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Abstract

Research Highlights

Extensive tables of goodness-of-fit critical vaues for the two- and three-parameter Weibull
distributions are developed through simulation for the Kolmogorov-Smirnov statistic, the
Anderson-Darling statistic, and Shapiro-Wilk-type correlation statistics. Approximating formulas
for the critical, values are derived and compared with values in the tables. Power studies using
several different distributional forms show that the Anderson-Darling statistic is the most
sensitive to lack of fit of atwo-parameter Weibull and correlation statistics of the Shapiro-Wilk
type the most sensitive to departures from a three-parameter Weibull.

Keywords: Goodness-of-fit statistics, Weibull distribution, lumber strength, modulus of elasticity

This paper presents the results of a study to develop and evaluate goodness-of-fit tests for the
two- and three-parameter Weibull distributions. The study was initiated because of discrepancies
in published critical values for two-parameter Weibull distribution goodness-of -fit tests, the lack
of any critical values for a Shapiro-Wilk-type correlation statistic, and the lack of genera
three-parameter Weibull distribution goodness-of-fit tests. The results of the study will be used
by Forest Products Laboratory (FPL) scientists to evaluate the goodness-of-fit of Weibull
distributions to experimental data. This will alow evaluation of distributional forms that may be
used in reliability-based design procedures.

Through computer simulation, extensive tables of critical values for three standard
goodness-of-fit statistics are developed for both the two- and three-parameter Weibull
distributions. The statistics used are the Kolmogorov-Smirnov D statistic, the Anderson-Darling
A? datistic, and a Shapiro-Wilk-type correlation statistic. The critical values for the statistics are
modeled through regression to provide equations to estimate the critical values. The equations
alow computer programs to evaluate the goodness-of-fit of data sets containing up to 400
observations. The abilities of the tests to detect poor fits (the “ power of the tests’) are studied
using both the equations and the exact critical values of the test statistics. Finally, invariance
properties of the statistics are proved. These invariance properties show that the scope of the
simulation is adequate for al problems that the tests might be applied to.

Four general conclusions are readily apparent from the results of this study:

1. Of the three statistics considered, the Anderson-Darling A? statistic appears to be the statistic
of choice for testing the goodness-of-fit of a two-parameter Weibull distribution to a set of
data. The choice might be different if censored data were used since the correlation statistic
has the potential advantage of being easily modified for type | and type Il censored
observations.

2. For testing the three-parameter Weibull goodness-of-fit, the correlation statisticsR 2, or R2
appear to be the best.

3. The critical value approximations appear to be very good for the range of sample sizes
considered.

4. The power of the tests is very dependent upon the true distributional form of the data.
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Two-parameter and three-parameter Weibull distributions are widely used to represent
the strength distribution of structural lumber and engineering-designed wood
subassemblies. As wood construction practices in the United States and Canada are
revised from deterministic to reliability-based design procedures, assessing the
goodness-of-fit of these Weibull distributional forms becomes increasingly important.
In its three-parameter form, the family is represented by the density function

SO = ab~ ! [(x - ¢)/bl7 lexp{—[(x — ¢)/bl%} (x>c a b>0) (1)

where a is the shape parameter, b the scale parameter, and c the location parameter.
The family of two-parameter Welbull distributions follows from Equation (1) when
c=0.

Goodness-of-fit tests for the two-parameter Weibull distributions have received
considerable attention. Mann and others (1973), Smith and Bain (1976), Stephens
(1977), Littell and others (1979), Chandra and others (1981), Tiku and Singh (1981),
and Wozniak and Warren (1984) have all discussed aspects of this problem. Mann and
others (1973) and Tiku and Singh (1981) proposed new statistics to test the
goodness-of-fit of two-parameter Weibull distributions. Smith and Bain (1976)
proposed a test satistic analogous to the Shapiro-Francis datistic for testing
normdity. The Smith and Bain T datistic was based on the sample correlation between
the order statistics of a sample and the expected value of the order statistics under the
assumption that the sample comes from a two-parameter Weibull distribution. For
complete samples and two levels of censoring, they provided critical values for samples



containing 8, 20, 40, 60, or 80 observations. Stephens (1977) produced tables of the
asymptotic critical values of the Anderson-Darling A? statistic and the Cramer-

von Mises W2 datistic for various significance levels. Littell and others (1979) compared
the Mann, Scheuer, and Fertig S satistic, the Smith and Bain T satistic, the modified
Kolmogorov-Smirnov D satistic, the modified Cramer-von Mises W2 statistic, and the
modified Anderson-Darling A? statistic through a series of power studies for sample
size n = 10 to 40. They aso caculated critical vaues for the D, W2, and A? statistics
for n = 10, 15, . . ., 40. Chandra and others (1981) calculated critical values for the
Kolmogorov-Smirnov D satistic for n = 10, 20, 50, and infinity for three situations.

The three-parameter Weibull distribution has received considerably less attention,
probably because the critical values depend upon the unknown shape parameter.
Woodruff and others (1983) produced tables of critical values for a modified
Kolmogorov-Smirnov test for a Weibull distribution with unknown location and scale
parameters and a known shape parameter. Their tables included n = 5 to 15, 20, 25,
and 30 for shape parameters of 0.5, 1.0, . . . , 4.0. Bush and others (1983) produced
similar tables for the Cramer-von Mises and Anderson-Darling statistics, together with
a relationship between the critica value and the inverse shape parameter. No
asymptotic results or Monte Carlo determinations for n > 30 appear in the literature.

Despite this extensive literature, we encountered difficulties when we studied the
goodness-of-fit of two- and three-parameter Weibull distributions to numerous data
sets consisting of 80 to 400 observations of various lumber strength properties. For the
three-parameter Weibull tests, critica vaues are not published for the sample sizes
involved, and it is not clear how estimated shape parameters would affect the critica
values derived by assuming a known shape parameter. For the two-parameter Weibull
tests, these difficulties included a lack of published critical vaues for sample sizes
larger than 50 and some apparent inconsistencies in published critical values. These
apparent inconsistencies can be seen in our Tables 1 and 2. In Table 1 the Chandra and
others (1981) and the Littell and others (1979) critica values for the Kolmogorov-
Smirnov D satistic show generally good agreement. (We scaled Littell’s values to
compare with Chandra’s by multiplying the test statistic critical value by nt/2))
However, Littell and others (1979) might have obtained a smoother set of values if they
had used a larger simulation. Some inconsistencies at the 0.01 level of significance are
also evident. Since Littell and others (1979) reported the means of 10 runs of 1,000
simulations and Chandra and others (1981) performed one run of 10,000, the latter
values might be expected to be smoother at the 0.01 level. Wozniak and Warren (1984)
caculated critica vaues for the Anderson-Darling statistic for the two-parameter
Weibull distribution when parameters are estimated by maximum likelihood. A
comparison of their results with those of Stephens (1977) and Littell (Table 2) shows
some variability in the second decimal of the critica values. For example, the Stephens
critical value at the 0.05 level for n = 40 is the same as the Wozniak and Warren
0.05-level vaue for n = 15. The Littell value for n = 15 is even larger than the
Wozniak value.

In this paper, we (1) develop extensive and definitive two-parameter Weibull
distribution goodness-of-fit critical values for the Shapiro-Wilk-type correlation
coefficient statistics, the Anderson-Darling A? statistic, and the Kolmogorov-Smirnov
D datistic, (2) develop and evaluate formulas to yield a smoothed estimate of the
critical values for the statistics, and (3) extend these three statistics for use as
goodness-of-fit dtatistics with a three-parameter Weibull distribution.



Shapiro-Wilk-Type
Correlation Statistic

Other
Goodness-of-Fit
Statistics

Studies such as the Monte-Carlo study of Shapiro and others (1968) have consistently
shown that for testing goodness-of-fit of normal distributions, the Shapiro-Wilk
dtatistic has superior power to other statistics in detecting that the data comes from a
wide range of other distributions. To develop a similar goodness-of-fit test for Weibull
distributions, we modify a simplified form of this statistic first suggested by Shapiro
and Francia (1972) but with approximate “scores’ suggested by Filliben (1975).

Let X1y, X2y, - - -, X(n) denote an ordered sample of size n from the population of
interest. Specificaly, for the two- and three-parameter Weibull distribution, we
consider the test statistic R2, where

n
L Xy - X)) my
Ry, e

172

{g:l Xi — X)? il (my,; — W)‘z]
and

my,; = {—In[l — (i — 0.3175) / (n + 0.365)]}}/@

is a median score, in the spirit of Filliben, except that these scores depend upon the
maximum likelihood estimate & of the Weibull shape parameter a. The corresponding
Q-Q plat of (X;y, m,, ;) should resemble a straight line if the underlying population is
Weibull. (A Q-Q plot is an abbreviated notation for a Quantile-Quantile probability
plot, where corresponding percentiles of one distribution are plotted against the
percentiles of the other, as discussed in Wilk and Gnanadesikan (1968).) The statistic
R? is the squared correlation coefficient of this plot. Note that the choice of m,;
follows the approximate scores suggested by Filliben (1975) and is dightly different
from that chosen by Smith and Bain (1976).

