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Abstract

An exponential cumulative damage model, da/dt =

exp( - a+ b’s(t)/s,), has been proposed for the duration of
load phenomenon in lumber. The amount of damage a (0 =
no damage, 1 = failure) depends upon the load history, s(t);
the underlying inherent strength, s, ; and parametersaand b’.
Experimental load histories include ramp loading, s(t) = kt,
and constant loading, s(t) = load, after a period of ramp
loading. We model the underlying inherent strength by a
lognormal or Weibull distribution. The parameters are then
estimated using iterative reweighted nonlinear least squares. A
heuristic argument is used to derive variances which are
shown to be approximate through simulation. A computer
program used to estimate the parameters is available from the
National Technical Information Service (Link 1987).

Keywords. Iterative reweighted least squares, simulation,
duration of load.
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I ntroduction

Lumber is known to be affected by the phenomenon known
as duration of load. The following behavior demonstrates this
phenomenon:

« the “strength” of a piece of lumber depends upon the rate
with which it is loaded to failure;

« apiece of lumber may be unable to carry a given load
indefinitely. Failure means that the piece of lumber is no
longer ableto carry a given load.

Gerhards (1979) proposed an exponential cumulative damage
model based on Miner’s (1945) rule to model this duration of
load phenomenon. Damage, a, to a piece of lumber ranges
from zero, indicating no damage, to 1, indicating failure.
Damage accumulates over time, t, by the following equation:

da/dt = exp( - a+ b’s (t)/s,) (o)

where aand b” are parameters, s (t) is the load history over
time, and s, is the underlying inherent strength of the piece
of lumber. Typica experimental load histories are

ramp loading:  s(t) = kt, where k is the rate of loading

constant loading: s(t) = load (usually preceded by a period
of ramp loading to the constant
load level).

We model the underlying strength of a piece of lumber by
either atwo-parameter lognormal or Weibull distribution;
s, = b" X", X isarandom variable equd to

lognormal X = exp(R) where R isastandard norma (0, I)
random variable.

Weibull X = - In(1 - R) where R isauniform (0, I) random
variable.

The parameter b" is a scale parameter, and w is the
standard deviation of In(strength) for the lognormal
distribution and the inverse of the shape parameter for the
Weibull distribution. Since b” and b" appear only as aratio,
b =b’/b" will be substituted. Therefore, one can rewrite the
cumulative damage model, equation (1), as

da/dt = exp( - a + bs (t)/X") @)
where g, b, and w are the parameters to be estimated.

Although one can integrate the cumulative damage model for
any load history, s(t), it is useful to determine the time to
failure for two simple load histories, ramp and constant
loading. For ramp loading, s (t) = kt, and the time to
failure, T, is

T = [X"/(bK)] In [(exp(@bk/X") + 1]
or load = KT = [X"/b] In [(exp(@)bk/X") + 1]
» [X"/0] [a + In(bk) - w In(X)] 3)
or In(T) » w In(X) - In(bk) + In[a + In(bk) - w In(X)] (4)

To see the effect of the parameters a and b on load or In(T),
eliminate the effect of w by setting X equal to 1. If the
random variable X equals 1, the median load for the
lognormal distribution and the 63rd percentile for the Weibull
distribution is given by

load » &b + (In(bk))/b (5)



Thus, the (median or 63rd percentile) load that a piece of
lumber is able to carry before failure (its “ strength”) is
linearly related to the natura logarithm of the rate of
loading. Equation (5) is the mathematical model of the
duration of load behavior under ramp loading.

Under a constant load (assuming that the load was
instantaneoudly applied at time t = 0), the time to failure,
T,is

T

exp(a - b(load)/X")
or In(T) = a - bloady/X" ©)

Thus, even if the load is zero, this theory implies that a piece

of lumber will fail eventually, athough for practical purposes

this timeisinfinite. The natural logarithm of the time to

failure of the median or 63rd percentile pieceislinearly

related to the constant load level. Equation (6) is the

mathematical model of the duration of load behavior under
constant loading.

