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Abstract 

An exponential cumulative damage model, da/dt =

exp( - a + b´s(t)/so), has been proposed for the duration of

load phenomenon in lumber. The amount of damage a (0 =

no damage, 1 = failure) depends upon the load history, s(t);

the underlying inherent strength, so ; and parameters a and b´.

Experimental load histories include ramp loading, s(t) = kt,

and constant loading, s(t) = load, after a period of ramp

loading. We model the underlying inherent strength by a

lognormal or Weibull distribution. The parameters are then

estimated using iterative reweighted nonlinear least squares. A

heuristic argument is used to derive variances which are

shown to be approximate through simulation. A computer

program used to estimate the parameters is available from the

National Technical Information Service (Link 1987).
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Introduction 

Lumber is known to be affected by the phenomenon known 
as duration of load. The following behavior demonstrates this 
phenomenon: 

� 	the “strength” of a piece of lumber depends upon the rate 
with which it is loaded to failure; 

� 	a piece of lumber may be unable to carry a given load 
indefinitely. Failure means that the piece of lumber is no 
longer able to carry a given load. 

Gerhards (1979) proposed an exponential cumulative damage 
model based on Miner’s (1945) rule to model this duration of 
load phenomenon. Damage, a, to a piece of lumber ranges 
from zero, indicating no damage, to 1, indicating failure. 
Damage accumulates over time, t, by the following equation: 

da/dt = exp( - a + b ś (t)/so ) (1) 
where a and b´ are parameters, s(t) is the load history over 
time, and so is the underlying inherent strength of the piece 
of lumber. Typical experimental load histories are 

ramp loading: s(t) = kt, where k is the rate of loading 

constant loading: s(t) = load (usually preceded by a period 
of ramp loading to the constant 
load level). 

We model the underlying strength of a piece of lumber by 
either a two-parameter lognormal or Weibull distribution; 
s o = b" Xw. X is a random variable equal to 

lognormal X = exp(R)	 where R is a standard normal (0, l) 
random variable. 

Weibull X = - ln(1 - R) where R is a uniform (0, l) random 
variable. 

The parameter b" is a scale parameter, and w is the 
standard deviation of ln(strength) for the lognormal 
distribution and the inverse of the shape parameter for the 
Weibull distribution. Since b´ and b" appear only as a ratio, 
b = b´/b" will be substituted. Therefore, one can rewrite the 
cumulative damage model, equation (1), as 

da/dt = exp( - a + b s (t)/Xw) (2) 
where a, b, and w are the parameters to be estimated. 

Although one can integrate the cumulative damage model for 
any load history, s(t), it is useful to determine the time to 
failure for two simple load histories, ramp and constant 
loading. For ramp loading, s(t) = kt, and the time to 
failure, T, is 

T = [Xw/(bk)] ln [(exp(a)bk/Xw) + 1] 

or load = kT = [Xw/b] ln [(exp(a)bk/Xw) + 1] 

» [Xw/b] [a + ln(bk) - w ln(X)] (3) 
or ln(T) » w ln(X) - ln(bk) + ln[a + ln(bk) - w ln(X)] (4) 

To see the effect of the parameters a and b on load or ln(T), 
eliminate the effect of w by setting X equal to 1. If the 
random variable X equals 1, the median load for the 
lognormal distribution and the 63rd percentile for the Weibull 
distribution is given by 

load » a/b + (ln(bk))/b (5) 



Theory 

Thus, the (median or 63rd percentile) load that a piece of 
lumber is able to carry before failure (its “strength”) is 
linearly related to the natural logarithm of the rate of 
loading. Equation (5) is the mathematical model of the 
duration of load behavior under ramp loading. 

Under a constant load (assuming that the load was 
instantaneously applied at time t = 0), the time to failure, 
T, is 

T = exp(a - b(load)/Xw) 
or 

ln(T) = a - b(load)/Xw 
(6) 

Thus, even if the load is zero, this theory implies that a piece 
of lumber will fail eventually, although for practical purposes 
this time is infinite. The natural logarithm of the time to 
failure of the median or 63rd percentile piece is linearly 
related to the constant load level. Equation (6) is the 
mathematical model of the duration of load behavior under 
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constant loading. 