If a variable X has the two-parameter Weibull distribution, the variable Y = In X has
an extreme vaue distribution. Calculating goodness-of-fit on this scae has advantages.
Since the extreme vaue distributions are defined by location and scale parameters, the
critica values for the correlation statistic are not dependent on the true shape
parameter. Thus, for two-parameter Weibull distributions, we propose the
correlation-type statisticR 2, where

n
L (In Xy — InX) Inmy,;
Rye =~ i — @)
[E (In Xy — InX)2 ¥ (Inmy,; — Inm)?
i=1 ]

i=1

and

- 0.3175\]1@

{
Inmy; =Inj]{—-In{l -
! 1{ ( n+ 0.365 1 )

We include two other well-studied goodness-of-fit statistics for comparative purposes.
The modified Komogorov-Smirnov D dstatistic is given by
D = sup | F(x;b,a) — Fu(x) |

where F, (x) is the empirical distribution function of the sample and F(x;b,a) is the
fitted distribution.



Two-Parameter
Weibull
Distributions

The modified Anderson-Darling A? dtatistic is given by

f; Qi - 1) [1n Uy + In (1 - U(,,+1_,~))]
42 = — =1 —n
n

where Uy = F(X(j);b,a) and X;, is the ith-order statistic.

Unlike the RZ statistic, neither D nor A? is affected by the choice of scale. Thus, we
can use either X or In X in the calculations.

Simulation Results

The results of David and Johnson (1948) imply that the distributions of D and A2 do
not depend upon the values of b and a. Smilarly, the distribution of R 2, (does not
depend upon the values of b and a. These and some other invariance properties of the
datistics are shown in the Appendix. Therefore, without loss of generdity, the
distributions of D, A?, andR2 can be obtained assuming b = 1 and a = 3.6.

To calculate the critical values of the statistics, we used IMSL (1979) to generate a
fixed sample U1y, Uy, . . ., Uy of n order datistics from a uniform distribution.

Then we transformed to the Welbull order statistics,

X(,‘) =b [—ln (1 - U(I'))]l/a

where b = 1 and a = 3.6. The sample X1, X3, . . ., X(,) Was used to calculate
maximum likelihood estimates of b and a. Findly we calculated D, A2, and RZ for the
sample of size n. Vaues of n = 10, 1.5, . . ., 50; n = 60, 70, . . ., 100; n = 120,
140, . . ., 200; and n = 240, 280, . . . , 400 were used. Concern over the apparent

variability of results for the Anderson-Darling critical values led us to try severa
preliminary simulations with 1,000 to 10,000 replications. Results confirmed that the
type of variability seen in Table 2 could occur from one smulation to the next.
Because we were interested in smoothing out irregularities found in other tables, we
generated 50,000 values for each goodness-of-fit statistic. These 50,000 values were
ranked, and the 80th, 85th, 90th, 95th, and 99th percentiles were determined. The
values in Table 3 are the results of this smulation. For the Kolmogorov-Smirnov

D datistic, as in Chandra and others (1981), we again multiplied the critical value by
nl/2 By repeating the simulation with a different set of 50,000 replications for various
sample sizes, we determined that extending the simulation to 50,000 replications
reduces the variability in the Anderson-Darling A2 datistic critica values from the
second to the third decimal point. This is important for n > 50 because the critical
values become much closer together.

Critical Value Approximations

In an effort to smooth the critical values in Table 3 and simplify future use of the test
gtatistics, we modeled the critical vaues as functions of sample size. The modeling
resulted in the following separate equations for the criticad values of the
Kolmogorov-Smirnov D statistic at the 0.10, 0.05, and 0.01 levels of significance:



Do.10 = 0.82645983 — (0.199103/n!/2)
Do os = 0.89820336 — (0.221577/n!/2)
Dy o = 1.04550210 — (0.282595/n1/2)

These curves fit the tabled values reasonably well, as shown in Figure 1. We made no
attempt to force these curves to give the asymptotic values of Chandra and others
(1981). Those asymptotic vaues were estimated by an extrapolation procedure
described in their paper. Since the critica values in Table 3 are dightly above the
estimated asymptotic values for large samples, we decided to fit the data of Table 3
without forcing the curve through Chandra's estimate.

Stephens' (1977) modification of the asymptotic critical values of the Anderson-Darling
A? satistic for use with finite samples requires multiplying the value found by the test
statistic by (1 + 0.2/n"?). The resulting value can then be compared to the asymptotic
critical values shown in Table 2. Results of this procedure are plotted in Figure 2. Here
the critical values in Table 3 are converted and compared to the asymptotic vaues.
Figure 2 shows that the approximation is very good.

Modeling the critical values of the correlation statistic R 2, produces the following

we

separate equations for the 0.10, 0.05, and 0.01 levels of significance:

Rp 10 = 0.99550280 — (3.46422/n) + (61.17125245/n2) — (706.629/n3)
+ (3047.57446/n%)
Roos = 0.99373844 — (4.69737/n) + (91.36608058/n2) — (1093.48/n3)

+ (4804.52152/n%)

Rool = 0.98826584 — (8.82798/n) + (205.65876975/n2) — (2548.8/n%)
+ (11329.68065/n%).

These curves are plotted with the critica values in Figure 3.

Power Studies

To evauate our results, we conducted a power study of the three statistics, D, A% and
R?Z.,using four different distributions:

1. Uniform distribution on 0 to 1

2. Truncated normal with a mean of 1.4 and standard deviation of 0.35 (The
distribution is truncated so that no values less than 0.00001 are allowed.)

3. Lognorma distribution where In X has a mean of 1.6 and standard deviation of 0.4
4. Gamma distribution with shape parameter equal to 2 and scale parameter equal to 1
The procedure involved generating 5,000 pseudorandom samples of size n from each of

the four aternative distributions considered. We then caculated each of the three test
statistics and compared them to their critical values from Table 3 and the
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approximations to the critical values obtained from the equations for D, A% and RZ.
In each case, we counted the number of reections of the null hypothesis. We repeated
this procedure for sample sizes of n = 20, 50, 80, 100, and 200.

Results of the power study are presented in Tables 4 to 6, which show that the
Anderson-Darling A? statistic is generally superior to (that is, has a larger power than)
both the Kolmogorov-Smirnov D and the correlation R2 datistics for the alternatives
presented. Neither D nor R 2, appears to be very powerful across this group of
aternative distributions. One other feature illustrated in Tables 4 to 6 is the close
agreement in power between the actua critical values and the vaues from the
approximation formulas, which attests to the accuracy of the approximations.
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Simulation Results

Developing critical values for the three-parameter Weibull distribution goodness-of-fit
critical datistics is more difficult because they depend upon the unknown shape
parameter. Selecting the scale on which to perform the tests is aso a problem. In the
two-parameter case, using In X, instead of X; made the correlation statistic
independent of the shape parameter. In the three-parameter case, the choice of which
scale to use is not obvious. For the Kolmogorov-Smirnov D and the Anderson-Darling
A? datistics, the two scales produce the same results. Therefore, we investigated D, A?,
R2, and R?, using a = 2.0, 2.8, 3.6, 44, and 5.2. We chose b = 1.0 and ¢ = 2.0.
Invariance properties derived in the Appendix show that the critica values of the
dtatistics depend only upon the shape parameter.

To caculate the critica vaues of the datistics, IMSL (1979) routines were again used
to generate a fixed sample U, Uy, ..., Up of n order statistics from a uniform
distribution. Then we transformed to the Weibull order statistics,

X(,‘) = b[-In(1 — U(,’))]l/a + C

for the different combinations of a, b, and c. Maximum likelihood estimates of a, b,
and ¢ were calculated for the sample Xy, Xz, . . . , Xy, Finaly we calculated D,
A%, R2, and R2 for the sample of size n. Vaues of n = 20, 40, . . . , 200 were used.
Because of the increased computer time required to calculate the maximum likelihood
estimates for the three-parameter Weibull distribution compared with the
two-parameter case, it was possible to do only 10,000 replications. Thus, for each
sample size and choice of a, b, and c, 10,000 data sets were created and the
goodness-of-fit statistics evaluated. For each datistic, the 10,000 values were ranked
and the 80th, 85th, 90th, 95th and 99th percentiles were determined (Tables 4 to 10).

Again the results for the Kolmogorov-Smirnov statistic have been multiplied by nt’?,



Critical Value Approximations

We wanted to smooth the results and develop formulas that would approximate the
critical values. Because the critica values vary dightly for different shape parameters,
two models were tried for each statistic. One model ignores the differences in values
due to shape and just expresses the genera trend due to sample size. For this simple
model, we determined that for the Kolmogorov-Smirnov D datistic and the
Anderson-Darling A? statistic, the two-parameter models could be modified by
subtracting a constant from the two-parameter model for the critica vaue. For the
correlation statistics, producing an entirely new model was better. A second mode,
more complex, attempts to model the apparent quadratic nature of the effect of shape
on the critical values. This refinement was added to the simple model developed for
each of the three statistics. Thus, two models were created to predict the critical values
of the Kolmogorov-Smirnov, Anderson-Darling, and correlation (original and extreme
value scales) statistics.

