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factors that reduce allowable design stresses for 
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Statistical 
Considerations in 
Duration of Load 
Research 

Carol L. Link, Mathematical Statistician 
Forest Products Laboratory, Madison, WI 

Introduction 

In determining allowable stress values for lumber, 
engineers must consider duration of load. This 
phenomenon is demonstrated in both rate of 
loading (ROL) and duration of load (DOL) tests. In 
ROL tests, the strength of lumber increases with 
increased loading rate. In DOL tests, a piece of 
lumber carrying a given load may be unable to 
carry that load indefinitely. Building codes 
account for DOL by using multiplicative DOL 
factors. These factors change the allowable 
stress as a function of load duration time, which 
equals time under maximum load for a particular 
condition. The current National Design 
Specifications for Wood Construction (National 
Design Specifications for Wood Construction 
1986) DOL factors (table 1) assume a baseline 
duration of 10 years. The following example 
illustrates how to interpret DOL factors. If the 
baseline allowable stress is x, then the allowable 
stress under snow load (of 2-month duration) 
would be 1.15x. Duration of load researchers 
often use a baseline of 5 minutes (the duration of 
a standard static-strength test) and DOL factors 
that reduce allowable stress for periods longer 
than 5 minutes. These factors are given in table 1. 

The National Design Specifications DOL factors 
(table 1) are based on Wood’s (1951) bending 
tests of small, clear wood specimens. Current 
DOL research in the United States, Canada, and 
Europe includes testing of structural lumber and 
development of models. The ultimate goal of this 
research is to derive new DOL factors based on 
tests of structural lumber in bending, tension, 

and compression. This paper discusses

statistical considerations involved in designing

DOL tests, modeling the resulting data, and

computing DOL factors. These statistical

considerations are important for knowing the

variability of proposed DOL factors. Without

variability estimates, it is impossible to compare

new estimates of DOL factors to those

currently in use or compare estimates from

other experiments.


While this paper necessarily focuses on the data

and models developed in the United States, the

comments are relevant to research in other

countries as well. Also, I do not mean to imply

that the data or models developed in the United

States are the “best” possible. The paper

recounts the development of the current DOL

factors, describes a cumulative damage model

illustrated with data from Forest Products

Laboratory (FPL), presents additional data with

the fitted cumulative damage model, and finally

comments on testing and development of models.


Table 1 - Current National Design Specifications (1996) for 
wood construction duration of load (DOL) factors 

Type of load Load duration	 DOL factors baseline 

10 years 5 minutes 

Static strength 5 minutes 1.00 
Wind 

1 week 1.25 .77 
Snow 2 months 1.15 .71 
Live 10 years 1.00 .62 
Permanent 50 years .90 .56 

1 day 1.33 .82 
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Calculation of Duration of 
Load Factors 

Current DOL factors were derived from research 
on small, clear wood specimens (Wood 1951). 
Both ROL and DOL tests of primarily Douglas-fir 
specimens were combined in a stress level versus 
log time-to-failure plot. The stress level was 
estimated; it was calculated from matched 
specimens. Wood fit a hyperbolic curve to these 
data (fig. 1) using the equation 

SL( X ) =
 (108.4) 

+ 18.3 
(60X ) 0.04635 

where X is time in minutes and SL is stress level 
in percent. Calculation of DOL factors from this 
equation is possible given the baseline and the 
desired load duration times. For example, the 
DOL factor for 2 months given a baseline of 
10 years is then the ratio of SL(2 months) to SL 
(10 years) which is equal to 1.15. 

SL(2 months) = SL(60 × 24 × 61 minutes) 
= SL(87,840 minutes) = 71.2 

(2) 
SL(10 years) = SL(60 × 24 × 365 × 10) 

= SL(5,256,000 minutes) = 62.1 

DOL factors for other time periods can be 
computed in the same manner. 

Data Variability 

Real data are inherently variable. While Wood’s 
1951 curve may appear to give a precise definition 
of the DOL phenomenon, one should be aware of 
the data variability behind this curve. The 
variability of the small clear data in ROL (fig. 2) 
and DOL (fig. 3) tests is not trivial. The strength 
of wood specimens is extremely variable, even for 
small, clear pieces. This underlying variability is 
not expressed in the point estimate of a DOL 
factor. The underlying variability can only be 
expressed in a confidence interval for this factor. 
Confidence intervals are a measure of how 
precisely one knows or can estimate a given 
quantity. Point estimates without confidence 
intervals ignore the underlying variability and give 
the misguided illusion of precision. Without 
confidence intervals, one cannot determine if 
DOL factors obtained from various experiments 
are actually similar or different from each other 
or from currently used DOL factors. 

