

Sizo ^c		Moisture content		1	Ultim	ate tensile st	ress		Ten	sile n	nodulus of el	asticity
(in.)	Grade^d	(percent)	KS	AD	SF	Skewness ^e	Kurtosis ^f	KS	AD	SF	Skewness	Kurtosis
2 by 4	SS	10	_	*	_	_	**	_	_	_	_	_
5		15	**	**	**	* *	_	_	-	-	_	_
		20	-	*	*	*	_	_	-	-	_	_
		(green)	-	*	_	_	* *	_	_	_	_	_
	No. 1	10	-	**	*	_	* *	_	_	_	_	-
		15	_	_	_	*	_	_	_	_	_	_
		20	-	*	-	-	_	_	_	_	_	-
		(green)	-	-	_	_	*	-	_	-	_	*
	No. 2	10	**	**	**	* *	_	-	*	*	* *	_
		15	**	**	**	* *	_	-	-	-	_	_
		20	**	**	**	* *	_	-	-	_	_	*
		(green	-	*	**	* *	-	*	*	_	*	-
2 by 8	SS	10	-	**	**	* *	_	-	-	_	_	_
		15	**	**	**	* *	_	-	_	_	_	-
		20	**	**	**	* *	-	-	-	-	*	_
		(green)	**	**	**	* *	_	_	_	_	_	-
	No. 1	10	**	**	**	* *	* *	*	-	_	_	_
		15	**	**	**	* *	* *	**	-	_	* *	_
		20	**	**	**	* *	**	**	* *	* *	**	_
		(green)	**	**	**	* *	* *	_	*	*	*	_
	No. 2	10	**	**	**	* *	* *	* *	**	* *	* *	_
		15	**	**	**	* *	* *	**	**	**	* *	_
		20	**	**	**	* *	_	* *	**	**	* *	_
		(green)	**	**	**	* *	_	**	**	*	*	-

^{*a*}Dash (-), no reason to reject normality with p > 0.05. * reason to reject normality with 0.01 . $** reason to reject normality with <math>p \le 0.01$. ^{*b*}KS is Kolmogorov-Smirnov goodness-of-fit test; AS, Anderson-Darling test;

SF, Shapiro-Francia test.

^cNominal dimensions. ^dSS is Select Structural. ^eLack of symmetry.

^fDegree of flatness.

	percent unce limit; ercent CI		Non-	parametric ^d	3.190	1.510	2.670	3.000	1.530	1.410	1.710	1.510	0.970	1.460	1.25	0.890	1.460	2.446	2.347	2.333	1.033	1.305	1.598	1.362	0.901	0.977	1.057	0.735	
	50 tolera 95 p	-		Weibull	3.540	3.661	3.400	3.262	1.816	1.532	1.792	1.741	1.139	1.538	1.233	1.284	1.814	2.578	2.003	2.136	1.030	1.418	1.597	1.496	0.889	1.088	1.011	0.865	
(10^3 lb/in^2)	t point	95 percent	upper	CI	4.700	4.573	4.363	4.300	2.459	2.257	2.470	2.361	1.422	1.845	1.587	1.681	2.300	3.039	2.542	2.510	1.277	1.632	1.784	1.671	1.064	1.272	1.236	1.134	
ile stress (×	ull S-percen	95 percent	lower	CI ^c	3.438	3.581	3.316	3.171	1.760	1.468	1.733	1.687	1.115	1.511	1.202	1.250	1.771	2.538	1.956	2.103	1.008	1.399	1.580	1.481	0.874	1.072	0.992	0.842	
ltimate tens	Weib			Estimate	4.069	4.077	3.839	3.735	2.109	1.863	2.101	2.024	1.269	1.678	1.394	1.465	2.036	2.788	2.249	2.306	1.143	1.516	1.682	1.576	0.969	1.172	1.114	0.988	
IJ	eibull	rs		Location	0	0	0	0.214	0.990	0	0.317	0.691	0.901	1.247	0.832	0.702	1.243	1.938	1.092	1.546	0.705	1.169	1.382	1.305	0.696	0.878	0.719	0.393	
	mated W	paramete		Scale	8.139	7.943	7.692	7.055	4.703	5.799	5.208	4.669	3.319	3.466	3.614	3.431	4.450	4.298	4.817	3.395	2.622	2.324	2.235	1.946	1.995	2.047	2.320	2.290	
	Esti			Shape	4.284	4.453	4.274	4.274	2.069	2.615	2.725	2.370	1.349	1.425	1.597	1.977	1.722	1.833	2.083	1.985	1.658	1.560	1.480	1.505	1.492	1.531	1.678	2.204	
	Moisture	content	group	(percent)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	
				Grade ^b	SS				No. 1				No. 2				SS				No. 1				No. 2				
			Size ^a	(in.)	2 by 4	•											2 by 8												c