Estimation of Parameters 

To estimate the parameters, the dependent and independent 
variables must be specified. For failure under ramp loading, a 
logical dependent variable is the natural logarithm of the time 
to failure, ln(T). Actual time to failure turns out to be an 
inappropriate choice as the longest failure times (those from 
the slowest ramp rate) dominate the estimation procedure due 
to their larger variability. For failures under constant load, 
natural logarithm of time to failure, In(T), assuming 
instantaneous uploading would be an appropriate choice for 
the dependent variable. In practice, instantaneous uploading 
to a given constant load level is impossible, and specimens are 
usually subjected to a ramp loading, from time 0 to t1, up to 
the desired constant load level. Therefore, two logical choices 
for the dependent variable are 

1. The natural logarithm of the total time on test, In(T), or 

2. The natural logarithm of the time on constant load, 
ln(T - t1). 

If one chooses the latter, the parameter estimation may be 
more heavily influenced by the early failures under constant 
load, if there are several failures immediately after uploading 
such that T - t1 is less than one. In this case ln(T - t1) may 
be a large negative number and will unduly affect the 
estimation process. Since it is impractical to carry out an 
experimental test until all the specimens have failed under 
constant load, surviving specimens are unloaded after a 
period of time, t2. The survivors are then subjected to ramp 
loading until failure occurs. The dependent variable chosen 
for the survivors of constant load is the natural logarithm of 
the time on the second ramp loading, ln(T - t2). To use the 
natural logarithm of the total time on test would not 
differentiate these failures as T - t2 is quite small compared 
to t2. 

The independent variable is the underlying random variable 
X. Since this variable is unknown, some value must be 
specified in order to estimate the parameters. To do this, 
specimens are generally tested in groups of n. One test of n 
specimens consists of a single rate of loading, or one constant 
load level. (A test might start specimens at one load level and 
then increase the load to other levels, but this type of test is 
not considered here.) The order of failure, i of n, is known. 
A logical choice of R (the independent variable, X, is a 
function of R) is the expected value of the appropriate order 
statistic from either the standard normal (0, 1), or uniform 
(0, 1) distribution. Exact values are difficult to calculate, but 
Blom (1958) has shown that R = F –1((i - 0.375)/(n + 
0.25)) is an adequate approximation for the standard normal; 
F –1 is the inverse of the standard normal cumulative 
distribution function. Likewise, R = (i - 0.375)/(n + 0.25) 
will suffice for the uniform distribution. 

If one assumes the lognormal model (similar results will work 
for the Weibull model), the dependent variable for ramp load 
failures is (equation (4), X = exp(R), and R is a standard 
normal (0, 1) random variable) 

ln(T) » wR - ln(bk) + ln(a - wR + ln(bk)) 



The variance of ln(T) is approximately w2 (the influence of 
the second wR is negligible). For failures under constant load 
(assuming, for the moment, instantaneous uploading), the 
dependent variable is (equation (6)) 

ln(T) = a - b(load)exp( - wR) 

» a - b(load)(1 - wR) 

The variance of ln(T) is approximately (b(load)w)2. The 
linearization also provides starting values for the nonlinear 
regression. A nonlinear least squares procedure assumes equal 
error variances. The residuals from failures under constant 
load must be weighted by (1/(b(load))), if the ramp and 
constant load failures are to be used together to estimate the 
parameters. 

In practice, b and w which are needed to weight the residuals 
are the unknown parameters. Therefore, we use an iterative 
reweighted nonlinear least squares procedure to estimate the 
unknown parameters: 

1. Obtain unweighted estimates of a, b, and w. 

2. Reestimate a, b, and w using the current estimate of b to 
weight any residuals from constant load failures. 

3. Continue to iterate until successive parameter estimates 
converge. 

Given the specified dependent and independent variables, the 
parameters a, b, and w can be estimated using iterative 
nonlinear least squares if at least two different rates of 
loading (i.e. k values), or two constant load levels are used. 
Otherwise a and b are not both estimable. The variability 
parameter w is estimable only if there are at least two 
observations in a test. 

Variability of the Parameter Estimates 

To discuss an estimator of the variability of these parameter 
estimates, additional notation is needed. Let ybe the vector 

~ of the dependent variables, x the vector of the independent
~ 

variables, q the vector of parameters to be estimated, and e
~ ~ 

the vector of residuals. The model is then y = f(x 
~ 

) + e,~ , q~ ~ 
where f is a nonlinear function of x and q. Let the 

~ ~ 
dimensionality of y~ , x and e be ng (g groups of n specimens

~ ~ 
each), and that of q, be p. If the errors are independent and

~ 
identically distributed normal random variables, then the

^ nonlinear least squares estimator, ~q, of q is known to ~ 
asymptotically have a normal distribution with mean q and ~ 
variance s 2(F´ F 

~ 
) where F is the ng x p matrix of first partial

~ ~

~ , qderivatives of f(x 
~
) with respect to q (Gallant 1975). At

~ 
first glance, it is apparenly sufficient to estimate s2 by

^ ^ 
(y - f(x, q ))´(y  - f(x, q ))/(ng - p). However, this is

~ ~ ~ ~ ~ incorrect in this case since the variability term w is in the 
regression, as the following example shows. 