Unfortunately, confidence intervals for DOL 
factors using Wood’s equation are not 
straightforward because there are no variability 
estimates for its parameters. Such estimates 
would be difficult to obtain because the stress 
levels are only approximate and some of the data 
are censored. Censored data arise when the 
exact failure time is unknown. For specimens that 
have not failed under constant load at the 
conclusion of the constant load tests, the precise 
time to failure is unknown, although it must 
exceed the duration of that constant load test. 
While a curve can be fit to the stress level versus 
log time-to-failure data, this curve may vary with 
the exclusion or inclusion (and plotting position) 
of the censored data points. Confidence intervals 
for parameters of this fitted curve cannot be 
determined in the usual fashion due to the 
estimated stress levels and censoring. Therefore, 
some type of model must be used to obtain 
confidence intervals. 

Estimation of Stress Levels 

Results from DOL tests are commonly shown in a 
plot of stress level versus log time to failure. 
Theoretically, a stress level is the ratio of the load 
at which a specimen failed in a constant load 
test to the load at which it would fail in a 
short-term static strength test. Stress levels are 
always approximate because strength of any 
specimen is unknown under a loading scheme 
different from the one in which it failed. Wood 
determined a stress level by using the failure load 
from a matched specimen that had failed in a 
short-term static strength test. Underlying the 
failure load of a matched specimen is some 
standard rate of loading (since the strength of a 
specimen varies with the rate of loading). Stress 
level will vary as the standard rate of loading 
is varied. 

Since matched specimens are only practical for 
tests of small, clear wood specimens (and even 
these are not perfectly matched), another 
procedure must be used to estimate the stress 
level for tests of structural lumber. At least three 
methods are found in the literature: (1) matching 
specimens by order of failure, (2) estimating an 
underlying failure distribution, and (3) using a 
cumulative damage model. All of these methods 
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Figure 1 - Relation of working stress to duration of load

(Fig. 4 of Wood 1951). (M 89 380)


Figure 2 - Relation of strength to time of loading in rapid-loading bending tests of small, clear

Douglas-fir specimens (Fig. 2 of Wood 1951). (M 89 381)
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Figure 3 - Relation of duration of constant stress to level of stress in long-time loading bending 
tests of Douglas-fir specimens (Fig. 1 of Wood 1951). (ML87 5570) 

require specifying a standard rate of loading. The 
first two methods require data from a group of 
specimens that have failed under the standard 
rate of loading. This group of specimens is 
usually matched with specimens tested under 
constant load, using non- destructive measures 
such as strength ratio and modulus of elasticity. 
All three methods require an equal rank 
assumption. That is, the order of failure in any 
group of specimens is the same under ROL and 
DOL tests. 

These methods can be illustrated by applying 
them to a set of data from the “edge knot” study 
of Gerhards and Link (1987). The data consisted 
of 294 pieces of Douglas-fir 2 by 4 lumber chosen 
such that each piece contained an edge knot of a 
specified size as the strength-controlling defect. 
Using modulus of elasticity, the specimens were 
split into six matched groups. Three of these 
groups were tested under ramp loading, and 
the other three groups were tested under 
constant load. 

4 



Figure 4 - Estimated stress levels for edge knot study using matched order statistics and 
estimated failure distribution (+, high constant load; 0, medium constant load; x, low constant 
load). y axis: stress level (proportion), x axis: natural logarithm of time-to-failure in minutes. 
(ML88 5412) 

The first method for estimating stress level-
matching specimens by order of failure (Johns 
and Madsen 1982)-can be most easily illustrated 
if the sample size of the group that failed under 
ramp loading is the same as the sample size of 
the group tested under constant load. The pieces 
in the ramp failure group are ordered by actual 
static strength (which is also the order of failure 
time if each piece has the same ramp rate), and 
the pieces of the constant load group (including 
initial ramp failures) are ordered by time of 
failure. The stress level of the ith failure of the 
constant load test is then the load at failure 

divided by the load of the ith failure under ramp 
(short-term static strength test) load. Using the 
edge knot study as an example, let the middle 
ramp rate (approximately 6 pounds per minute) be 
chosen as the standard rate. For failures under 
constant load, the resulting stress level versus 
log time-to-failure plot can be seen in figure 4 
(preliminary ramp failures not shown). If the 
sample sizes of the constant load group and the 
standard ramp group are different, one may use 
this method by interpolating estimated static 
strength between adjacent failure times. 
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In the second method for estimating stress level 
(Gerhards 1986, 1988), a failure distribution is 
specified for the standard rate of loading, and the 
parameters of this distribution are then 
estimated. The stress level of the ith failure (out 
of n specimens) is then the i × 100/n percentile 
of the fitted distribution. Using the edge knot 
data, if the standard ROL data are assumed to 
have a lognormal distribution, the estimated 
parameters are the usual mean and standard 
deviation of the logarithms of the static strength. 
Gerhards (1988) fit a regression line to a plot of 
normal scores and failure loads (similar to fig. 5). 
For one ROL test, this method should give 
comparable results to the usual mean and 
standard deviation. However, Gerhards added 
initial ramp failures from the constant load tests 
to presumably improve the estimation procedure. 
Since added failures in one region of the data 
may bias the regression, initial failures should 
not be added to the data. Using an estimated 
underlying failure distribution, the resulting 
stress level plot for the edge knot data is very 
similar to the plot obtained through matched 
order statistics (fig. 4). Unless the ramp data 
deviate greatly from the fitted failure distribution, 
methods 1 and 2 should give similar stress 
level plots. 