Table A2-Three-parameter Weibull distribution for ultimate tensile stress of Douglas Fir lumber at various moisture contents

	percent ance limit; ercent CI		Non-	parametric ^d	2.330	2.150	2.130	2.100	2.060	1.920	1.810	1.810	1.770	1.780	1.630	1.570	2.090	1.950	1.890	1.750	1.620	1.550	1.520	1.460	1.530	1.410	1.390	1.310
	50 toler 95 n	4 00		Weibull	2.301	2.173	2.091	2.125	2.091	1.941	1.819	1.799	1.805	1.815	1.656	1.627	2.102	1.972	1.925	1.769	1.683	1.568	1.528	1.450	1.575	1.428	1.398	1.341
/ (× 10 ⁶ lb/in ²)	t point	95 percent	unner	CI	2.487	2.342	2.252	2.200	2.284	2.108	1.982	1.966	2.012	2.004	1.838	1.794	2.240	2.101	2.056	1.890	1.808	1.686	1.638	1.556	1.708	1.557	1.515	1.459
of elasticity	ill 5-percen	15 percent	lower	CI^{c}	2.285	2.158	2.077	2.105	2.074	1.926	1.804	1.785	1.787	1.799	1.640	1.612	2.089	1.960	1.913	1.758	1.672	1.558	1.518	1.441	1.564	1.417	1.387	1.330
e modulus o	Weibu	0		Estimate	2.386	2.250	2.164	2.153	2.179	2.017	1.893	1.876	1.899	1.901	1.739	1.703	2.165	2.031	1.985	1.824	1.740	1.622	1.578	1.498	1.636	1.487	1.451	1.395
Tensil	eihull	S		Location	1.030	0.938	0.916	1.053	0.842	0.937	0.955	0.840	0.977	0.601	0.720	0.745	1.062	1.009	0.979	0.960	0.752	0.972	1.065	0.951	0.934	0.755	0.957	0.593
	mated W	paramete		Scale	1.518	1.466	1.393	1.237	1.503	1.231	1.089	1.192	1.110	1.471	1.184	1.120	1.232	1.145	1.132	0.980	1.107	0.764	0.623	0.650	0.833	0.858	0.613	0.917
	F.sti			Shape	3.263	3.316	3.368	3.103	3.113	2.812	2.458	2.605	1.979	2.961	2.439	2.350	3.306	3.234	3.095	2.909	2.235	2.267	1.892	2.129	2.145	2.284	1.707	2.732
	Moisture	content	groun	(percent)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)	10	15	20	(green)
				Grade ^b	SS				No. 1				No. 2				SS				No. 1				No. 2			
			Size ^a	(in.)	2 by 4	•											2 by 8											

^aNominal dimensions. ^bSS is Select Structural. ^cCI is confidence interval. ^dNonparametric estimate of 5th percentile value (ASTM D 2915-88, 1989).

moisture contents

Table A3-Three-parameter Weibull distribution for tensile modulus of elasticity of Douglas Fir lumber at various