Kolmogor ov-Smirnov Models —

1. Two-parameter model plus a shift

Ko 10 = 0.82645983 — (0.199103/n1/2) — 0.04699184
Koos = 0.89820336 — (0.221577/n1/2) — 0.05393332
Koo = 1.04550210 — (0.282595/n'/2) — 0.06876439

2. Two-parameter model plus a shift and an adjustment for the estimated shape
parameter values (labeled SHAPE in the formulas)

0.82645983 — (0.199103/n1/2) — 0.04699184
+ 0.05302253 — [0.025511(SHAPE)] + [0.002725911(SHAPE)(SHAPE)]

KSg.10

Il

KSgos = 0.89820336 — (0.221577/n1/2) — 0.05393332
+ 0.05968916 — [0.0285431(SHAPE)] + [0.00302431(SHAPE)(SHAPE)]

1.04550210 — (0.282595/n!/2) — 0.06876439
+ 0.0897581 — [0.0443486(SHAPE)] + [0.004908494(SHAPE)(SHAPE)]

KSg.01

It

Testing is done by multiplying the Kolmogorov-Smirnov D statistic by nt/2 and
comparing the result to the critical vaues from the formulas. We reject the hypothesis
that a three-parameter Weibull fits the data if n'/2(D) is larger than the critical value.

Anderson-Darling Models —

1. Two-parameter model plus a shift
ADg 19 = 0.637 — 0.08561220

ADgos = 0.757 — 0.10568530

ADgo; = 1.038 — 0.15088989



2. Two-parameter model plus a shift and an adjustment for shape

ADSq 10 = 0.637 — 0.08561220 + 0.11048439 — [0.0535362(SHAPE)]
+ [0.005775685(SHAPE)(SHAPE)}

ADSg s = 0.757 — 0.10568530 + 0.12038387 — [0.0575924(SHAPE)]
+ [0.006105963(SHAPE)(SHAPE)]

ADSgo; = 1.038 — 0.15088989 + 0.18351844 — [0.0880853(SHAPE)]
+ [0.009381216(SHAPE)(SHAPE)]

Testing is done by multiplying the Anderson-Darling A2 statistic by (1.0 + 0.2/n1/3
and comparing to the critical values from the formulas. We regject the hypothesis that a
three-parameter Weibull fits the data if A2(1 + 0.2/n*’?) is larger than the critical
value.

Correlation Models — Original Scale —

1. New models

RWq 1o = 0.99885011 — (1.45389/n) + (7.25250378/n2)
RWgos = 0.99877755 — (1.77495/n) + (8.67291150/n2)
RWqo; = 0.99910494 — (2.66292/n) + (12.86169089/n2)

2. New models plus an adjustment for shape

RWSq ;0 = 0.99885011 — (1.45389/n) + (7.25250378/n2) — 0.0154459

+ [0.008294643(SHAPE)] — [0.00101228(SHAPE)(SHAPE)]

RWSg o5 = 0.99877755 — (1.77495/n) + (8.67291150/n2) — 0.0215137
+ [0.01150321(SHAPE)] — [0.00139732(SHAPE)SHAPE)]

RWSg o1 = 0.99910494 — (2.66292/n) + (12.86169089/n%) — 0.0403293
+ [0.02112679(SHAPE)] — [0.00250893(SHAPE)}SHAPE)]

|

Testing is done by comparing R? calculated using Xy to the critical values from the
formulas. We reject the hypothesis that a three-parameter Weibull fits the data if RZis
less than the critical value.

Correlation Models-Extreme Value Scale —

1. New models

RWEq 1o = 0.99411418 — (1.81407/n) + (12.38547217/n2)
RWEq o5 = 0.99229032 — (2.24194/n) + (16.33414042/n2)
RWE( o = 0.98757887 — (3.37283/n) + (26.99680370/n2)
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2. New models plus an adjustment for shape

RWES ;o = 0.99411418 — (1.81407/n) + (12.38547217/n2) — 0.00705129
+ [0.003971786(SHAPE)] — [0.000508929(SHAPE)(SHAPE)]

RWES 05 = 0.99229032 — (2.24194/n) + (16.33414042/n2) — 0.00551925
+ [0.00348(SHAPE)] — [0.000492187(SHAPE)(SHAPE)]
RWESq o; = 0.98757887 — (3.37283/n) + (26.99680370/n%) + 0.001807429

+ [0.0006810714(SHAPE)] — [0.000299107(SHAPE}SHAPE)]

Testing is done by comparing R, calculated using In X;, to the critical values from the
formulas. We reject the hypothesis that a three-parameter Weibull fits the data if R?2, is
less than the critical value.

Power Studies

We compared the four statistics and their approximations for critica values in a power
study using two Weibull digtributions and two aternative distributions:

1. Weibull distribution witha = 2.8, b = 1.0, and ¢ 2.0

Il

2. Weibull distribution with @ = 4.4, b = 1.0, and ¢ = 2.0

3. Lognormal distribution where In X has a mean of 1.6 and standard deviation of 4,
and 2.0 added to each observation

4. Gamma distribution with shape equal to 2, and 2.0 added to each observation

We chose Weibull distributions for use in the three-parameter case to evaluate the
difference between the simple and complex models for critica values. This was not
necessary in the two-parameter case, because the satistics did not depend on the true
shape parameter.

The procedure involved generating 2,000 pseudorandom samples of size n from each of
the four distributions considered. We then calculated each of the four test statistics and
compared them with the critical values obtained from the models presented in the
previous section. In each case we counted the number of rgections of the null
hypothesis. This procedure was repeated for n = 20, 50, 80, 100, and 200.

Results of the power study are presented in Tables 11 to 13, which show that nothing
was gained by using the more complex critical value formulas. The approximation
models for critical values do produce the correct percentage of rejections for the two
Weibull distributions, indicating the adequacy of the models. For the non-Weibull
distributions, the correlation statisticsR2 :and R2, are the most powerful of the test

statistics. The Anderson-Darling A? datistic is dlightly more powerful than the
Kolmogorov-Smirnov D statistic.

Comparing the two-parameter results with the three-parameter results shows that for a
given sample size, the Anderson-Darling statistic is much more powerful in the
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two-parameter case than in the three-parameter case. Conversely, the correlation test is
more powerful in the three-parameter case than in the two-parameter case.
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Table 1 —-Two-parameter Weibull critical values for the Kolmogorov-Smirnov D statistic based on
maximum likelihood estimates

Critical values a various significance levels

Sample Littell and others (1979)a Chandra and others (1981)
sze 0.20 0.15 0.10 0.05 0.01 0.10 0.05 0.025 0.01
10 0.689 0.721 0.759 0.822 0.949 0.760 0.819 0.880 0.944
15 0.701 0.736 0.778 0.840 0.972 — — — -
20 0.707 0.738 0.783 0.854 0.984 0.779 0.843 0.907 0.973
25 0.710 0.745 0.785 0.850 0.975 — — - —
30 0.712 0.745 0.789 0.854 0.980 - — — —
35 0.716 0.745 0.793 0.864 1.023 — — — —
40 0.715 0.746 0.791 0.860 0.999 — — - -
50 — — — — — 0.790 0.856 0.922 0.988
oob - — — — — 0.803 0.874 0.939 1.007

aVdues multiplied by n’2 to convert to the scale of Chandra and others (1981)
bThese are theoretica asymptotic values given by Chandra and others (1981).

Table 2-Two-parameter Weibull critical values for the Anderson-Darling A2 statistic based on
maximum likelihood estimates

Critical vaues a various dgnificance levels

Sample Wozniak and Warren (1984) Stephens (1977) Littell and others (1979)
sze 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
10 0.614 0.724 0.966 0.599 0.712 0.976 0.616 0.730 0.988
15 0.618 0.734 0.984 0.606 0.720 0.987 0.622 0.740 0.994
20 0.623 0.740 1.005 0.610 0.725 0.994 0.625 0.744 1.012
25 0.626 0.745 1.021 0.612 0.728 0.998 0.625 0.745 1.019
30 0.629 0.747 1.025 0.615 0.730 1.001 0.626 0.741 1.007
35 0.625 0.745 1.026 0.616 0.732 1.004 0.626 0.739 1.026
40 0.628 0.748 1.030 0.617 0.734 1.006 0.627 0.739 1.001
50 0.635 0.753 1.034 0.619 0.736 1.009 — — —
cou — — — 0.637 0.757 1.038 — — —

aTheoreticd asymptotic values.
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Table 3-Two-parameter Weibull critical values for D, A?, and R?2,