The final method, used by Gerhards and Link 
(1987), obtains stress levels through the use of a 
cumulative damage model. The numerator is still 
the constant load at failure, but the denominator 
is found by using the estimated parameters from 
the cumulative damage model. The resulting plot 
is almost identical to that shown in figure 4; a 
slightly different scale on the y axis is due to 
another choice of the standard ROL. 

DOL factors may be calculated from stress level 
plots as a ratio of the stress level at the desired 
load duration and the stress level at the baseline. 
A fitted equation can be used, but the fitted line 
changes with the addition of different failure 
times for the censored data. If sufficient data 
exist, a representative point can be chosen at the 
baseline as well as the time for the desired load 
duration, and a ratio can be derived from these 

times. This is usually impractical for load 
durations of greater than a few months because 
long-term (years) data do not exist. Also, due to 
the problems of censored data and estimated 
stress levels (versus true stress levels), 
confidence intervals on the ratio estimates are 
difficult to obtain. 

Gerhards (1988) fit a regression line to the stress 
level versus log time to failure, using the 
parameter and variance estimates from the fitted 
regression to give confidence intervals for the 
estimated DOL factors. While the ratio estimates 
may be reasonable, the reported confidence 
intervals were derived from incorrect methodology 
and are also much too small. 

Figure 5 - Lognormal probability plot for edge 
knot rate of loading (ROL) tests (+, high ROL; 0, 
medium ROL; x, low ROL). y axis: normal score 
from a standard normal distribution with mean 0 
and standard deviation 1 ( - 1.645 is 5th 
percentile, 0 is 50th percentile, etc.), x axis: 
natural logarithm of load in pounds. Lines 
indicate Gerhards’ fitted exponential cumulative 
damage model. (ML88 5413) 
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Cumulative Damage Models 

Several cumulative damage models have been 
developed for the DOL phenomenon. Nielson 
(1986a, 1986b) proposed a model based on 
visco-elastic fracture mechanics. Schaffer’s 
model (1973, 1982) included compensation for 
temperature of exposure. Barrett and Foschi 
(1978) and Foschi and Barrett (1982) proposed a 
cumulative damage model with stress- and 
damage-dependent factors. Gerhards (1979) 
proposed an exponential cumulative damage 
model with a stress-dependent factor based on 
Miner’s rule (1945). Caulfield (1985) obtained 
the same model as Gerhards by a chemical 
kinetics approach. 

Use of these cumulative damage models to 
obtain reliable ratio estimates and confidence 
intervals requires methodology for estimating the 
parameters and associated variability. I am 
unaware of any variability estimates for the 
Nielson or Barrett and Foschi models. For the 
Gerhards model, details of parameter estimation 
and associated variability are given in Link, 
Gerhards, and Murphy (1988). 

A brief review of the Gerhards model follows. This 
cumulative damage model describes the damage, 
a, as a function of time, t, and load history, s(t). 
Damage ranges from 0 (undamaged specimen) to 
1 (failed specimen) using the following equation:

(3)

 

where b, c, and w are model parameters and X is 
a random variable used to model the underlying 
variability of the strength of lumber. The 
underlying distribution of the strength of lumber 
is assumed to be either a lognormal or a Weibull 
distribution. In this discussion, the lognormal 
distribution is used. This damage model gives the 
following mean trends (X = 1) for ROL and DOL 
tests (assuming instantaneous application 
of load): 

ROL load = (1/c) + (1/b) ln(bk) (4) 

DOL ln(T) = (b/c) - b (load) or 
load = (1/c) - (1/b) ln(T) (5) 

where k is the ROL and T is the time to failure. 

Data Needed to Estimate Parameters 

ROL and DOL tests are conducted using groups 
of matched specimens. A group usually contains 
50 to 200 specimens. Matching is based on 
estimated failure strength using nondestructive 
measurements of modulus of elasticity and 
strength ratio. 

For Gerhards’ exponential cumulative damage 
model, the variability parameter, w, can be 
estimated as long as there are multiple 
specimens within a test group because it is a 
measure of variability within a test group. 
Estimation of the other two parameters, b and c, 
requires at least two groups of data from 
specimens that failed under two different ROL or 
at two different load levels. It is preferable to 
have more than two groups of data to judge the 
lack of fit of the data to the hypothesized model. 