						Axial lc	bad (\times 10 ⁴]	(q		
		Moisture	Estir	nated W	eibull	Weibu	ll 5-percent	point	50 F toleran 95 per	bercent ice limit; rcent CI
		content		paramete	rs	<u>;</u> 6	5 percent 9	15 percent		
Size ^a		group					lower	unner		Non-
(in.)	Grade ^b	(percent)	Shape	Scale	Location	Estimate	CI ^c	CI	Weibull ₁	parametric ^d
2 by 4	SS	10	4.357	4.229	0	2.139	1.813	2.464	1.866	1.698
		15	4.491	4.254	0	2.196	1.931	2.461	1.973	0.837
		20	4.333	4.200	0	2.116	1.832	2.400	1.878	1.462
		(green)	4.252	3.929	0.135	2.088	1.773	2.404	1.824	1.660
	No. 1	10	2.067	2.416	0.532	1.107	0.928	1.285	0.957	0.790
		15	2.673	3.083	0	1.015	0.805	1.225	0.839	0.780
		20	2.768	2.899	0.169	1.161	0.959	1.362	0.991	0.951
		(green)	2.374	2.604	0.387	1.132	0.944	1.319	0.974	0.849
	No. 2	10	1.354	1.719	0.479	0.671	0.591	0.751	0.604	0.502
		15	1.500	1.900	0.619	0.881	0.785	0.978	0.800	0.802
		20	1.599	1.967	0.460	0.767	0.662	0.872	0.679	0.698
		(green)	1.984	1.909	0.395	0.822	0.701	0.942	0.721	0.502
2 by 8	SS	10	1.744	4.844	1.338	2.220	1.930	2.511	1.976	1.600
		15	1.846	4.769	2.159	3.113	2.833	3.393	2.878	2.720
		20	2.091	5.511	1.228	2.559	2.223	2.895	2.277	2.720
		(green)	2.019	4.000	1.776	2.695	2.453	2.937	2.492	2.730
	No. 1	10	1.670	2.873	0.778	1.263	1.115	1.412	1.139	1.140
		15	1.582	2.604	1.314	1.712	1.580	1.844	1.601	1.450
		20	1.518	2.597	1.565	1.932	1.811	2.053	1.830	1.799
		(green)	1.494	2.257	1.549	1.858	1.748	1.967	1.766	1.600
	No. 2	10	1.503	2.185	0.776	1.079	0.974	1.184	0.991	1.010
		15	1.530	2.292	0.995	1.323	1.211	1.435	1.229	1.100
		20	1.678	2.666	0.831	1.285	1.145	1.425	1.167	1.230
		(green)	2.209	2.672	0.461	1.157	0.987	1.328	1.014	0.840
ant										

Table A4—Three-parameter Weibull distribution for axial load of Douglas Fir lumber at various moisture contents

^aNominal dimensions. ^bSS is Select Structural. ^cCI is confidence interval. ^dNonparametric estimate of 5th percentile value (ASTM D 2915-88, 1989).