Critical values a various significance levels

Sample

Sze Statistic 0.20 0.15 0.10 0.05 0.01
10 D 0.6894 0.7210 0.7637 0.8254 0.9477
A2 0.5032 0.5513 0.6171 0.7277 0.9876
RZ. 0.8924 0.8785 0.8589 0.8246 0.7462
15 D 0.6991 0.7308 0.7742 0.8393 0.9702
A2 0.5060 0.5538 0.6222 0.7372 1.0065
R2. 0.9148 0.9038 0.8875 0.8579 0.7826
20 D 0.7053 0.7379 0.7822 0.8488 0.9830
A2 0.5064 0.5557 0.6265 0.7433 1.0120
RZ 0.9287 0.9194 0.9055 0.8803 0.8133
25 D 0.7095 0.7440 0.7860 0.8545 0.9910
A2 0.5061 0.5550 0.6236 0.7458 1.0179
RZ 0.9381 0.9295 0.9175 0.8936 0.8296
30 D 0.7126 0.7460 0.7904 0.8599 0.9936
A2 0.5109 0.5602 0.6302 0.7489 1.0235
RZ. 0.9441 0.9363 0.9249 0.9035 0.8403
35 D 0.7147 0.7484 0.7922 0.8596 1.0051
2 0.5060 0.5552 0.6255 0.7448 1.0279
RZ. 0.9500 0.9431 0.9324 0.9133 0.8531
40 D 0.7191 0.7533 0.7982 0.8665 1.0062
A2 0.5111 0.5610 0.6320 0.7550 1.0362
R, 0.9538 0.9472 0.9374 0.9182 0.8609
45 D 0.7191 0.7520 0.7949 0.8647 1.0123
Az 0.5104 0.5608 0.6303 0.7495 1.0414
R, 0.9577 0.9518 0.9426 0.9244 0.8692
50 D 0.7212 0.7559 0.7997 0.8697 1.0097
A2 0.5117 0.5618 0.6336 0.7559 1.0405
RZ, 0.9604 0.9545 0.9456 0.9280 0.8766
60 D 0.7211 0.7560 0.8009 0.8706 1.0078
Az 0.5107 0.5606 0.6299 0.7506 1.0414
RZ. 0.9652 0.9600 0.9519 0.9367 0.8884
70 D 0.7262 0.7597 0.8049 0.8726 1.0124
Az 0.5133 0.5635 0.6350 0.7529 1.0384
R2Z, 0.9686 0.9639 0.9567 0.9426 0.8956
80 D 0.7263 0.7612 0.8050 0.8774 1.0179
A2 0.5124 0.5633 0.6343 0.7560 1.0404
RZ. 0.9711 0.9668 0.9602 0.9477 0.9067
90 D 0.7267 0.7618 0.8054 0.8756 1.0113
Az 0.5117 0.5622 0.6331 0.7571 1.0361
RZ. 0.9733 0.9694 0.9634 0.9508 0.9131
100 D 0.7250 0.7570 0.8010 0.8740 1.0170
A? 0.5071 0.5573 0.6269 0.7467 1.0309
RZ. 0.9756 0.9720 0.9662 0.9543 0.9169
120 D 0.7296 0.7635 0.8084 0.8785 1.0166
A2 0.5109 0.5626 0.6359 0.7575 1.0392
RZ. 0.9785 0.9752 0.9701 0.9596 0.9254
140 D 0.7312 0.7644 0.8093 0.8803 1.0164
A2 0.5120 0.5624 0.6323 0.7529 1.0416
RZ, 0.9806 0.9778 0.9733 0.9641 0.9356
160 D 0.7324 0.7665 0.8108 0.8816 1.0271
Az 0.5123 0.5636 0.6360 0.7580 1.0419
RZ. 0.9824 0.9797 0.9756 0.9669 0.9393
180 D 0.7312 0.7661 0.8117 0.8788 1.0250
A2 0.5106 0.5618 0.6328 0.7581 1.0320
RZ. 0.9839 0.9815 0.9777 0.9699 0.9448
200 D 0.7326 0.7665 0.8118 0.8796 1.0225
Az 0.5096 0.5587 0.6309 0.7550 1.0411
RZ, 0.9851 0.9829 0.9795 0.9722 0.9476




Table 3-Two-parameter Weibull critical values for D, A2, andR?, —con.

Sample Critica values a various significance levels
size Statistic 0.20 0.15 0.10 0.05 0.01
240 D 0.7343 0.7699 0.8149 0.8846 1.0256

A? 0.5112 0.5637 0.6364 0.7550 1.0408
R2. 0.9870 0.9851 0.9821 0.9754 0.9537
280 D 0.7346 0.7697 0.8132 0.8835 1.0257
A2 0.5111 0.5617 0.6316 0.7557 1.0380
RZ, 0.9885 0.9867 0.9841 0.9783 0.9593
320 D 0.7352 0.7692 0.8157 0.8819 1.0268
A2 0.5095 0.5624 0.6325 0.7545 1.0372
RZ, 0.9895 0.9879 0.9854 0.9803 0.9633
360 D 0.7381 0.7722 0.8159 0.8861 1.0322
Az 0.5131 0.5644 0.6341 0.7562 1.0479
RZ 0.9904 0.9889 0.9866 0.9819 0.9663
400 D 0.7380 0.7720 0.8180 0.8880 1.0280
A2 0.5127 0.5636 0.6338 0.7545 1.0469
RZ, 0.9912 0.9899 0.9878 0.9835 0.9694

Table 4-Simulated powers of two-parameter Weibull test statistics*-a = 0.10

Sample D A RS

Distribution size T F T F T F
Uniform 20 0.3480 0.3506 0.4932 0.5132 0.2944 0.2944
50 0.7006 0.7024 0.8968 0.9048 0.5214 0.5250
80 0.8780 0.8776 0.9864 0.9870 0.6988 0.7038
100 0.9444 0.9400 0.9970 0.9970 0.7966 0.7930
200 0.9992 0.9992 1.0000 1.0000 0.9832 0.9796
Truncated 20 0.1220 0.1250 0.1196 0.1340 0.1232 0.1232
normal 50 0.1358 0.1368 0.1484 0.1590 0.1432 0.1452
80 0.1524 0.1520 0.1816 0.1902 0.1650 0.1670
100 0.1670 0.1602 0.2098 0.2106 0.1620 0.1616
200 0.2308 0.2272 0.3182 0.3192 0.2104 0.1976
Lognormal 20 0.2562 0.2582 0.3130 0.3292 0.3036 0.3036
50 0.4970 0.4992 0.6656 0.6790 0.5796 0.5832
80 0.6898 0.6892 0.8560 0.8642 0.7814 0.7856
100 0.7868 0.7750 0.9312 0.9318 0.8820 0.8794
200 0.9720 0.9710 0.9976 0.9976 0.9970 0.9962
Gamma 20 0.1256 0.1274 0.1134 0.1248 0.1038 0.1038
50 0.139%4 0.1404 0.1472 0.1572 0.0928 0.0956
80 0.1618 0.1612 0.1962 0.2040 0.1150 0.1166
100 0.1814 0.1684 0.2250 0.2272 0.1092 0.1078

200 0.2642 0.2612 0.3468 0.3492 0.1690 0.1496

aValues from table (T) and formula (F).



Table 5-Simulated powers of two-parameter Weibull test statistics®-a = 0.05

Sample D A? R2.

Distribution sze T F T F
Uniform 20 0.2444 0.2462 0.3696 0.3886 0.1940 0.1936
50 0.5596 0.5642 0.8212 0.8350 0.3392 0.3472
80 0.7798 0.7822 0.9660 0.9720 0.4984 0.4936
100 0.8864 0.8800 0.9912 0.9914 0.5868 0.5888
200 0.9984 0.9978 1.0000 1.0000 0.9080 0.8830
Truncated 20 0.0610 0.0622 0.0590 0.0674 0.0612 0.0610
normal 50 0.0722 0.0734 0.0884 0.0958 0.0700 0.0718
80 0.0822 0.0838 0.1130 0.1214 0.0910 0.0894
100 0.0934 0.08%94 0.1290 0.1312 0.0928 0.0928
200 0.1442 0.1380 0.2132 0.2190 0.1228 0.1118
Lognormal 20 0.1518 0.1538 0.2164 0.2322 0.1754 0.1746
50 0.3608 0.3632 0.5464 0.5640 0.3694 0.3754
80 0.5466 0.5494 0.7796 0.7886 0.5998 0.5912
100 0.6608 0.6512 0.8794 0.8820 0.7194 0.7202
200 0.9360 0.9320 0.9960 0.9962 0.9806 0.9738
Gamma 20 0.0650 0.0654 0.0612 0.0668 0.0486 0.0482
50 0.0754 0.0760 0.0862 0.0940 0.0364 0.0384
80 0.0862 0.0874 0.1176 0.1262 0.0452 0.0442
100 0.0972 0.0934 0.1332 0.1364 0.0380 0.0386
200 0.1678 0.1590 0.2424 0.2492 0.0566 0.0466

aVaues from table (T) and formula (F)

Table 6-Simulated powers of two-parameter Weibull test statistics— a = 0.01

Sample D A? RZ.