The Barrett and Foschi model (1978) contains six 
parameters; two are variability parameters. The 
model, as estimated by Foschi and Barrett (1982), 
is used with only two groups of data (using a 
larger sample size). It is not clear whether the two 
variability parameters or the other four 
parameters can be uniquely estimated with only 
two groups of data. Thus, with a fixed total 
sample size, it would be preferable to test more 
load levels with fewer specimens than to test only 
two load levels. 

Data Plots From ROL and DOL Tests 

Data plots are useful for checking the 
distributional assumptions and the fit of the 
damage models. One of the most useful plots for 
checking distributional assumptions is a 
probability plot, which plots the failure data by 
the cumulative probability distributional function. 
A cumulative probability distribution function 
ranges from 0 to 1 (0 to 100 pct). If the failure 
data come from the hypothesized distribution, 
then the probability plot should look like a 
straight line. Therefore, the scale on the 
cumulative probability distribution axis depends 
on the distributional assumption. For example, if 
one assumes that the data come from a normal 
distribution, the failure data are plotted by a 
normal score. A normal score is a function of the 
cumulative probability of a standard normal 
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distribution: - 1.645 is the 5th percentile, 0 is the 
median, and 1.645 is the 95th percentile, etc. If 
one assumes that the data come from a 
lognormal distribution, then the logarithm of the 
failure data is plotted versus the normal score. A 
good discussion of probability-plots can be found 
in Nelson (1982). 

ROL tests provide information about failure load, 
failure time, ROL, and order of failure. For ROL 
tests, an appropriate plot of the data would be a 
function of failure load versus some cumulative 
probability distribution. If one assumes that the 
underlying strength distribution is lognormal, 
then the appropriate plot would be of the log load 
versus a normal score. The ramp test data from 
the edge knot study can be used to illustrate this 
kind of plot (fig. 5). The plot used by many 
researchers of log time to failure versus logarithm 
of loading rate (fig. 6) is inappropriate for ROL 
data; there is no way to gauge the fit of the 
model because the difference in failure times 
overwhelms anything else. Foschi and Barrett 
(1982) used log time to failure versus logarithm of 
loading rate to demonstrate that the data are 
linear. But a plot of the median failure load 
versus logarithm of ROL (which should also be 
linear by their model) shows that the data are 
not linear. 

A DOL test is made up of three segments: 
(1) initial ramp loading of the specimen to the 
desired constant load; (2) period during which the 
specimen is under constant load, given that it has 
survived the initial ramp loading; (3) second ramp 
loading (from 0 to failure) which determines the 
residual strength of a specimen that survives the 
constant load segment. In general, some 
specimens fail in each segment. DOL tests 
provide information about failure load, failure 
time, order of failure, and the segment in which 
the specimen failed. 

For DOL tests, an appropriate plot of the data is a 
function of the logarithm of the time on test 
versus a cumulative probability distribution. The 
calculation of time on test may vary from one 
segment to another. I distinguish between total 
time on test (from initial ramp loading to failure) 
and time on test in a particular segment of 
the test. 

Figure 6 - Log rate of loading (ROL) versus log 
failure time for the edge knot ROL test (+, high 
ROL; 0, medium ROL; x, low ROL). y axis: 
natural logarithm of ROL in pounds per minute, 
x axis: natural logarithm of time to failure in 
minutes. (ML88 5414) 

For specimens that fail during the first segment, 
that time is the total time on test. For specimens 
that fail during the second load segment, total 
time on test is either initial ramp time plus 
constant load time or the time on constant load 
only. If the latter is designated as total time on 
test, the time clock is reset to zero, creating a 
discontinuity in the plots between the initial ramp 
and constant load failures. The choice of time to 
failure under constant load affects the parameter 
estimation. If time on constant load is chosen, 
the first few failures under constant load (within 
seconds of uploading) may force the fitted model 
to be closer to these early failures than later 
failures; a very early failure may have an arbitrary 
short failure time that is subject only to the 
accuracy of the test equipment. The logarithm of 
this time on test is then an arbitrary large 
negative number. This influences the convergence 
criterion of the estimation procedure, which is to 
minimize the sum of squares of the difference 

8 



between actual and predicted logarithms of time. 
This problem does not occur if the time on test 
includes the ramp loading time, which is in 
minutes not seconds. 

For specimens that fail in the third load segment, 
the time used is the failure load divided by the 
ROL during the third segment. This would be 
equivalent to the failure time obtained by setting 
the clock to zero at the beginning of the second 
ramp loading. This will appear as a continuation 
of the curve defined by the initial ramp loading 
failures, assuming there is no constant load 
segment and that rates of loading are the same 
for the first and third segments. There is no way 
to avoid the discontinuity of the constant load 
failures and the residual strength times, as total 
time on test would essentially appear as a 
straight vertical line. The plot for the edge knot 
study along with Gerhards’ fitted exponential 
cumulative damage model (fig. 7) uses total time 
on test for the constant load failures. 