						Axial stiff	fness (× 10	6 lb)		
		Moisture	Esti	mated We	lludie	Weibu	ll 5-percen	t point	50 tolera 95 ne	percent nce limit; ercent CI
C::a		content		parameter	S	6	5 percent	95 percent		I. I.
Size (in.)	Grade ^b	group (percent)	Shape	Scale	Location	Estimate	lower CI ^c	upper CI	Weibull	Non- parametric ^d
2 by 4	SS	10	3.743	8.235	4.982	12.449	11.962	12.935	12.040	12.133
		15	3.431	7.758	5.084	12.056	11.582	12.529	11.658	11.522
		20	3.386	7.442	5.146	11.825	11.358	12.291	11.433	11.542
		(green)	3.148	6.997	5.811	12.039	11.585	12.493	11.658	11.611
	No. 1	10	3.346	7.911	4.234	11.325	10.808	11.841	10.891	10.706
		15	2.874	6.366	5.147	10.751	10.288	11.214	10.363	10.265
		20	2.555	5.979	5.180	10.360	9.890	10.829	9.966	9.920
		(green)	2.575	6.545	4.783	10.460	9.957	10.964	10.038	9.984
	No. 2	10	2.022	5.654	5.216	9.933	9.361	10.504	9.453	9.174
		15	3.045	7.736	3.265	10.123	9.595	10.651	9.680	9.541
		20	2.546	6.562	3.845	9.527	8.996	10.058	9.081	8.893
		(green)	2.328	6.160	4.232	9.495	8.989	10.002	9.070	8.800
2 by 8	SS	10	3.305	12.947	11.909	23.497	22.707	24.287	22.834	22.645
		15	3.284	12.608	11.305	22.582	21.816	23.347	21.939	21.850
		20	3.066	12.555	11.470	22.611	21.810	23.411	21.939	21.534
		(green)	2.929	11.443	11.223	21.320	20.558	22.083	20.680	20.351
	No. 1	10	3.335	12.196	8.197	19.123	18.393	19.854	18.510	17.897
		15	2.267	8.282	11.156	18.201	17.508	18.895	17.619	17.588
		20	1.894	6.946	12.422	18.145	17.477	18.814	17.584	17.573
		(green)	2.055	7.372	11.366	17.534	16.866	18.203	16.973	16.861
	No. 2	10	2.205	9.065	10.385	18.063	17.292	18.833	17.416	16.778
		15	2.342	9.770	8.384	16.739	15.960	17.518	16.085	15.655
		20	1.729	7.097	10.983	16.724	15.993	17.455	16.111	15.879
		(green)	2.780	10.746	6.883	16.302	15.557	17.048	15.677	15.233
^a Nomir ^b SS is	al dimen Select Str	sions. uctural.								
°CI is	confidence	interval.								
duoN ^b	arametric	estimate of	5th pero	centile val	ue (ASTM	D 2915-88, 1	1989).			

Table A5--Three-parameter Weibull distribution for axial stiffness of Douglas Fir lumber at various moisture contents

24

					Ultima	te tensile str	ress (× 10^3 lb	/in ²)	
		Moisture	Estin Wei	nated bull	Weit	oull 5-percent	t point	50 tolera 95 pe	percent nce limit; ercent CI
Size ^a (in.)	Grade^{b}	group (percent)	Shape	Scale	Estimate	lower CI ^d	upper CI	Weibull J	Non- parametric ^e
2 by 4	SS	10	4.284	8.139	4.069	3.531	4.607	3.617	3.190
5		15	4.453	7.943	4.077	3.582	4.572	3.661	1.510
		20	4.274	7.692	3.839	3.338	4.341	3.418	2.670
		(green)	4.423	7.276	3.718	3.265	4.171	3.338	3.000
	No. 1	10	2.661	5.817	1.905	1.495	2.316	1.561	1.530
		15	2.615	5.799	1.863	1.482	2.243	1.543	1.410
		20	2.923	5.651	2.046	1.678	2.414	1.737	1.710
		(green)	2.824	5.429	1.897	1.545	2.249	1.601	1.510
	No. 2	10	1.837	4.467	0.887	0.622	1.152	0.664	0.970
		15	2.079	4.987	1.195	0.889	1.501	0.939	1.460
		20	2.099	4.617	1.122	0.840	1.404	0.885	1.250
		(green)	2.489	4.228	1.282	1.016	1.547	1.058	0.890
2 by 8	SS	10	2.381	5.902	1.695	1.321	2.070	1.381	1.460
·		15	2.817	6.469	2.525	1.850	2.657	1.915	2.446
		20	2.637	6.034	1.957	1.581	2.332	1.641	2.347
		(green)	3.002	5.096	1.895	1.578	2.211	1.629	2.333
	No. 1	10	2.148	3.446	0.865	0.668	1.061	0.700	1.033
		15	2.445	3.676	1.091	0.875	1.306	0.910	1.305
		20	2.387	3.831	1.104	0.885	1.323	0.920	1.598
		(green)	2.675	3.446	1.135	0.929	1.342	0.962	1.302
	No. 2	10	2.122	2.829	0.698	0.534	0.862	0.561	0.901
		15	2.294	3.079	0.844	0.663	1.024	0.692	0.977
		20	2.283	3.155	0.859	0.671	1.047	0.701	1.057
		(green)	2.660	2.727	0.893	0.721	1.064	0.749	0.735