Distribution size T F T F T F
Uniform 20 0.0900 0.1002 0.1672 0.1776 0.0620 0.0610
50 0.2976 0.3090 0.5930 0.6186 0.1052 0.1030
80 0.5384 0.5430 0.8708 0.8808 0.1562 0.1460
100 0.6798 0.6744 0.9538 0.9572 0.1820 0.1850
200 0.9748 0.9718 1.0000 1.0000 0.3906 0.3732
Truncated 20 0.0124 0.0150 0.0148 0.0162 0.0146 0.0138
normal 50 0.0164 0.0178 0.0238 0.0284 0.0212 0.0212
80 0.0230 0.0238 0.0334 0.0368 0.0276 0.0274
100 0.0234 0.0230 0.0462 0.0480 0.0322 0.0322
200 0.0460 0.0420 0.0862 0.0910 0.0426 0.0414
Lognormal 20 0.0484 0.0550 0.0884 0.0928 0.0416 0.0404
50 0.1594 0.1666 0.3252 0.3452 0.0544 0.0572
80 0.2950 0.2998 0.5824 0.6014 0.1292 0.1206
100 0.3952 0.3900 0.7154 0.7212 0.1726 0.1772
200 0.7862 0.7720 0.9778 0.9792 0.6340 0.6102
Gamma 20 0.0148 0.0164 0.0172 0.0188 0.0056 0.0054
50 0.0204 0.0218 0.0218 0.0250 0.0018 0.0018
80 0.0238 0.0248 0.0344 0.0392 0.0032 0.0030
100 0.0276 0.0270 0.0424 0.0460 0.0026 0.0026
200 0.0508 0.0478 0.0908 0.0992 0.0024 0.0022

aValues from table (T) and formula (F).



Table 7-Three-parameter Weibull critical values for the Kolmogorov-Smirnov

D datistic
Sample Critical values a various significance levels
sze Shape 0.20 0.15 0.10 0.05 0.01
20 2.0 0.6619 0.6909 0.7281 0.7844 0.8949
2.8 0.6507 0.6798 0.7182 0.7723 0.8998
3.6 0.6516 0.6807 0.7169 0.7764 0.8908
4.4 0.6538 0.6816 0.7191 0.7755 0.8882
5.2 0.6552 0.6856 0.7222 0.7799 0.9083
40 2.0 0.6925 0.7242 0.7640 0.8228 0.9645
2.8 0.6774 0.7084 0.7457 0.8083 0.9284
3.6 0.6691 0.6989 0.7419 0.8001 0.9234
4.4 0.6704 0.7014 0.7425 0.7982 0.9228
5.2 0.6723 0.7039 0.7444 0.8020 0.9215
60 2.0 0.6917 0.7242 0.7653 0.8288 0.9528
2.8 0.6832 0.7150 0.7591 0.8234 0.9466
3.6 0.6770 0.7088 0.7514 0.8149 0.9512
4.4 0.6754 0.7049 0.7444 0.8040 0.9295
5.2 0.6747 0.7057 0.7444 0.8102 0.9233
80 2.0 0.6968 0.7290 0.7683 0.8336 0.9776
2.8 0.6905 0.7227 0.7585 0.8238 0.9472
3.6 0.6842 0.7129 0.7495 0.8139 0.9347
4.4 0.6816 0.7120 0.7504 0.8095 0.9239
5.2 0.6798 0.7129 0.7522 0.8130 0.9374
100 2.0 0.7010 0.7320 0.7730 0.8380 0.9630
2.8 0.6940 0.7250 0.7660 0.8300 0.9530
3.6 0.6870 0.7180 0.7570 0.8180 0.9450
4.4 0.6870 0.7160 0.7560 0.8170 0.9320
5.2 0.6860 0.7170 0.7540 0.8170 0.9430
120 2.0 0.7055 0.7339 0.7778 0.8413 0.9760
2.8 0.6956 0.7285 0.7690 0.8358 0.9552
3.6 0.6923 0.7219 0.7624 0.8238 0.9508
4.4 0.6847 0.7164 0.7548 0.8128 0.9355
5.2 0.6868 0.7164 0.7580 0.8216 0.9508
140 2.0 0.7076 0.7371 0.7797 0.8484 0.9809
2.8 0.6969 0.7265 0.7655 0.8306 0.9525
3.6 0.6898 0.7218 0.7620 0.8235 0.9407
4.4 0.6910 0.7206 0.7584 0.8212 0.9347
5.2 0.6863 0.7158 0.7549 0.8152 0.9383
160 2.0 0.7096 0.7425 0.7842 0.8513 0.9854
2.8 0.6982 0.7286 0.7678 0.8310 0.9651
3.6 0.6944 0.7248 0.7627 0.8285 0.9550
4.4 0.6919 0.7197 0.7589 0.8273 0.9537
5.2 0.6868 0.7185 0.7564 0.8184 0.9449
180 2.0 0.7084 0.7406 0.7795 0.8439 0.9501
2.8 0.7003 0.7299 0.7728 0.8345 0.9606
3.6 0.6950 0.7258 0.7661 0.8278 0.9526
4.4 0.6936 0.7245 0.7661 0.8305 0.9552
5.2 0.6923 0.7205 0.7594 0.8211 0.9485
200 2.0 0.7085 0.7410 0.7835 0.8499 0.9786
2.8 0.6986 0.7311 0.7722 0.8358 0.9617
3.6 0.6958 0.7269 0.7651 0.8287 0.9645
4.4 0.6901 0.7212 0.7637 0.8273 0.9631
5.2 0.6901 0.7227 0.7623 0.8245 0.9532
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Table 8-Three-parameter Weibull critical values for the Anderson-Darling

A? datistic
Sample Critical values a various significance levels
sze Shape 0.20 0.15 0.10 0.05 0.01
20 2.0 0.4296 0.4677 0.5191 0.6044 0.7977
2.8 0.4190 0.4539 0.5016 0.5825 0.7828
3.6 0.4183 0.4536 0.5038 0.5892 0.8000
4.4 0.4164 0.4541 0.5092 0.5978 0.7909
5.2 0.4202 0.4592 0.5106 0.5946 0.7939
40 2.0 0.4587 0.5022 0.5640 0.6646 0.9112
2.8 0.4343 0.4735 0.5319 0.6295 0.8476
3.6 0.4236 0.4661 0.5196 0.6226 0.8527
4.4 0.4239 0.4637 0.5237 0.6159 0.8402
5.2 0.4296 0.4693 0.5283 0.6252 0.8361
60 2.0 0.4579 0.5011 0.5592 0.6588 0.9152
2.8 0.4417 0.4824 0.5434 0.6445 0.8628
3.6 0.4343 0.4760 0.5278 0.6295 0.8682
4.4 0.4273 0.4657 0.5154 0.6106 0.8505
5.2 0.4250 0.4654 0.5260 0.6226 0.8471
80 2.0 0.4588 0.5031 0.5654 0.6636 0.9168
2.8 0.4414 0.4810 0.5430 0.6370 0.8801
3.6 0.4330 0.4739 0.5283 0.6319 0.8665
4.4 0.4311 0.4700 0.5237 0.6196 0.8295
5.2 0.4295 0.4715 0.5295 0.6274 0.8535
100 2.0 0.4653 0.5082 0.5742 0.6760 0.9271
2.8 0.4500 0.4918 0.5515 0.6486 0.8832
3.6 0.4363 0.4787 0.5377 0.6326 0.8664
4.4 0.4290 0.4697 0.5300 0.6243 0.8463
5.2 0.4304 0.4716 0.5290 0.6185 0.8445
120 2.0 0.4678 0.5109 0.5750 0.6770 0.9133
2.8 0.4499 0.4923 0.5490 0.6512 0.8759
3.6 0.4404 0.4835 0.5431 0.6422 0.8627
4.4 0.4293 0.4708 0.5269 0.6253 0.8420
5.2 0.4325 0.4740 0.5327 0.6337 0.8664
140 2.0 0.4686 0.5136 0.5754 0.6790 0.9357
2.8 0.4471 0.4886 0.5487 0.6540 0.8770
3.6 0.4440 0.4868 0.5425 0.6399 0.8685
4.4 0.4345 0.4730 0.5320 0.6243 0.8384
5.2 0.4294 0.4707 0.5237 0.6193 0.8427
160 2.0 0.4674 0.5156 0.5824 0.6912 0.9610
2.8 0.4525 0.4948 0.5512 0.6503 0.8754
3.6 0.4414 0.4829 0.5395 0.6419 0.8740
4.4 0.4385 0.4766 0.5314 0.6355 0.8728
5.2 0.4321 0.4726 0.5302 0.6272 0.8457
180 2.0 0.4663 0.5098 0.5760 0.6821 0.9390
2.8 0.4522 0.4927 0.5533 0.6541 0.8750
3.6 0.4435 0.4856 0.5408 0.6403 0.8891
4.4 0.4439 0.4881 0.5482 0.6512 0.9052
5.2 0.4332 0.4693 0.5299 0.6320 0.8587
200 2.0 0.4668 0.5115 0.5706 0.6742 0.9376
2.8 0.4537 0.5019 0.5613 0.6664 0.9276
3.6 0.4431 0.4844 0.5414 0.6359 0.8772
4.4 0.4359 0.4774 0.5360 0.6293 0.8506
5.2 0.4321 0.4722 0.5318 0.6280 0.8706
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Table 9-Three-parameter Weibull critical values for the correlation test