Total Time on Test Versus Time on 
Constant Load 

The edge knot study had quite a few early failures 
in the constant load phase of the test (some 
failures occurred within seconds of uploading). 
The difference between the log total time on test 
and the log time on constant load was trivial after 
some time had elapsed (minutes or hours), but 
this difference was substantial for early constant 
load failures. This is seen in figure 8, which 
plots only the failures under constant load. The 
solid lines designate the same model shown in 
figure 7, and the dashed lines are the estimated 
model when the dependent variable is time on 
constant load. Note that the dashed lines fit the 
early failures quite well but are less suited to 
later failures, whereas the reverse is true for the 
solid lines. This discrepancy occurs only when 
there are a large number of early failures. The use 
of a different model will not change this 
situation, as the analysis must use log time to 
failure rather than the actual time. Of the data 
sets currently available at FPL, the total time on 
test versus the time on constant load matters in 
only the data set from the edge knot study 
because of the early failures. 

Figure 7 - Results from edge knot duration of 
load (DOL) study using total time on test 
(+, high constant load; 0, medium constant 
load; x, low constant load). y axis: normal score 
from a standard normal distribution with mean 0 
and standard deviation 1 ( - 1.645 is 5th 
percentile, 0 is 50th percentile, etc.), x axis: 
natural logarithm of time to failure in minutes. 
Lines indicate Gerhards’ fitted exponential 
cumulative damage model. (ML88 5415) 

The early failures in the edge knot study occurred 
because the specimens sustained more damage 
during ramp uploading than predicted in 
Gerhards’ model or any other model currently 
under consideration. DOL factors are needed for 
periods ranging from minutes to years. Using 
total time on constant load forces the fitted 
models to early failures (seconds, minutes, and 
hours), which flattens the estimated model (fig. 8). 
DOL factors computed with a flatter line (using 
total time on constant load) will-be larger (e.g., 
DOL has a smaller effect) than those calculated 
with the steeper line (using total time on test). 
This is unlikely to be a conservative approach 
toward estimating DOL factors. Results of DOL 
research at FPL have often been reported using 
time on constant load. Because I prefer to fit 
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Figure 8 - Results from edge knot duration of 
load (DOL) study: x and solid line designate total 
time on test; 0 and dashed line designate time 
on constant load. y axis: normal score from a 
standard normal distribution with mean 0 and 
standard deviation 1 ( - 1.645 is 5th percentile, 0 
is 50th percentile, etc.), x axis: natural logarithm 
of time to failure in minutes. (ML88 5416) 

later failures rather than early failures, this paper 
presents only plots and fitted models that use 
total time on test. 

Calculation of DOL Factors 

Estimated parameters and their variance 
estimates can be used to draw a line to the 
stress level versus log time-to-failure plots (fig. 9). 
Note that this curve is not fit to the data shown 

Figure 9 - Estimated stress levels for edge knot 
study using a cumulative damage model, with 
estimated parameters from Gerhards’ model 
(+, high constant load; 0, medium constant 
load; x, low constant load). y axis: stress level 
(proportion), x axis: natural logarithm of time to 
failure in minutes. (ML88 5417) 

but is the result of the parameter estimation. The 
appendix to this paper contains technical details 
of how to estimate DOL factors and their 
confidence intervals. As explained in the 
appendix, the stress level versus log 
time-to-failure plots are a function of a standard 
ROL, but the DOL factors are not. 
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Results of Tests on Douglas-Fir 
2 by 4 Structural Lumber by Grades 

The FPL performed additional ROL (Gerhards and 
Link 1986) and DOL (Gerhards 1988) tests on 
Douglas-fir 2 by 4’s. The lumber was graded, 
using strength ratio, into Select Structural, No. 1, 
No. 2, and No. 3 samples. No. 1 lumber was not 
tested. There were up to three ROL tests (ROL1, 
ROL2, and ROL3) and up to three DOL tests 
(DOL1, DOL2, and DOL3) for each grade. The 
sample sizes and test conditions are given in 
table 2. The rates of loading were 300, 3, and 
0.03 pounds per minute for the ramp tests. The 
constant load tests contained several load levels 
in each test. These tests are known as step 
constant load tests and are used to get additional 
constant load failures. The specimens were 
loaded to the first constant load level (300 pounds 
per minute), held on that constant load level for a 
predetermined time, loaded to the second load 
level, etc. The steps used in the constant load 
tests were estimated percentiles of the underlying 
failure distribution. The constant load tests used 
step constant loads with a combination of 40th 
and 70th (DOL1), 5th, 15th, and 40th (DOL2), and 
5th and 15th (DOL3) percentile loads. 