Theory

Estimation of Parameters

To estimate the parameters, the dependent and independent
variables must be specified. For failure under ramp loading, a
logical dependent variable is the natural |ogarithm of the time
to failure, In(T). Actua time to failure turns out to be an
inappropriate choice as the longest failure times (those from
the lowest ramp rate) dominate the estimation procedure due
to their larger variability. For failures under constant load,
natura logarithm of time to failure, In(T), assuming
instantaneous uploading would be an appropriate choice for
the dependent variable. In practice, instantaneous uploading
to a given constant load level is impossible, and specimens are
usually subjected to a ramp loading, from time O to t;, up to
the desired constant |oad level. Therefore, two logical choices
for the dependent variable are

1. The natural logarithm of the total time on test, In(T), or

2. The natural logarithm of the time on constant load,
In(T - ty).

If one chooses the latter, the parameter estimation may be
more heavily influenced by the early failures under constant
load, if there are severa failures immediately after uploading
such that T - t; is less than one. In this case In(T - t;) may
be alarge negative number and will unduly affect the
estimation process. Since it isimpractical to carry out an
experimenta test until all the specimens have failed under
constant load, surviving specimens are unloaded after a
period of time, t,. The survivors are then subjected to ramp
loading until failure occurs. The dependent variable chosen
for the survivors of constant load is the natural logarithm of
the time on the second ramp loading, In(T - t,). To use the
natura logarithm of the total time on test would not
differentiate these failuresas T - t, is quite small compared
to t,.

The independent variable is the underlying random variable
X. Since this variable is unknown, some value must be
specified in order to estimate the parameters. To do this,
specimens are generally tested in groups of n. One test of n
specimens consists of a single rate of loading, or one constant
load level. (A test might start specimens at one load level and
then increase the load to other levels, but this type of test is
not considered here.) The order of failure, i of n, is known.
A logical choice of R (the independent variable, X, isa
function of R) is the expected value of the appropriate order
gtatistic from either the standard normal (0O, 1), or uniform
(O, 1) distribution. Exact values are difficult to calculate, but
Blom (1958) has shown that R = F ~((i - 0.375)/(n +
0.25)) is an adequate approximation for the standard normal;
F istheinverse of the standard normal cumulative
distribution function. Likewise, R = (i - 0.375)/(n + 0.25)
will suffice for the uniform distribution.

If one assumes the lognorma model (similar results will work
for the Weibull model), the dependent variable for ramp load
failuresis (equation (4), X = exp(R), and R is a standard
normal (0, 1) random variable)

In(T) » wR - In(bk) + In(a - wR + In(bk))



The variance of In(T) is approximately w? (the influence of
the second WR is negligible). For failures under constant load
(assuming, for the moment, instantaneous uploading), the
dependent variable is (equation (6))

In(T) = a - b(load)exp( - WR)
» a - b(load)(1 - wR)

The variance of In(T) is approximately (b(load)w)® The
linearization also provides starting values for the nonlinear
regression. A nonlinear least squares procedure assumes equal
error variances. The residuals from failures under constant
load must be weighted by (1/(b(load))), if the ramp and
constant load failures are to be used together to estimate the
parameters.

In practice, b and w which are needed to weight the residuals
are the unknown parameters. Therefore, we use an iterative
reweighted nonlinear least squares procedure to estimate the
unknown parameters:

1. Obtain unweighted estimates of a, b, and w.

2. Reegtimate a, b, and w using the current estimate of b to
weight any residuals from constant load failures.

3. Continue to iterate until successive parameter estimates
converge.

Given the specified dependent and independent variables, the
parameters a, b, and w can be estimated using iterative
nonlinear least squares if at least two different rates of
loading (i.e. k values), or two constant |oad levels are used.
Otherwise aand b are not both estimable. The variability
parameter w is estimable only if there are at least two
observations in a test.