Table A6.—Two-parameter Weibull distribution for ultimate tensile stress of Douglas Fir lumber at various moisture contents

"Nominal dimensions. ^bSS is Select Structural. ^cLocation for each parameter was zero. ^dCI is confidence interval.

^e Nonparametric estimate of 5th percentile value (ASTM D 2915-88, 1989).

					Tensile 1	modulus of e	lasticity (× 1	0 ⁶ lb/in ²)	
		Moisture	Estin Wei param	nated bull eters ^c	Weil	oull 5-percent	point	50 toler 95	percent rance limit; percent CI
Size ^a (in.)	Grade ^b	group (percent)	Shape	Scale	Estimate	lower CI ^d	upper CI	Weibull	Non- parametric ^e
2 by 4	SS	10	5.751	2.580	2.420	2.324	2.517	2.339	2.330
· ·		15	5.696	2.433	2.281	2.194	2.369	2.208	2.150
		20	5.839	2.335	2.193	2.109	2.278	2.123	2.130
		(green)	6.006	2.323	2.186	2.106	2.265	2.119	2.070
	No. 1	10	5.027	2.377	2.210	2.107	2.313	2.123	2.060
		15	5.238	2.205	2.056	1.967	2.145	1.981	1.920
		20	4.872	2.090	1.939	1.851	2.027	1.865	1.810
		(green)	4.435	2.073	1.919	1.831	2.006	1.845	1.810
	No. 2	10	3.969	2.161	1.970	1.853	2.087	1.872	1.770
		15	4.299	2.101	1.929	1.827	2.032	1.843	1.780
		20	4.203	1.947	1.784	1.690	1.879	1.705	1.630
		(green)	4.100	1.910	1.747	1.654	1.841	1.669	1.570
2 by 8	SS	10	6.296	2.323	2.192	2.115	2.269	2.127	2.090
		15	6.281	2.182	2.058	1.987	2.129	1.999	1.950
		20	5.877	2.142	2.012	1.938	2.086	1.950	1.890
		(green)	5.932	1.971	1.853	1.786	1.921	1.796	1.750
	No. 1	10	5.628	1.883	1.764	1.696	1.833	1.707	1.620
		15	5.347	1.781	1.663	1.596	1.730	1.607	1.550
		20	5.291	1.747	1.630	1.563	1.696	1.574	1.520
		(green)	5.553	1.647	1.541	1.482	1.601	1.491	1.460
	No. 2	10	4.738	1.819	1.684	1.607	1.761	1.619	1.530
		15	4.440	1.657	1.525	1.452	1.599	1.463	1.410
		20	4.602	1.638	1.513	1.442	1.584	1.453	1.390
		(green)	4.647	1.537	1.421	1.354	1.487	1.365	1.310

Table A7—Two-parameter Weibull distribution for tensile modulus of elasticity of Douglas Fir lumber at various moisture contents

^aNominal dimensions.

^bSS is Select Structural. ^c Location for each parameter was zero. ^dCI is confidence interval. ^e Nonparametric estimate of 5th percentile value (ASTM D 2915-88, 1989).