Table 2 - Sample sizes and test conditions of Douglas-fir 
2 by 4’s 

Sample size 

Grade 
Rate of loading 

testsa 
Duration of load 

testsb 

1 2 3 1 2 3 

Select Structural 100 50 100 50 50 50 
No. 2 100 50 100 50 50 50 
No. 3 100 — — 50 50 — 

a Test conditions for rate of loading (ROL) tests 
were: ROL1, 300 Ib/min; ROL2, 3 Ib/min; and ROL3, 
0.03 Ib/min. 

b Step constant loads for duration of load (DOL) tests 
were: DOL1, steps at 40th and 70th percentiles; DOL2, 
steps at 5th, 15th, and 40th percentiles; and DOL3, 
steps at 5th and 15th percentiles. 

The fitted model for ROL data uses only failures 
from ROL1, ROL2, and ROL3 tests. Likewise, the 
fitted model for DOL data uses only constant 
load failures from DOL1, DOL2, and DOL3 
constant load tests. For the FPL DOL tests, the 
parameter estimates do not change substantially 
if one uses the constant load failures from all the 
constant load phases or just the first set of 
failures, nor do they change substantially if one 

uses total time on test or time on constant load. 
Therefore, the plotted fit is that of total time on 
test using only the constant load failures in the 
first “step.” Plots of the fitted damage model for 
the ROL data (fig. 10) and the DOL data (fig. 11) 
give a visual impression of the model fit to the 
data. No model was fit to the No. 3 ROL test as 
data exist for only one ROL which is insufficient 
to estimate the model parameters. Confidence 
intervals can be plotted for these fitted curves 
(Link, Gerhards, and Murphy 1988). The overall 
impression is that the model generally fits the 
data, but there appear to be systematic 
departures from the model which indicate 
additional modeling might be useful. 

The stress level versus log time-to-failure plots 
(fig. 12) show the fitted DOL model and the first 
step constant load failures. The corresponding 
DOL factors, along with 95 percent confidence 
intervals, for these data as well as edge knot data 
are given in table 3. The DOL and ROL curves are 
plotted along with Wood’s equation (fig. 13). 
Wood’s equation does not match up well with the 
experimental data because of the definition of 
the standard ROL. The relative vertical position 

Table 3 - Duration of load factors for Forest Products 
Laboratory Douglas-fir 2 by 4’s point estimatesa,b 

Duration of load 

Source Type 1 Day 1 Week 2 Months 10 Years 50 Years 

a Baseline = 5 minutes. 
b Ninety-five percent confidence intervals 

in parentheses. 
c ROL = rate of loading. 
d DOL = duration of load. 
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Figure 10 - Lognormal probability plots for rate of loading (ROL) tests of Douglas-fir Select 
Structural and No. 2 lumber (+, high ROL; 0, medium ROL; x, low ROL). y axis: normal score 
from a standard normal distribution with mean 0 and standard deviation 1 ( - 1.645 is 5th 
percentile, 0 is 50th percentile, etc.), x axis: natural logarithm of load in pounds. (ML88 5418) 

is not important; it is the ratio of two values 
which matters. 

Several results using Gerhards’ exponential 
cumulative damage model are immediately 
apparent from table 3 and figure 13: 

(1) The parameter estimates and DOL factors are 
not the same for DOL and ROL tests. Although, 
theoretically (by Gerhards’ (1979) model or any of 
the other models currently under consideration 
for modeling the effect of DOL) they should give 
the same result; in practice they do not. Therefore 
one cannot substitute ROL tests, which can be 
done much more quickly, for DOL tests. ROL 
tests predict a much smaller DOL effect. If both 
the ROL and DOL data sets are used to estimate 
the cumulative damage parameters, the ROL tests 
will determine the parameter estimates because 
the variability of log time to failure in a ROL test 
is at least 20 times smaller than the variability of 
log time to failure under DOL tests. 

(2) The DOL factors for lumber DOL tests appear 
to be smaller than those derived by Wood (1951). 

(3) Stress level curves using DOL tests were 
steeper as the quality of the material 
decreases, and those using ROL tests had the 
reverse trend. However, these trends are not 
statistically significant. 

(4) Confidence intervals increase as the load 
duration increases. This is to be expected as 
there is less information available at longer 
load times. 

(5) Confidence intervals for ROL tests were 
smaller than the corresponding intervals for DOL 
tests because (a) sample size was larger in the 
ROL tests and (b) variability of the parameter 
estimates was larger for DOL tests compared to 
ROL tests. 
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Figure 11 - Results from the Douglas-fir constant load study of Select Structural, No. 2, and No. 3 
lumber using total time on test (+, high constant load; 0, medium constant load; x, low constant 
load). y axis: normal score from a standard normal distribution with mean 0 and standard 
deviation 1 ( - 1.645 is 5th percentile, 0 is 50th percentile, etc.), x axis: natural logarithm of time 
to failure in minutes. (ML88 5419) 
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Figure 12 - Estimated stress levels using cumulative damage model, with estimated parameters 
from Gerhards’ model, for Douglas-fir constant load study of Select Structural, No. 2, and No. 3 
lumber; failures from first constant load level only (+, high constant load; 0, medium constant 
load; and x, low constant load). y axis: stress level (proportion), x axis: natural logarithm of time 
to failure in minutes. (ML88 5420) 
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Other Aspects of DOL Research 