Gupta (1952) gave an estimator of the standard deviation, s* ,  
of a normal distribution which is a linear combination of the 
expected values of order statistics from a standard normal 
distribution. Let x(i) be the ith order statistic and ui the 
expected value of the ith order statistic. Then s* = 
Suix(i) /Sui2 (all summations are over i = 1, . . . ,n for sample 
size n). Ali and Chan (1964) showed that asymptotically s* is 
distributed as a normal random variable with mean s and 
variance s2/[2n(S ui

2/n)]. They also showed that the limit (as 
n goes to infinity) of Sui

2/n is one, so the asymptotic 
variance of s* is s2/2n. This is the Cramer-Rao lower bound 
for the variance of an unbiased estimator of s. The estimator, 
s*, can also be obtained as the slope of the regression of 
x(i) on ui: x(i) = Sx(i)/n + s*ui + ei. The usual estimator 
of the variance of the slope from a linear regression is 
(Sei

2/(n - 2))/Sui
2. However, the sum of squares of the 

residuals divided by n asymptotically goes to zero, not to a 
constant s2: 

_ 
Since the limit (as n goes to infinity) of S(x(i) - x)2/n is s2, 
since s* is an unbiased estimator of s, and since Sui

2/n is 
one, the limit of (1/n)Sei

2 is zero, when it should be s2/2. 

In our problem, we are also using expected values of order 
statistics as independent variables in a regression problem to 
estimate several parameters including the variability parameter 
w. Just as one can regress x values on expected values of 
order statistics from a normal distribution to get an estimate 
of the standard deviation for a normal distribution, one can 
regress x values on expected values of order statistics from a 
Weibull distribution to get an estimate of the inverse shape 
parameter (White 1969). The mean square error (sum of 
squares of residuals divided by the sample size) will be 
essentially zero. A heuristic solution, in the case of an 
assumed lognormal distribution, would be to add w2/2 to the 
mean square error. This addition to the mean square error 
will give the appropriate variance at least for Gupta’s estimate 
of the standard deviation and may prove adequate for our 
much more complicated problem. Menon (1963) showed that 
the Cramer-Rao lower bound for an unbiased estimator of the 
inverse shape parameter, d, is 0.61 d2/n. Therefore we will 
add 0.61 w2 to the mean square error when using a Weibull 
distribution as a model for the underlying inherent strength. 
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Simulation Results and Discussion 

Simulations were carried out to determine the accuracy of the 
parameter and variability estimates. The form of the 
simulations was based on practical limits on experimentation. 
For ramp loading, an “optimal” design (if one believed the 
model) would be to use an equal number of observations at 
two extreme loading rates. In practice, three loading rates 
equally spaced in ln (rate of loading) have usually been 
chosen. Ideally these would be spaced as far apart as 
possible, given the limitations of the test equipment. For this 
simulation the three rates of loading which were chosen were 
0.03, 3, and 300 pounds per minute as these were close to 
levels used in practice. In preliminary simulations (using only 
ramp tests) the parameter estimates of a and b were highly 
correlated (estimated correlation above 0.98), and to a lesser 
extent each was correlated with w. As an attempt to reduce 
this correlation, a new parameter, c, was introduced and the 
parameter a was replaced by b/c. This choice of 
reparameterization also gives a separate estimate of slope and 
intercept in equation (5). This reparameterization reduced the 
correlation problem considerably (estimated correlation 
between b and c of 0.8 or less). For constant load tests, an 
“optimal” design would again be to use two extreme load 
levels. In practice, the load levels chosen must be low enough 
so that too many specimens do not break on uploading to the 
constant load level, and high enough so that enough 
specimens break in a reasonable time. Again, three load levels 
have usually been chosen. 

In a simulation, actual values of the random variable X 
generate the failure times. However, since the actual values 
are unknown in practice, when estimating parameters, these 
values are replaced by the approximate expected values of 
order statistics involving (i - 0.375)/(n + 0.25). Better 
parameter estimates should be expected if these “order 
statistics” are close to the true random variable X. One way 
to do this is to “match” errors in each of the test groups. If g 
groups of n observations each are to be generated, generate 
ng random variables X and sort them from lowest to highest. 
Assign the lowest g randomly to each of the g test groups, 
assign the next g, etc. Each test group then has equal 
distributions of the random variable X and the values should 
be close enough to their true value. 