Variability of the Parameter Estimates

To discuss an estimator of the variability of these parameter
estimates, additional notation is needed. Let ybe the vector
of the dependent variables, x the vector of the independent
variables, q the vector of parameters to be estimated, and e
the vector of residuals. The model istheny =f(x,q) +¢
where f is a nonlinear function of x and g. Let the
dimensionality of y, x and e be ng (g groups of n specimens

each), and that of g, be p. If the errors are independent and
identically distributed normal rangom variables, then the
nonlinear least squares estimator, g, of g is known to
asymptoncally have a normal distribution with mean gqand
variance s (F F) where F istheng x p matrix of first partial
derivatives of f(x g) with respect to g (Gallant 1975) At
first glancg, it is appargnly sufficient to estimate s?by

(y - f(x,q)(y - f(x,9))/(ng - p). However, this is
incorrect in this case since the variability term w isin the
regression, as the following example shows.

Gupta (1952) gave an estimator of the standard deviation, s* ,
of anormal distribution which is alinear combination of the
expected values of order statistics from a standard normal
distribution. Let x; be the ith order statistic and y the
expected value of the ith order statistic. Then s* =
Su;x )/SU|2 (al summations are over i = 1, ... ,n for sample
sze n) Ali and Chan (1964) showed that asymptoncally s* is
dlstrlbuted asa normal random variable with mean s and
variance s%/[2n(Su“/n)]. They also showed that the limit (as
n goes to infinity) of Su2/n is one, so the asymptotic
variance of s* iss?/2n. Th|s is the Cramer-Rao lower bound
for the variance of an unbiased estimator of s. The estimator,
s*, can aso be obtained as the slope of the regression of

y On U: X; = SXg/n+ s*y + g. The usua estimator

% the variance of the sJope from a linear regression is
(Se?/(n - 2))/Su?. However, the sum of squares of the
residuas %lVlded by n asymptotically goes to zero, not to a
constant s*

(1/mEe?® = (1/mE(x4, — X)* — 20°E(xg, — X)uy/n

+0°2 u¥/n (X = Ixg/n)
= (I/ME(xg — X — 20 Exgu;/n
+¢" Lu?/n Ey, = 0)

= (I/mE(xg — X — 2(Ex5u/Tu;”) Exgu/n
+ (Exgn/Zy;%) *Lu’/n

= (/MEEg — X)? — (Cxgu)*/(nly?)

= (I/mE(xg — X — ¢ 2Ly*/n

Since the limit (as n goes to infinity) of S(x; - X ’Iniss?
since s* is an unbiased estlmamor of s, and since Sy /n is
one, the limit of (1/n)Se? is zero, when it should bes 2.

In our problem, we are also using expected values of order
statistics as independent variablesin aregression problem to
estimate several parameters including the variability parameter
w. Just as one can regress X values on expected values of
order statistics from a normal distribution to get an estimate
of the standard deviation for a normal distribution, one can
regress x values on expected values of order statistics from a
Weibull distribution to get an estimate of the inverse shape
parameter (White 1969). The mean square error (sum of
squares of residuals divided by the sample size) will be
essentially zero. A heuristic solution, in the case of an
assumed lognormal distribution, would be to add w*/2 to the
mean square error. This addition to the mean square error
will give the appropriate variance at least for Gupta s estimate
of the standard deviation and may prove adequate for our
much more complicated problem. Menon (1963) showed that
the Cramer-Rao lower bound for an unbiased estimator of the
inverse shag)e parameter, d, is 0.61 d*/n. Therefore we will
add 0.61 w* to the mean square error when using a Weibull
distribution as a model for the underlying inherent strength.



Simulation Results and Discussion

Simulations were carried out to determine the accuracy of the
parameter and variability estimates. The form of the
simulations was based on practical limits on experimentation.
For ramp loading, an “optimal” design (if one believed the
model) would be to use an equal number of observations at
two extreme loading rates. In practice, three loading rates
equally spaced in In (rate of loading) have usualy been
chosen. Idedlly these would be spaced as far apart as
possible, given the limitations of the test equipment. For this
simulation the three rates of loading which were chosen were
0.03, 3, and 300 pounds per minute as these were close to
levels used in practice. In preliminary simulations (using only
ramp tests) the parameter estimates of a and b were highly
correlated (estimated correlation above 0.98), and to a lesser
extent each was correlated with w. As an attempt to reduce
this correlation, a new parameter, ¢, was introduced and the
parameter a was replaced by b/c. This choice of
reparameterization also gives a separate estimate of slope and
intercept in equation (5). This reparameterization reduced the
correlation problem considerably (estimated correlation
between b and ¢ of 0.8 or less). For constant load tests, an
“optimal” design would again be to use two extreme load
levels. In practice, the load levels chosen must be low enough
s0 that too many specimens do not break on uploading to the
constant load level, and high enough so that enough
specimens break in a reasonable time. Again, three load levels
have usually been chosen.