R dtatistic
Sample Critical values a various significance levels
size Shave 0.20 0.15 0.10 0.05 0.01
20 2.0 0.9527 0.9471 0.9395 0.9252 0.8873
2.8 0.9571 0.9522 0.9457 0.9334 0.8993
3.6 0.9574 0.9527 0.9459 0.9336 0.9029
4.4 0.9565 0.9520 0.9456 0.9340 0.9016
5.2 0.9565 0.9519 0.9447 0.9323 0.8996
40 2.0 0.9707 0.9672 0.9622 0.9527 0.9250
2.8 0.9744 0.9715 0.9674 0.9606 0.9414
3.6 0.9755 0.9728 0.9693 0.9628 0.9448
4.4 0.9753 0.9726 0.9689 0.9625 0.9456
5.2 0.9747 0.9715 0.9675 0.9609 0.9448
60 2.0 0.9790 0.9765 0.9729 0.9659 0.9479
2.8 0.9818 0.9797 0.9767 0.9717 0.9585
3.6 0.9825 0.9808 0.9782 0.9739 0.9618
4.4 0.9825 0.9808 0.9784 0.9741 0.9639
5.2 0.9819 0.9800 0.9773 0.9725 0.9607
80 2.0 0.9832 0.9812 0.9783 0.9728 0.9581
2.8 0.9858 0.9843 0.9821 0.9784 0.9693
3.6 0.9864 0.9849 0.9832 0.9798 0.9708
4.4 0.9863 0.9848 0.9829 0.9796 0.9720
5.2 0.9858 0.9843 0.9823 0.9787 0.9702
100 2.0 0.9859 0.9843 0.9820 0.9778 0.9654
2.8 0.9881 0.9869 0.9853 0.9821 0.9729
3.6 0.9887 0.9875 0.9860 0.9832 0.9769
4.4 0.9887 0.9876 0.9860 0.9835 0.9767
5.2 0.9884 0.9872 0.9856 0.9827 0.9761
120 2.0 0.9879 0.9865 0.9844 0.9809 0.9704
2.8 0.9900 0.9889 0.9875 0.9847 0.9778
3.6 0.9903 0.9894 0.9881 0.9858 0.9803
4.4 0.9904 0.9894 0.9881 0.9858 0.9811
5.2 0.9899 0.9889% 0.9876 0.9851 0.9795
140 2.0 0.9893 0.9881 0.9863 0.9830 0.9727
2.8 0.9913 0.9903 0.9891 0.9869 0.9809
3.6 0.9916 0.9907 0.9896 0.9877 0.9829
4.4 0.9916 0.9908 0.9897 0.9878 0.9837
5.2 0.9913 0.9905 0.9895 0.9875 0.9827
160 2.0 0.9904 0.9893 0.9877 0.9849 0.9769
2.8 0.9922 0.9914 0.9902 0.9881 0.9830
3.6 0.9925 0.9918 0.9909 0.9892 0.9851
4.4 0.9925 0.9918 0.9909 0.9892 0.9848
5.2 0.9922 0.9915 0.9905 0.9887 0.9847
180 2.0 0.9915 0.9905 0.9890 0.9866 0.9797
2.8 0.9929 0.9922 0.9912 0.9894 0.9849
3.6 0.9933 0.9927 0.9918 0.9903 0.9868
4.4 0.9932 0.9925 0.9916 0.9901 0.9859
5.2 0.9931 0.9924 0.9915 0.9899 0.9863
200 2.0 0.9921 0.9913 0.9900 0.9877 0.9810
2.8 0.9936 0.9929 0.9919 0.9901 0.9861
3.6 0.9939 0.9933 0.9926 0.9912 0.9881
4.4 0.9939 0.9934 0.9925 0.9912 0.9880
5.2 0.9937 0.9931 0.9923 0.9907 0.9877
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Table 10-Three-parameter Weibull critical values for the correlation test

RZ atistic
Sample Critica values a various significance levels
size Shape 0.20 0.15 0.10 0.05 0.01
20 2.0 0.9407 0.9351 0.9271 0.9134 0.8817
2.8 0.9475 0.9423 0.9347 0.923] 0.8902
3.6 0.9497 0.9446 0.9373 0.9240 0.8912
4.4 0.9492 0.9437 0.9361 0.9219 0.8839
5.2 0.9501 0.9448 0.9363 0.9222 0.8842
40 2.0 0.9633 0.9595 0.9538 0.9444 0.9205
2.8 0.9667 0.9629 0.9572 0.9474 0.9239
3.6 0.9678 0.9639 0.9588 0.9493 0.9223
44 0.9676 0.9637 0.9581 0.9480 0.9204
5.2 0.9669 0.9629 0.9570 0.9469 0.9201
60 2.0 0.9726 0.9699 0.9661 0.9595 0.9404
2.8 0.9746 0.9716 0.9670 0.9582 0.9381
3.6 0.9754 0.9724 0.9681 0.9605 0.9383
4.4 0.9757 0.9728 0.9682 0.9598 0.9383
5.2 0.9747 0.9716 0.9670 0.9581 0.9364
80 2.0 0.9779 0.9756 0.9724 0.9662 0.9517
2.8 0.9791 0.9768 0.9733 0.9668 0.9519
3.6 0.9795 0.9771 0.9733 0.9666 0.9498
4.4 0.979%4 0.9767 0.9731 0.9662 0.9462
5.2 0.9793 0.9767 0.9725 0.9651 0.9462
100 2.0 0.9813 0.9792 0.9765 0.9715 0.9584
2.8 0.9821 0.9801 0.9771 0.9714 0.9562
3.6 0.9827 0.9807 0.9775 0.9719 0.9547
4.4 0.9825 0.9803 0.9774 0.9711 0.9550
5.2 0.9822 0.9800 0.9765 0.9703 0.9526
120 2.0 0.9836 0.9819 0.9793 0.9747 0.9634
2.8 0.9844 0.9826 0.9799 0.9753 0.9631
3.6 0.9844 0.9825 0.9797 0.9739 0.9602
4.4 0.9844 0.9825 0.9796 0.9744 0.9598
5.2 0.9842 0.9821 0.9791 0.9735 0.9567
140 2.0 0.9853 0.9838 0.9816 0.9777 0.9684
2.8 0.9863 0.9846 0.9820 0.9782 0.9664
3.6 0.9860 0.9842 0.9814 0.9768 0.9635
4.4 0.9862 0.9844 0.9817 0.9767 0.9628
5.2 0.9861 0.9843 0.9815 0.9763 0.9630
160 2.0 0.9867 0.9852 0.9832 0.9795 0.9704
2.8 0.9873 0.9859 0.9837 0.9794 0.9698
3.6 0.9874 0.9858 0.9835 0.9789 0.9680
4.4 0.9873 0.9856 0.9831 0.9782 0.9667
5.2 0.9871 0.9856 0.9829 0.9780 0.9650
180 2.0 0.9879 0.9867 0.9849 0.9815 0.9731
2.8 0.9883 0.9869 0.9849 0.9815 0.9725
3.6 0.9883 0.9868 0.9849 0.9806 0.9697
4.4 0.9880 0.9864 0.9842 0.9797 0.9674
5.2 0.9884 0.9868 0.9845 0.9801 0.9681
200 2.0 0.9891 0.9880 0.9864 0.9831 0.9756
2.8 0.9892 0.9879 0.9858 0.9822 0.9730
3.6 0.9893 0.9878 0.9858 0.9822 0.9731
4.4 0.9893 0.9879 0.9859 0.9818 0.9704
5.2 0.9891 0.9876 0.9854 0.9813 0.9695
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Table 11 — Simulated powers of three-parameter Weibull test statistics —a = 0.10