					А	xial load	(× 10 ⁴ lb)		
		Moisture	Estim Weil	nated oull	Weibul	l 5-percen	t point	50 J tolera: 95 pe	percent nce limit; ercent CI
Size ^a		group	param		ũ	lower	upper		Non-
(in.)	Grade ^b	(percent)	Shape	Scale	Estimate	CI^d	ĊI	Weibull p	oarametric ^e
2 by 4	SS	10	4.357	4.229	2.139	1.861	2.417	1.905	1.698
-		15	4.491	4.254	2.196	1.931	2.461	1.974	0.837
		20	4.333	4.200	2.116	1.843	2.389	1.887	1.462
		(green)	4.420	4.068	2.077	1.824	2.331	1.865	1.660
	No. 1	10	2.682	3.014	0.996	0.783	1.208	0.818	0.790
		15	2.673	3.083	1.015	0.811	1.219	0.844	0.780
		20	2.964	3.082	1.132	0.931	1.333	0.963	0.951
		(green)	2.829	3.029	1.060	0.864	1.256	0.895	0.849
	No. 2	10	1.856	2.328	0.470	0.331	0.609	0.353	0.502
		15	2.115	2.646	0.650	0.486	0.814	0.512	0.802
		20	2.107	2.521	0.616	0.462	0.770	0.486	0.698
		(green)	2.503	2.357	0.719	0.571	0.868	0.595	0.502
2 by 8	SS	10	2.402	6.402	1.859	1.452	2.266	1.517	1.600
		15	2.841	7.184	2.526	2.077	2.975	2.149	2.720
		20	2.638	6.880	2.231	1.803	2.660	1.872	2.720
		(green)	3.029	5.951	2.232	1.863	2.602	1.922	2.730
	No. 1	10	2.170	3.781	0.962	0.745	1.179	0.780	1.140
		15	2.472	4.117	1.238	0.997	1.480	1.035	1.450
		20	2.428	4.395	1.293	1.041	1.546	1.082	1.799
		(green)	2.680	4.037	1.333	1.091	1.575	1.130	1.600
	No. 2	10	2.146	3.113	0.780	0.599	0.961	0.628	1.010
		15	2.301	3.461	0.952	0.749	1.155	0.781	1.100
		20	2.285	3.631	0.990	0.773	1.206	0.808	1.230
		(green)	2.668	3.184	1.046	0.846	1.247	0.878	0.840

Table A8—Two-parameter Weibull distribution for axial load of Douglas Fir lumber at various moisture contents

^aNominal dimensions. ^bSS is Select Structural.

^cLocation for each parameter was zero.

^dCI is confidence interval.

^eNonparametric estimate of 5th percentile value (ASTM D 2915-88, 1989).

					Axia	al stiffnes	s (× 10 ⁶ lb)		
		Moisture	Estir Wei	nated ibull	Weibul	l 5-percen	t point	50 toler 95 j	percent ance limit; percent CI
Size ^a (in.)	Grade ^b	group (percent)	Shape	Scale	Estimate	lower C I ^d	upper CI	Weibull	Non- pa.rametric ^e
2 by 4	SS	10 15 20	6.251 5.948 5.988	13.341 12.989 12.737	12.581 12.213 11.981	12.119 11.764 11.532	13.044 12.661 12.429	12.193 11.837 11.604	12.133 11.522 11.542
	No. 1	(green) 10 15	6.015 5.296 5.511	12.986 12.285 11.705	12.218 11.463 10.952	11.774 10.955 10.502	12.663 11.972 11.402	11.845 11.036 10.574	11.611 10.706 10.265
	No. 2	20 (green) 10 15	5.005 4.754 4.177 4.475	11.393 11.563 11.238 11.144	10.389 10.705 10.294 10.268	10.122 10.218 9.713 9.743	11.055 11.192 10.875 10.792	10.197 10.296 9.806 9.828	9.920 9.984 9.174 9.541
2 by 8	SS	20 (green) 10 15 20	4.318 4.119 6.452 6.428	10.621 10.654 25.168 24.220	9.756 9.747 23.778 22.877	9.252 9.228 22.966 22.105	10.261 10.265 24.589 23.649	9.333 9.311 23.097 22.230	8.893 8.800 22.645 21.850
	No. 1	20 (green) 10 15 20	5.975 5.977 5.780 5.540	24.378 23.030 20.642 19.939	22.928 21.661 19.374 18.663	22.101 20.874 18.645 17.935	23.755 22.447 20.103 19.391	22.234 21.001 18.763 18.052	21.534 20.351 17.897 17.588
	No. 2	(green) 10 15 20	5.495 5.527 4.934 4.476 4.661	20.030 19.304 19.994 18.610 18.851	18.737 18.065 18.563 17.147 17.426	17.362 17.746 16.323 16.617	19.470 18.768 19.380 17.970 18.235	17.476 17.877 16.455 18.747	17.573 16.861 16.778 15.655 15.879
		(green)	4.711	17.938	16.595	15.833	17.357	15.956	15.233