In a smulation, actual values of the random variable X
generate the failure times. However, since the actual values
are unknown in practice, when estimating parameters, these
values are replaced by the approximate expected values of
order statistics involving (i - 0.375)/(n + 0.25). Better
parameter estimates should be expected if these “order
statistics’ are close to the true random variable X. One way
to do thisisto “match” errorsin each of the test groups. If g
groups of n observations each are to be generated, generate
ng random variables X and sort them from lowest to highest.
Assign the lowest g randomly to each of the g test groups,
assign the next g, etc. Each test group then has equa
distributions of the random variable X and the values should
be close enough to their true vaue.

Unfortunately for lumber, it isimpossible to predict the exact
“strength” for a piece of lumber before breaking it. Since one
would like to have equal distributions of “strength” for each
test, some aternative measurement must be used. Differing
distributions of strength will give a bias to the estimation of
the parameters. A nondestructive measurement of stiffnessis
known to correlate with lumber “strength,” with a correlation
coefficient within the range of 0.5 to 0.8. To study the effect
of correlation in preliminary simulations, three values of the
correlation coefficient are assumed:

1. No matching (noner = 0).
2. Part matching (part r = 0.67).
3. Full matching (full r = 1).

Therefore, in the simulation, pairs of random variables are
generated from bivariate normal distributions. The pairs are

sorted by the first random variable and assigned to the g
groups. The second random variable is then used to generate
the failure times using b = 0.03, ¢ = 0.001, and w = 0.3 as
the “true” parameter values.

The effect of this “matching” of errors can be seenin table 1.
Three rates of ramp loading (g = 3) are used in the
simulation with 50 pieces (n = 50) at each rate. Summary
results include the average and standard deviation of the
parameter estimates for 500 replications. Also included isthe
average of the standard error of the parameter estimate.
Asymptotic confidence intervals were constructed using the
estimated standard errors and assuming asymptotic normality
of the parameter estimates. The actua coverages of 50, 90,
95, and 99 percent confidence intervals are also given. Only
simulations involving the lognormal distribution are givenin
table 1, as results from the Weibull are similar. Matching
does little to the average standard error but does affect the
variability of the parameter estimates of ¢ and b. As the
“matching” increases, the variability decreases. Coverage
probabilities of the nominal 50, 90, 95, and 99 percent
confidence intervals are likewise affected. As the sample size
n increases, the effect of matching disappears. Coverage
probabilities should be close to their nomina value if the
parameter estimates are unbiased and the average standard
error is roughly equal to the standard deviation of the
parameter estimates. Asymptoticaly, this effect of “matching”
errors will disappear. Simulations showed that this was the
case for n = 200. Using part “matching” appears to give
adequate coverage probabilities.

Summary results for simulations using three ramp tests with
sample sizes of 50 and 200 in each group (additional
simuiations using 100 and 400 in each group were also done)
and part matched (r = 0.67) errors are given in table 2.
Results from both the lognormal and Weibull distributions
are given. The average of the parameter estimates are close to
their true values. The heuristic variances appear to work well,
as the average standard error is approximately equal to the
standard deviation, and the confidence intervals have
coverages gpproaching their nominal values. increasing the
sample size by afactor of four decreases the standard
deviations and standard errors by a factor of two, as
expected. However, the standard deviation decreases at a
dightly sower rate than the average standard error. This
indicates that the distribution of the parameter estimate is not
yet normal and some skewness exists.