Simple D AZ RS Ry
Distribution Sze S C S C S C S C
Weibull 20 0.1135  0.0965 0.0925 0.0745  0.1200 0.0950  0.1325  0.1220
(¢ = 2.8) 50 0.1055  0.0980 0.0945 0.0865 0.0820 0.0765 0.0965  0.0935
80 0.1065  0.1030  0.1090 0.1010 0.0940 0.0835 0.1015  0.1000
100 0.1095  0.1040 0.1035 0.0955 0.0880 0.0755 0.1045  0.1035
200 0.1095  0.1050  0.1125 0.1080  0.0910  0.0745  0.0790  0.0780
Weibull 20 0.1000  0.0710 0.0960  0.0650 0.1080 0.0675 0.1115  0.0835
50 0.0840  0.0750 0.0795 0.0740 0.0675 0.0580 0.0860  0.0810
80 0.0960  0.0940 0.0875 0.0860 0.0760 0.0795  0.1005  0.0960
100 0.0960  0.0975  0.0790 0.0810 0.0680  0.0730  0.0960  0.0985
200 0.1010  0.1085 0.0915 0.1005 0.0640 0.1195 0.1010  0.1060
Lognormal 20 0.1480  0.1245 0.1000  0.0805  0.2420  0.1985  0.4550  0.4400
50 0.1880  0.1720  0.2265 0.1985  0.3790 0.3025 0.4350  0.4015
80 0.2425  0.2165  0.3250  0.2935  0.4995  0.4020  0.5530  0.5095
100 0.2875  0.2590  0.3975  0.3595  0.5850 0.4760  0.6235  0.5725
200 0.5135  0.4895  0.6750  0.6435  0.7975  0.6555 0.7855  0.7305
Gamma 20 0.1745  0.1395  0.0980  0.0735  0.2560 0.2150  0.6030  0.5895
50 0.1465  0.1155 0.1650  0.1230  0.3320 0.2420  0.4650  0.4075
80 0.1640  0.1285 0.1825  (0.1395 0.3865 0.2585 0.4635  0.3970
100 0.1515  0.1255 0.1800  0.1410 0.4065 0.2470 0.4580  0.3645
200 0.2080  0.1805 0.2580 0.2210  0.5425 0.2760  0.4675  0.3410
aVaues from smple (S) or complex (C) formula
Table 12 — Simulated powers of three-parameter Weibull test statisticsa —a =0.05
Simple D A2 RS, R
Distribution sze S C S C S C S C
Weibull 20 0.0660 0.0495  0.0500 0.0365 0.0680 0.0510 0.0830 0.0775
(a = 2.8) 50 0.0555  0.0515  0.0470  0.0455 0.0460 0.0370  0.0440  0.0435
80 0.0530  0.0500  0.0590 0.0545 0.0470 0.0435  0.0590  0.0595
100 0.0535  0.0500  0.0520  0.0480  0.0425 0.0365 0.0500 0.0515
200 0.0500  0.0470  0.0535 0.0495 0.0450  0.0340  0.0390  0.0405
Weibull 20 0.0540  0.0345 0.0550  0.0355 0.0575 0.0380 0.0620  0.0485
(@ = 4.9) 50 0.0455  0.0405 0.0400 0.0370  0.0295 0.0260  0.0395  0.0385
80 0.0465  0.0460  0.0425 0.0395  0.0325 0.0355 0.0490  0.0480
100 0.0475  0.0490 0.0425  0.0395 0.0310 0.0360 0.0570  0.0560
200 0.0525  0.0555 0.0425  0.0465 0.0260  0.0585  0.0490  0.0490
Lognormal 20 0.0900  0.0705  0.0595 0.0490 0.1620 0.1275  0.3805 0.3775
50 0.1175  0.0985  0.1535  0.1325  0.2865 0.2205 0.2975  0.2840
80 0.1570  0.1410  0.2360  G.2065  0.4080  0.3050 0.4175  0.3945
100 0.2000  0.1765 0.3040 0.2740 0.5025 0.3720 0.4855  0.4660
200 0.4080  0.3805  0.5940  0.5680 0.7395  0.5525 0.6710  0.6440
Gamma 20 0.1045  0.0750  0.0570  0.0435 0.1765 0.1295  0.5325  0.5265
50 0.0745  0.0585 0.0915 0.0705 0.2480  0.1530  0.3130  0.2800
80 0.0870  0.0590 0.1070  0.0795  0.2985 0.1625 0.3025 0.2585
100 0.0870  0.0645 0.1095 0.0835 0.3165 0.1705 0.2780  0.2335
200 0.1285 0.1040 0.1740  0.1430 0.4275 0.1865 0.2815  0.2260

aValues from simple (S) or complex (C) formula
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Table 13-Simulated powers of three-parameter Weibull test statistics# —a =0.01

Simple R

Distribution size S C S C S C S C
Weibull 20 0.0160 0.0110  0.0115  0.0075 0.0190 0.0160 0.0280 0.0285
(@ = 2.8) 50 0.0080 0.0070 0.0110 0.0085 0.0080 0.0040 0.0065 0.0065
80 0.0120  0.0120 0.0110 0.0095 0.0095 0.0070 0.0110 0.0125
100 0.0080  0.0060 0.0080 0.0070 0.0075  0.0045  0.0090  0.0090
200 0.0070  0.0065 0.0085 0.0075 0.0075 0.0040 0.0065 0.0085
Weibull 20 0.0170  0.0110  0.0130 0.0090 0.0190 0.0150 0.0180 0.0165
(a = 4.4) 50 0.0080  0.0055 0.0065 0.0050 0.0050 0.0050 0.0060 0.0060
80 0.0110  0.0115  0.0085 0.0090 0.0035 0.0055 0.0145 0.0120
100 0.0075  0.0075  0.0090 0.0090 0.0060 0.0070 0.0185  0.0165
200 0.0085 0.0100 0.0105 0.0110 0.0050 0.0165 0.0085 0.0080
Lognormal 20 0.0300 0.0210 0.0200 0.0145 0.0645 0.0415 0.2815 0.2860
50 0.0330  0.0250 0.0620 0.0490 0.1610 0.1035 0.1205 0.1265
80 0.0590  0.0460 0.1105 0.0865 0.2540 0.1470  0.1750  0.1895
100 0.0705 0.0525 0.1500 0.1270  0.3315 0.1895 0.2185  0.2505
200 0.2105  0.1815 0.4170  0.3795 0.5960  0.3370  0.4040  0.4590
Gamma 20 0.0270  0.0160 0.0185 0.0130 0.0680 0.0410 0.3960  0.4055
50 0.0210 0.0145 0.0270  0.0170  0.1085 0.0550 0.1135 0.1230
80 0.0165 0.0110 0.0285 0.0150 0.1460  0.0615  0.0740  0.0845
100 0.0200 0.0135 0.0350 0.0220 0.1720 0.0655 0.0635  0.078S
200 0.0415 0.0275 0.0705 0.0490 0.2795 0.0715 0.0575  0.0860

aVaues from smple (S) or complex (C) formula



Appendix —
Some Invariance
Properties of
the Statistics

In this Appendix, we verify a number of invariance considerations that pertain to this
study. We present results related to the scale choice, null distributions, and power.

Invariance of D and A? Under a Change to the Log Scale

Two-Parameter Case- In the two-parameter case, the estimate of the population
distribution function is

F(x; b, a) = 1 — exp[— (x/B)?]

where b .and ¢ are the maximum likelihood estimates of the scale and shape
parameters, respectively. Under a change to the log scale, the estimate becomes

Pln X < y|a b) = Fy x (0) = 1 — exp[—el~In 0)/(1/)]
That is, the uniform variables are estimated using
Fiox(nx|a by =1 — exp[—enx—1n5)/(1/2)] = | — exp[— el n(x/b))
= 1 — exp[—(x/b)?] = F(x; b, @) (A.1)

The estimated uniform variables are the same whichever scae is used. Equation (A. 1)
holds even if the underlying population is not Weibull.

A similar concluson holds under any given monotonic transformation.

Three-Parameter Case-In the three-parameter case, the estimate of the uniform
variables takes the form

F(;a, b, ¢) = 1 = exp{~[(x — ¢)/b]?}
On the log scae, we estimate
Finge &) 5@, b, ¢) = 1 — exp[—el=tn D/W/D))
Consequently,
Fiox o Infx = ¢);a, b, ¢] = 1 — exp[—ellnx—c)—In 1/(1/a)
= 1 — exp[— e Inlx— ¢)/b]]
=1 — exp[—(x — ¢)/b)] = F(x; a, b, ¢) (A.2)
The estimated uniform variables are the same whichever scale is used. Because the

uniform variables have the same vaues, A2 and D are the same under both the origina
and log scales.
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Invariance When the Underlying Distribution Is Weibull

Two-Parameter Case — On the log scale

log X; — log b

i=12, ...,n) (A3

1/a )
is distributed free of the location parameter log b and scale parameter a-1 (David and
Johnson 1948; Lawless 1982, p. 147). From Equation (A.l) the distribution of
estimated uniform observations does not depend on a and b, and hence the & and D
statistics do not depend on a and b.

The result in Equation (A.3) depends on a property of the maximum likelihood
estimator (see Lawless (1982), p. 147) that

1/a(ag log X{ + by, aglog X2 + by, ..., aglog X, + by)
= ap/a (log Xy, log X5, ..., log X))
log bag log X; + by, aglog X5 + by, ..., aplog X, + bg)
= ag log b (log Xy, log X5, ..., log X,) + log by (A.4)

That is, if X is transformed to b, X2o, the maximum likelihood estimates of location
and scae for the extreme value distribution obey Equation (A.4).

The R, statistic, on the log scale, has a distribution that is free of the parameters since

10g X(,') - log X B [I[lOg(X(,')/b) — 10g (X/b)] (A.5)

\/';l (log X(; — log X)? a\/ ;1 [log (X(»/b) — log (X/b))]?

is a function of the standard exponentia variables Z; = (X(i)/b)a and R, is the
correlation of these variables with the scores log m,,; where the 1& factor can be
ignored in the calculation of correlation.

Three-Parameter Case-For the three-parameter case, Lemon (1975) gives the pivotal
functions

- D _ babe ~ Cape — ¢ D ¢a10
dabc = dq10 = baio = = =
b babc baIO

v

where the equality in distribution is for the values of (ab,c) indicated in the subscript.
In other words, these quantities depend only on the underlying population shape
parameter. Because

Xi—-¢ (Xi-0/b (c- 0

b b/b b

(A.6)



where the distribution of each term depends only on a the estimated uniform variables
in Equation (A.2) and hence the distributions of A? and D depend only on a, not the
other parameters.

In the case of the R,, dtatistic, on the origina scale,

X(l) - 3_( (X,' — C)/b - (/—\; — C)/b

n . n .
\/ L (X - %2 \/ L (X - /b = (X = o/b)?
= =
which is a function of the standard Weibull with parameters a;o. Since R, is the
correlation of these variables with the scores m,, ; and the scores only depend on &, and
hence a, the digtribution of R, depends only on a

For the log scale,

log(X — &) — log(X — &) log[ Xy — &)/b) — logl(X — &)/b]

(A.7)

\/ ,;l llog(X() ~ ©) — log(X — )2 \/ .g {log[X(y — &)/b] — logl(X — &)/b]}?
Similar to Equation (A.6),
log[(X(; — ¢)/b] = log[(Xy) — o)/b + (b/b)(c — ¢)/b]

has a digtribution that depends only on a Since R, is the correlation of the variables
(A.7) with the scores In m,; , its distribution aso depends only on a

Invariance and Power
Because of the properties (Eg. (A.4)) of the maximum likelihood estimators, the power

calculations pertain to a wider class of aternatives than is immediately apparent.