Table A9—Two-parameter Weibull distribution for axial stiffness of Douglas Fir lumber at various moisture contents

^aNominal dimensions. ^bSS is Select Structural. ^cLocation for each parameter was zero. ^dCI is confidence interval.

^eNonparametric estimate of 5th percentile value (ASTM D 2915-88, 1989).

							Indi	cators	of fit			
				U	Itimat	te tensile st	ress		Tei	nsile r	nodulus of e	elasticity
		Moisture	G	loodne fit te	ss-of- st ^d	Differ estimate	rence in (percent)'	9	Goodn of-fit	ess- test	Diffe estima	erence in te (percent)
Size ^b (in.)	Grade ^c	content group K	S	AD	СТ	Median	5th per- centile	KS	AD	СТ	Median	5th per- centile
2 by 4	SS	10		_	-	-7.4	13.8	_	_	_	-1.2	-1.1
		15			-	-2.5	2.6	-	_	-	-0.4	3.3
		20	_	-	-	-2.1	9.3	_	_	-	-0.4	0.8
		(green)		-		-0.6	5.6		_	_	0.0	2.3
	No. 1	10	-	-	_	1.1	13.0		_	-	-1.0	0.1
		15	-		-	0.2	0.1		_	_	1.3	1.2
		20	_		-	4.9	-16.8	-	-	_	-1.4	3.2
		(green)	-		-	0.7	13.1	_	-	-	-0.7	-0.8
	No. 2	10		-	-	8.2	-16.7	-	_	_	-0.7	1.6
		15	_		-	9.1	-3.6		-	_	1.0	0.1
		20	-	-		3.3	-4.5		_	-	0.6	-0.2
		(green)		-	_	0.1	-4.6	_	-		0.1	4.1
2 by 8	\mathbf{SS}	10		-	-	0.2	6.1	_	_		-0.0	0.8
		15		-	_	-0.4	-1.1	_	-	-	0.5	-3.0
		20		_	_	8.0	-19.4	_		_	0.3	-1.2
		(green)		_	_	1.6	-6.6	_	-	_	0.9	-2.8
	No. 1	Ũ10 Í	_	_	*	1.2	-11.6			_	2.0	-3.7
		15		_	_	-4.4	-3.6	_	_		0.3	-1.3
		20	-	_	*	3.5	-9.7	_		-	1.4	-5.4
		(green)	_	-		-0.2	1.6	-		_	0.9	-1.1
	No. 2	10	_	-	_	5.2	-2.4	-	-	-	1.2	0.7
		15	_		-	4.8	4.8		_	_	2.4	-1.5
		20		_	*	6.5	-15.6	_	_	_	1.8	-3.4
		(green)	-	_	-	5.8	-10.8	-	*	-	2.7	-1.2

Table A10—Evaluation of fit of three-parameter Weibull distribution to ultimate tensile stress and tensile modulus of elasticity data"

^{*a*}Dasll (–), no reason to reject normality with p > 0.05.