Similar results for simulations using three constant load tests
are given in table 3. Parameter estimates are based only on
constant load failures with the simulations structured such
that 50 percent of the specimens failed under the first ramp
or constant load phase. The natura logarithm of the total
time on test served as the dependent variable. Simulations
were also done using total time on constant load as the
dependent variable. The results using total time on constant
load are not included in the tables, as the coverage
probabilities were considerably lower than when using total
time on test, athough the average values of the parameter
estimates were equally close to the true vaues.



Table 1 - Effect of error matching-three rates of ramp loading, lognormal errors

Aveéaggz
Matching Parameter n Truevalue  Average g;/?gﬁag?] Sérarnorarof Coverage of nominal confidence intervals

parameter

estimates 50 90 95 99
None r =0 b 50 0.03 0.0310436  0.00604061 0.00434497 0.362 0.792 0.872 0.938
Part r = 0.67 0302742 00400448 00404516 .500 920 .954 976
Fullr=1 0300192 00086344  .00390498 .996 1.000 1.000 1.000
None r = 0 c .001 0010000  .00003447 00002502 410 .778 .854 936
Partr =067 0009988 00002814  .00002500 448 .860 .910 978
Eullr=1 : 0010000 00002562  .00002495 470 .896 .936 ,984
None r = 0 w .3 3007051 01734806  .01920324 550 932 .962 .992
Partr = 0.67 . 3011068 01875916  .01916177 512 892 .948 .984
Fullr=1 .3049999 01753194 01908649 518 .920 .968 .996

Table 2 - Simulation results using three rates of ramp loading-part matched errors

Aveé agg:

Matching Parameter n Truevalue  Average g;?gﬁaz)?] Sé?rnorarof Coverage of nominal confidence intervals
par ameter

estimates 50 90 95 99

Lognormal b 50 0.03 0.0302742  0.00400448 0.00404516 0.500 0.920 0.954 0.976

200 0301704 00199959 .00194499 488 504 .940 988

c 50 .001 0009988 00002814  .00002500 448 .860 910 978

200 .0010001 00001412  .00001225 .460 .856 916 972

w 50 3 .3011068 .01875916  .01916177 512 .892 948 984

. 200 .3003685 00836449  .00918694 546 926 952 994

Weibull b 50 .03 0306932 00510527 00487762 464 .884 928 964

‘ 200 .0300860 00260538  .00220845 458 .826 .900 982

¢ 50 .00t 0010010 00003232 .00003053 456 .876 928 .988

200 0009993 J00001782  .00001458 .386 .824 .906 .966

w 50 3 .3058221 02413786 01749529 .376 .770 .844 936

200 .3020524 [01225947  .00811202 .340 700 7198 924




Table 3 - Simulation results using three constant load levels -part matched errors

Average
; Standard sandard Coverage of nominal confidence intervals
Matching Parameter n Truevalue  Average deviation error of
parameter
estimates 50 90 95 99
Lognormal b 50 0.03 0.0305090 - 0.00602165 0.00668390 0.548 0.914 0.948 0.988
200 0302290 .00317850  .00321861 504 918 962 988
[ 50 .001 0009964 00008594  .00009188 .538 918 956 992
200 : 0009996 00004359 00004392 512 910 956 .986
w - 50 .3 - 3097154 06145666  .06128619 .508 916 .948 976
200 ' 3025513 02747017  .02796832 520 916 .958 .986
Weibull b 50 .03 0303518 00870141 00889481 554 910 946 978
200 - 0300413 .00388621 00430879 534 928 966 992
[ 50 .001 0009933 .00011512  .00011628 534 .898 .956 986
200 0009978 .00005288 00005592 504 920 970 994
w 50 3 .3075703 .08643013 07536966 476 852 .894 948
200 06342 MIRE2STIR 03440830 442 R4R 920 7R




Example

Data from a recent study at the Forest Products Laboratory
were used to demonstrate the use of these parameter estimates
and variances. The data consisted of:

« 294 specimens of Douglas Fir 2 by 4 lumber each with an
edge knot.