Two-Parameter Case — Let X be distributed as Gg(x) and let Y = by X%0 . Thenlog Y; =
a, log X + log by. On the log scale, R, . is a correlation and hence it has the same
vaue whether calculated in terms of the log Y; or the log X;.

Further,

g Y — log B(y) log X; — log 5()()
1/7a(y) 1/a(x)

(A.

by the properties in Equation (A.4). Consequently, the estimated uniform variables are
the same on both scales, so A2 and D do not depend on the scale.

Thus, the power of each of the three tests remains the same for any lognormal
distribution. Also, the powers for the uniform (0O, 1) aternative hold for the uniform

0, 8, 6 > 0 and, more generaly, for

G(x|6) = (x/0)w (0<x<0)
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The basic relations between the maximum likelihood estimators on the two scales can

be shown directly. Let Y = p,x%, Then

Lo | a b) = InI %(yi)a_lexp[—(yi)a]

n b, lﬂo a— b IHO\a
- IG5 el -]

i=1 b
1@ i Qg — ay Xi aya
1 b((b/bo)l/ao) exv) ((b/bowao‘) ]
¢ a X TR X a1 Lo
- ,Ile b1/00b07 1/a, ( bo )( (b/bo)l/ao) exp[— (W
1 1-a,
= ( H Xi) - LIX | aag, (b/bg)%
=1 by aq

Consequently, the maximum likelihood estimates based on x and y (or equivaently on

Iny) satisfy

a(x) = aa,  bx) = (b)/by)Va

Because of this relation the estimated uniform variables are also equal.

bob4(x)

Yiy~ _ boxfo ax)/ay ¢ Xi aw) o
G50 = )l =

Three-Parameter Case-Although there is a wider invariance class, we note that the

power for the three-parameter case is the same for any scale change. Let X be

distributed as Gy(x) and let Y = by X + c;. On the originad scae, R,, is a corrdation

and so its value is unchanged. The scores involving a are the same on both scales.

More generaly, the maximum likelihood estimates are related as follows:

n Vi—Ci 4 u
Lpla b o= 11 3= Lo~ [0,- )/b]
i=1
nogr boxi + co — ¢\ g .
— _ — b —c)/

= by~ " Lx I a, b/bo, (¢ — cp)/by)

Consequently, if a(y), b(y), ¢(y) maximize L(y | a, b, c), then

a(x) = a(), b)) = b)/by,  cx) = () — co)/b,

(A.9)

maximize L(x | a b, c). In this sense, the maximum likelihood estimators 5 p and ¢

are equivariant.



According to Equation (A.9)

Yi— ) boXi+ o~ bocy) —cp  Xi — )

= = = = (A.10)
b(y) bpb(x) b(x)

By Equation (A.2), the estimated uniform variables are equal, and we conclude that
power is the same under both Go(x) and any location scale change Gyl(x — ¢,)/bg)-
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Invariance When the Underlying Distribution Is Weibull

Two-Parameter Case — On the log scale

log X; — log b

i=12, ...,n) (A3

1/a )
is distributed free of the location parameter log b and scale parameter a-1 (David and
Johnson 1948; Lawless 1982, p. 147). From Equation (A.l) the distribution of
estimated uniform observations does not depend on a and b, and hence the & and D
statistics do not depend on a and b.

The result in Equation (A.3) depends on a property of the maximum likelihood
estimator (see Lawless (1982), p. 147) that

1/a(ag log X{ + by, aglog X2 + by, ..., aglog X, + by)
= ap/a (log Xy, log X5, ..., log X))
log bag log X; + by, aglog X5 + by, ..., aplog X, + bg)
= ag log b (log Xy, log X5, ..., log X,) + log by (A.4)

That is, if X is transformed to b, X2o, the maximum likelihood estimates of location
and scae for the extreme value distribution obey Equation (A.4).

The R, statistic, on the log scale, has a distribution that is free of the parameters since

10g X(,') - log X B [I[lOg(X(,')/b) — 10g (X/b)] (A.5)

\/';l (log X(; — log X)? a\/ ;1 [log (X(»/b) — log (X/b))]?

is a function of the standard exponentia variables Z; = (X(i)/b)a and R, is the
correlation of these variables with the scores log m,,; where the 1& factor can be
ignored in the calculation of correlation.

Three-Parameter Case-For the three-parameter case, Lemon (1975) gives the pivotal
functions

- D _ babe ~ Cape — ¢ D ¢a10
dabc = dq10 = baio = = =
b babc baIO

v

where the equality in distribution is for the values of (ab,c) indicated in the subscript.
In other words, these quantities depend only on the underlying population shape
parameter. Because

Xi—-¢ (Xi-0/b (c- 0

b b/b b

(A.6)



where the distribution of each term depends only on a the estimated uniform variables
in Equation (A.2) and hence the distributions of A? and D depend only on a, not the
other parameters.

In the case of the R,, dtatistic, on the origina scale,

X(l) - 3_( (X,' — C)/b - (/—\; — C)/b

n . n .
\/ L (X - %2 \/ L (X - /b = (X = o/b)?
= =
which is a function of the standard Weibull with parameters a;o. Since R, is the
correlation of these variables with the scores m,, ; and the scores only depend on &, and
hence a, the digtribution of R, depends only on a

For the log scale,

log(X — &) — log(X — &) log[ Xy — &)/b) — logl(X — &)/b]

(A.7)

\/ ,;l llog(X() ~ ©) — log(X — )2 \/ .g {log[X(y — &)/b] — logl(X — &)/b]}?
Similar to Equation (A.6),
log[(X(; — ¢)/b] = log[(Xy) — o)/b + (b/b)(c — ¢)/b]

has a digtribution that depends only on a Since R, is the correlation of the variables
(A.7) with the scores In m,; , its distribution aso depends only on a

Invariance and Power
Because of the properties (Eg. (A.4)) of the maximum likelihood estimators, the power

calculations pertain to a wider class of aternatives than is immediately apparent.

Two-Parameter Case — Let X be distributed as Gg(x) and let Y = by X%0 . Thenlog Y; =
a, log X + log by. On the log scale, R, . is a correlation and hence it has the same
vaue whether calculated in terms of the log Y; or the log X;.

Further,

g Y — log B(y) log X; — log 5()()
1/7a(y) 1/a(x)

(A.

by the properties in Equation (A.4). Consequently, the estimated uniform variables are
the same on both scales, so A2 and D do not depend on the scale.

Thus, the power of each of the three tests remains the same for any lognormal
distribution. Also, the powers for the uniform (0O, 1) aternative hold for the uniform

0, 8, 6 > 0 and, more generaly, for

G(x|6) = (x/0)w (0<x<0)
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The basic relations between the maximum likelihood estimators on the two scales can

be shown directly. Let Y = p,x%, Then

Lo | a b) = InI %(yi)a_lexp[—(yi)a]

n b, lﬂo a— b IHO\a
- IG5 el -]

i=1 b
1@ i Qg — ay Xi aya
1 b((b/bo)l/ao) exv) ((b/bowao‘) ]
¢ a X TR X a1 Lo
- ,Ile b1/00b07 1/a, ( bo )( (b/bo)l/ao) exp[— (W
1 1-a,
= ( H Xi) - LIX | aag, (b/bg)%
=1 by aq

Consequently, the maximum likelihood estimates based on x and y (or equivaently on

Iny) satisfy

a(x) = aa,  bx) = (b)/by)Va

Because of this relation the estimated uniform variables are also equal.

bob4(x)

Yiy~ _ boxfo ax)/ay ¢ Xi aw) o
G50 = )l =

Three-Parameter Case-Although there is a wider invariance class, we note that the

power for the three-parameter case is the same for any scale change. Let X be

distributed as Gy(x) and let Y = by X + c;. On the originad scae, R,, is a corrdation

and so its value is unchanged. The scores involving a are the same on both scales.

More generaly, the maximum likelihood estimates are related as follows:

n Vi—Ci 4 u
Lpla b o= 11 3= Lo~ [0,- )/b]
i=1
nogr boxi + co — ¢\ g .
— _ — b —c)/

= by~ " Lx I a, b/bo, (¢ — cp)/by)

Consequently, if a(y), b(y), ¢(y) maximize L(y | a, b, c), then

a(x) = a(), b)) = b)/by,  cx) = () — co)/b,

(A.9)

maximize L(x | a b, c). In this sense, the maximum likelihood estimators 5 p and ¢

are equivariant.



According to Equation (A.9)

Yi— ) boXi+ o~ bocy) —cp  Xi — )

= = = = (A.10)
b(y) bpb(x) b(x)

By Equation (A.2), the estimated uniform variables are equal, and we conclude that
power is the same under both Go(x) and any location scale change Gyl(x — ¢,)/bg)-
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