* reason to reject normality with 0.01 .

^bNominal dimensions.

^cSS is Select Structural.

^dKS is Kolomogorov-Smirnov test; AD, Anderson-Darling test; CT, Shapiro-Wilk-type correlation test.

^ePercentage of difference = 100[(Weibull estimate – Nonparametric estimate)]/(Nonparametric estimate).

							Indi	cators	of fit			
				U	Itimat	e tensile st	ress		Ter	nsile r	nodulus of e	elasticity
		Moisture	G	oodnes fit tes	ss-of- st ^d	Differ estimate	rence in (percent) [¢]	ġ	Goodn of-fit	ess- test	Diffe estima	erence in te (percent)
Size ^b (in.)	Grade ^c	content group K	S	AD	СТ	Median	5th per- centile	KS	AD	СТ	Median	5th per- centile
2 by 4	SS	10	_	_	-	-2.1	13.8	_		_	-1.0	-11.9
-		15	**	* **	*	-2.5	2.6	_	-	_	0.8	-2.1
		20	_	*	_	-2.1	9.3	_	_		0.7	-4.5
		(green)	_	*	_	-0.5	5.1	_	_		1.0	-2.2
	No. 1	10	-	_		4.0	2.0	_	-	_	1.1	-8.9
		15	-	-	_	0.2	0.1	_	-	_	2.8	-6.8
		20	_	-	-	5.5	-19.0	-	-	_	1.3	-7.5
		(green)			-	2.3	6.0	_	-		0.6	-7.1
	No. 2	10	**	**	**	15.4	-41.8	*	**	*	3.4	-17.8
		15	**	**	*	16.1	-31.4	_	-		3.9	-15.9
		20	*	*	**	8.1	-23.1	_	-	-	3.8	-16.8
		(green)	-	-	-	2.8	-16.5	*	**	*	3.3	-10.9
2 by 8	SS	10	-			4.7	-11.7	*	*	-	1.8	-8.7
		15	*	**	*	3.7	-20.0	**	*	_	1.9	-11.7
		20	**	**	*	10.5	-29.9	*	**		1.9	-9.9
		(green)	*	_	*	4.9	-23.3	**	**	*	2.7	-11.8
	No. 1	10	**	* **	*	4.7	-33.1	**	**	-	3.4	-10.1
		15	**	**	*	0.5	-30.6	**	**	*	2.9	-17.6
		20	**	**	**	8.8	-40.7	**	**	**	3.8	-20.8
		(green)	**	: **	**	6.0	-26.8	**	*	*	3.2	-14.2
	No. 2	10	**	**	*	11.0	-29.7	**	**	**	4.9	-15.0
		15	**	**	**	10.5	-24.5	**	**	*	5.1	-13.8
		20	**	**	**	10.8	-34.9	**	**	**	4.9	-17.8
		(green)	*	**		7.8	-19.4	**	**	*	5.5	-13.7

Table A11—Evaluation	of fit of two-parameter	Weibull distribution	to ultimate	tensile stress
and tensile modulus of	elasticity data ^a			

^aDash (-), no reason to reject normality with p > 0.05. * reason to reject normality with 0.01 . $** reason to reject normality with <math>p \le 0.01$.

^bNominal dimensions.

^cSS is Select Structural. ^dKS is Kolomogorov–Smirnov test; AD, Anderson–Darling test; CT, Shapiro-Wilk-type correlation test. ^ePercentage of difference = 100[(Weibull estimate – Nonparametric estimate)]/(Nonparametric estimate).

Appendix B— Supplementary Figures

by 8 lumber at various moisture content levels.

Figure B2—Cumulative frequency distribution of tensile modulus of elasticity for nominal 2 by 4 and 2 by 8 lumber at various moisture content levels.

Figure B3—Effect of moisture content on ultimate tensile stress of nominal 2 by 4 and 2 by 8 lumber at various percentile levels.