« Specimens were tested on edge, with the edge knot on the
tension side stressed under maximum bending moment.

« The specimens were divided into six groups each with equal
distributions of stiffness.

» The 6 groups of 49 specimens were assigned to one of the
6 tests:

« fast, intermediate, or dow ramp loading.
« high, intermediate, or low constant load.

For further details see Gerhards and Link (1983).

The cumulative damage model was fit to the ramp and
constant load data separately. The program used to estimate
these parameters (Link 1987) is available from the National
Technica Information Service, 5285 Port Royal Road,
Springfield, VA 22161. For the constant load tests, the
parameters were fit using only constant load failures with
the natural logarithm of total time on test serving as the
dependent variable. The results for the lognormal
distribution were

Constant

Estimate Estimated
(standard error) correlations
Tests c b w cb cw  bw
Ramp 0.00142324  0.0664345  0.307520 0.5362 -0.0304 -0.0669

(0.00003067) (0.0127301) (0.019881)

0.00119043  0.0293005  0.294694 0.9766 -0.3810 -0.3717
load (0.00010598) (0.007067%) (0.062319)

Using aHotelling's T? two-sample test statistic (T = 8.018),
the null hypothesis of equality of parameters for the two test
groups is rejected (p < 0.005). Looking at one variable at a
time with univariate two- sample z tests yields

H,: Values equal for two test groups

Parameter z p
c 2.110 0.035
b 2.550 0.011
W 0.196 0.845

Fitting the cumulative damage model to both ramp and
constant load data will yield estimates close to those using
ramp load data only due to the down weighting of constant
load failures.

The data and the fitted cumulative damage model for the
ramp data are plotted in figure 1. The values plotted on the

y axis are the approximate expected values of order statistics
from a standard normal distribution. The natural logarithm
of load (in pounds) is plotted aong the x axis. Using the
estimated variance-covariance matrix, 95 percent confidence
bands for the expected values of order statistics are plotted as
dashed bands around the fitted curve. To graphically compare
the data to the fitted curve, Kolmogorov-Smirnov-type bands
are given about the data (95 pct confidence bands indicated
by +). Values to construct these bands if the lognormal
distribution is assumed can be found in Conover (1980)
(Lillifors test, table A15), or if the Weibull distribution is
assumed, see Chandra et a. (1981). Note that the
interpretation of these bands is quite different. The dashed
band is a confidence band on the expected values of order
statistics (produced horizontally). The Kolmogorov-Smirnov-
type bands are a test of goodness of fit of the data to a fitted
curve (produced vertically). The Kolmogorov-Smirnov bands
give only an approximate goodness-of -fit test, as they are
based on maximum likelihood estimation. We are not using
maximum likelihood estimation, but asymptotically the bands
are correct if asymptotically our estimates are equivalent to
maximum likelihood estimates as Gupta's estimate s* is
asymptotically equivalent to the maximum likelihood estimate
of s.

The data and the fitted cumulative damage model are plotted
for the constant load tests in figure 2. The natural logarithm
of total time on test (in minutes) is plotted on the x axis for
failures under the preliminary uploading or constant load
phases of the test. For the failures under the second ramp
loading, the natura logarithm of time until failure under the
second ramp loading is plotted. Confidence bands are only
given for failures under constant load. Note that the fitted
model in the region of failures under the second ramp loading
continues the trend in the region of failures under the first
ramp loading. The little curve at the beginning of failures
under the second ramp loading results from the damage that
the model predicts for the weaker surviving pieces, due to the
prior constant load.
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Conclusions

Conclusions from this paper can be summarized as follows:

« The estimation and confidence interval procedures
developed give relatively unbiased estimates and
approximately correct confidence coverages for sample sizes
of at least 50 per test.

« Matching of errors helps the estimation in small sample
sizes but its influence diminishes as the sample size
increases.

« The parameter estimates are not yet asymptotically normal
for sample size of 200 but the approximation is adequate.

In practice

« both constant and ramp load tests

« a lesst three and preferably more rates of loading, k, or
constant load levels

are needed to see if the cumulative damage model is
appropriate.
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