Figure 13 - Estimated stress level equations for 
Forest Products Laboratory Douglas-fir 2 by 4 
studies and Wood’s duration of load curve (solid 
lines: constant load studies, dashed lines: rate 
of loading studies). y axis: stress level 
(proportion), x axis: natural logarithm of time to 
failure in minutes. (ML88 5421) 

Three other aspects of damage modeling and 
design of DOL tests deserve comment: (1) the 
need for additional modeling, (2) usefulness of 
step loads and required percentage of failures, 
and (3) matching of lumber samples. 

Additional Modeling 

Systematic departures of the data from Gerhards’ 
exponential cumulative damage model suggest 
the need for continued effort in modeling the 
effect of DOL. All of the current models use an 
exponential function for damage accumulation 
which implies that the damage accumulates only 
near the failure time or load. It has been 
recognized that more damage accumulates at 
lower stress levels than the models predict. Two 
suggested modifications to Gerhards’ model, 
which model damage as a power function rather 
than an exponential function, have not solved the 
problem. The first modification is 

It is impossible to estimate n using ROL tests. 
Although an estimate of n was obtained for 
DOL tests, it did not change the plot of the 
fitted model. 

The second alternative modification is 

One can estimate the parameters of this model 
for ROL and DOL tests. However, the fitted model 
for ROL tests does not change. For DOL tests, 
the underprediction of failure times was worse 
using the power model (dashed line) than using 
the exponential model (solid line) (fig. 14). 

Step Loads and Required 
Percentage of Failures 

DOL tests using step loads (progressively higher 
stresses) are common in the testing of electronic 
parts (Yurkowsky, Schafer, and Finkelstein 1967). 
In an effort to obtain more information from 
additional failures and to accelerate the tests, 
Gerhards (1986) used a three-step constant load 
to compare the DOL effect for southern pine 
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Figure 14 - Gerhards’ exponential (solid line) and 
power models (dashed lines) fitted to the edge 
knot study constant load tests. y axis: normal 
score from a standard normal distribution with 
mean 0 and standard deviation 1 ( - 1.645 is 5th 
percentile, 0 is 50th percentile, etc.) x axis: 
natural logarithm of time to failure in minutes. 
(ML88 5422) 

lumber dried conventionally and at high 
temperatures. Only one ramp test and one 
three-step constant load test were used. 
Becauses there were very few failures on either of 
the two lower steps, the experiment was 
essentially reduced to one ramp and one 
constant load test. The resultant data were 
insufficient for estimating the parameters of 
Gerhards’ exponential cumulative damage model. 
Gerhards combined these data into one data set 
and plotted a stress level versus log time to 
failure using a hypothesized distribution of static 
strength. He concluded that the data exhibited a 
much smaller DOL effect than that predicted 
using Wood’s equation. However, different results 
are obtained if the conventional and 
high-temperature data sets are kept separate 
(fig. 15). The different symbols denote drying 
temperature and load level. There are no 
consistent patterns. 

Gerhards’ (1988) study of the effect of grade on 
the DOL behavior of Douglas-fir 2 by 4’s also 
featured two or three constant load levels within 
a single test. Although these tests contained a 
reasonable number of failures at each constant 
load level, the estimated parameters and their 
standard errors do not change much if all the 
constant load failures or just those at the lowest 
step are used. The stress level versus log 
time-to-failure plots for this study (fig. 12) show 
constant load failures from only the lowest step. 
Because the damage model predicts little 
damage, it is tempting to include constant load 
failures from the higher load levels as well, but 
this is likely to increase the variability of the 
data. Figure 16 shows estimated stress levels for 
the Douglas-fir Select Structural specimens using 
failures from all constant load levels. Note that 
some damage occurred in the lowest step; the 
estimated stress levels for the second step 
failures were lower than those for the first step 
failures during the first week of constant load. 

A sufficient number of failures are needed in 
each constant load test. As mentioned earlier, 
early and late failures do not follow the same 
pattern. When the high constant load is 
terminated, later failures cannot be observed. In 
the edge knot study (Gerhards and Link 1987), the 
high constant load was held for 3 to 4 days. After 
the initial 2 hours of constant load, there were 
only 10 (out of 49) failures at the high constant 
load level versus 16 at the middle constant load 
level and 29 at the low constant load level. 
Therefore, the lower constant load levels had a 
greater influence in estimating the parameters. In 
the later Douglas-fir 2 by 4 test, the high constant 
load level was maintained for a longer period. 
The estimation procedure requires that 30 to 
50 percent of the specimens fail in the constant 
load segment of the test. 

Matching of Lumber Samples 

Matching the lumber samples for each test is 
important. Lumber contains a large amount of 
variability, and samples should therefore be 
matched in as large a group as practical. Small 
groups of samples, such as the matched groups 
of 25 specimens used in the Douglas-fir study 
(Gerhards 1988), have a high degree of variability. 
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Figure 15 - Estimated stress levels using a 
cumulative damage model with estimated 
parameters from Gerhards’ model for the 
high-temperature drying constant load study, 
using failures from all constant load levels. 
(Conventional drying: +, step 1; 0, step 2; 
x, step 3. High-temperature drying: �, step 1; 
D , step 2; �, step 3). y axis: stress level 
(proportion), x axis: natural logarithm of time to 
failure in minutes. (ML88 5423) 

A larger matching group will decrease some of 
the variability. That is, if the sample size is 100, 
the lumber should be matched in groups of 100. 
The sample size in each group will depend for the 

Figure 16 - Estimated stress levels using a 
cumulative damage model with estimated 
parameters from Gerhards’ model for the 
Douglas-fir Select Structural constant load 
study, using failures from all constant load 
levels (+, first constant load; 0, second 
constant load). y axis: stress level (proportion), 
x axis: natural logarithm of time to failure in 
minutes. (ML88 5424) 

most part on the resources at hand. The results 
of the Douglas-fir lumber tests indicate that a 
minimum of 50 samples should be used. 
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Conclusions Literature Cited 

The results of current FPL tests on DOL suggest 

Inclusion of confidence intervals increases the 
usefulness of point estimates of DOL factors 
by allowing comparison of results from 
different experiments and the currently 
used values. 

Fitting regressions to stress level versus log 
time-to-failure plots does not give statistically 
correct confidence intervals for DOL factors. 

Using some cumulative damage model that 
includes estimates of both standard errors and 
parameters provides confidence intervals for 
DOL factors. 

The exponential cumulative damage model 
provides reasonable starting estimates of DOL 
factors. Additional modeling might be useful, 
since the exponential cumulative damage 
model apparently does not account for damage 
at a lower stress level, nor does the model fit 
both late and early constant load failures. 

Parameter estimates from ROL tests are 
apparently not useful for predicting the DOL 
results in structural lumber. 

Step loads within a DOL test do not appear to 
add information about the model parameters. 

DOL tests should be designed to allow for at 
least 30 to 50 percent failures under constant 
load. Also, one should run at least one more 
test than the number of tests needed to 
estimate the model parameters. This allows at 
least a visual assessment of lack of fit to 
the model. 

Matching of lumber samples is important; a 
minimum of 50 specimens should be used for 
each test sample. 
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Appendix

Estimation of DOL Factors and

Confidence Intervals Using Gerhards’

Exponential Cumulative Damage Model


Stress level is the ratio of constant load to a 
standard static strength. It is also the ratio of 
load under ramp loading to the load under 
constant load at any given time: 

SL(t) = load under constant/load under ramp 

b - c In(t)
= 

b + c In(bk) 

using equations (4) and (5) of the main text. While 
this equation assumes mean trends and 
instantaneous constant load, it can be modified 
for the ramp time. Note that the stress level is 
still a function of the ROL, k. This equation 
defines the line on the stress level versus log 
time-to-failure plot (fig. 10). The constant load 
data can also be shown on the same plot. The 
equation used is similar but uses the variability 
parameter, w, to estimate the ramp failure load. 

DOL factors may be calculated from the stress 
level equation. Again, the DOL factor for time, t2 , 
given a baseline time, t1, is the ratio of 
SL(t2)/SL(t1): 

Note that this DOL factor is not a function of the 
ROL, k. By taking the ratio of two stress levels, 
one effectively eliminates the problem of having 

to specify a standard ROL. In that the DOL factor 
is a function of the baseline and target times as 
well as the estimated parameters, confidence 
intervals can be obtained for the DOL factor 
using the estimated variability of the parameters 
b and c. 

Standard error 
(DOL factor) = sedol 

= [(sec x dc)2 + (seb × db) 2 

+ 	2(rbc × sec × dc × seb 
× d b)]1/2 

where: sec = standard error of c 
seb = standard error of b 
rbc  = correlation of b and c 
dc = b[ln(t2) - In(t1)]/[b - c ln(t2 ) ] 2 

db = c[ln(t1) - In(t2)]/[ b - c ln(t2) ]2 

Parameter estimates, standard errors, and 
correlations of the parameter estimates may be 
found using the computer program in Link, 
Gerhards, and Murphy (1988). Confidence 
intervals for the DOL factor are then: DOL factor 
±z a (sedol), where za is the appropriate standard 
normal coefficient, e.g., 1.96 for a 95 percent 
confidence interval. 

1.5-7/88 
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