Unfortunately for lumber, it is impossible to predict the exact 
“strength” for a piece of lumber before breaking it. Since one 
would like to have equal distributions of “strength” for each 
test, some alternative measurement must be used. Differing 
distributions of strength will give a bias to the estimation of 
the parameters. A nondestructive measurement of stiffness is 
known to correlate with lumber “strength,” with a correlation 
coefficient within the range of 0.5 to 0.8. To study the effect 
of correlation in preliminary simulations, three values of the 
correlation coefficient are assumed: 

1. No matching (none r = 0). 

2. Part matching (part r = 0.67). 

3. Full matching (full r = 1). 

Therefore, in the simulation, pairs of random variables are 
generated from bivariate normal distributions. The pairs are 

sorted by the first random variable and assigned to the g 
groups. The second random variable is then used to generate 
the failure times using b = 0.03, c = 0.001, and w = 0.3 as 
the “true” parameter values. 

The effect of this “matching” of errors can be seen in table 1. 
Three rates of ramp loading (g = 3) are used in the 
simulation with 50 pieces (n = 50) at each rate. Summary 
results include the average and standard deviation of the 
parameter estimates for 500 replications. Also included is the 
average of the standard error of the parameter estimate. 
Asymptotic confidence intervals were constructed using the 
estimated standard errors and assuming asymptotic normality 
of the parameter estimates. The actual coverages of 50, 90, 
95, and 99 percent confidence intervals are also given. Only 
simulations involving the lognormal distribution are given in 
table 1, as results from the Weibull are similar. Matching 
does little to the average standard error but does affect the 
variability of the parameter estimates of c and b. As the 
“matching” increases, the variability decreases. Coverage 
probabilities of the nominal 50, 90, 95, and 99 percent 
confidence intervals are likewise affected. As the sample size 
n increases, the effect of matching disappears. Coverage 
probabilities should be close to their nominal value if the 
parameter estimates are unbiased and the average standard 
error is roughly equal to the standard deviation of the 
parameter estimates. Asymptotically, this effect of “matching” 
errors will disappear. Simulations showed that this was the 
case for n = 200. Using part “matching” appears to give 
adequate coverage probabilities. 

Summary results for simulations using three ramp tests with 
sample sizes of 50 and 200 in each group (additional 
simuiations using 100 and 400 in each group were also done) 
and part matched (r = 0.67) errors are given in table 2. 
Results from both the lognormal and Weibull distributions 
are given. The average of the parameter estimates are close to 
their true values. The heuristic variances appear to work well, 
as the average standard error is approximately equal to the 
standard deviation, and the confidence intervals have 
coverages approaching their nominal values. increasing the 
sample size by a factor of four decreases the standard 
deviations and standard errors by a factor of two, as 
expected. However, the standard deviation decreases at a 
slightly slower rate than the average standard error. This 
indicates that the distribution of the parameter estimate is not 
yet normal and some skewness exists. 

Similar results for simulations using three constant load tests 
are given in table 3. Parameter estimates are based only on 
constant load failures with the simulations structured such 
that 50 percent of the specimens failed under the first ramp 
or constant load phase. The natural logarithm of the total 
time on test served as the dependent variable. Simulations 
were also done using total time on constant load as the 
dependent variable. The results using total time on constant 
load are not included in the tables, as the coverage 
probabilities were considerably lower than when using total 
time on test, although the average values of the parameter 
estimates were equally close to the true values. 
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Table 1 - Effect of error matching-three rates of ramp loading, lognormal errors 

Average

standard
Standard error of
Matching Parameter n True value Average Coverage of nominal confidence intervals 

deviation parameter 
estimates 50 90 95 99 

None r = 0 

Part r = 0.67 

Full r = 1 

None r = 0 

Part r = 0.67 

Full r = 1 

None r = 0 

Part r = 0.67 

Full r = 1 

Table 2 - Simulation results using three rates of ramp loading-part matched errors 

Average 
standardStandardMatching Parameter n True value Average deviation error of Coverage of nominal confidence intervals 

parameter 
estimates 50 90 95 99 

Lognormal 

Weibull 
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Table 3 - Simulation results using three constant load levels -part matched errors 

Average 

Standard standard 
Matching Parameter n True value Average deviation error of Coverage of nominal confidence intervals 

parameter

estimates 50 90 95 99


Lognormal 

Weibull 
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Example 

Data from a recent study at the Forest Products Laboratory 
were used to demonstrate the use of these parameter estimates 
and variances. The data consisted of: 

� 	294 specimens of Douglas Fir 2 by 4 lumber each with an 
edge knot. 

� 	Specimens were tested on edge, with the edge knot on the 
tension side stressed under maximum bending moment. 

� 	The specimens were divided into six groups each with equal 
distributions of stiffness. 

� 	The 6 groups of 49 specimens were assigned to one of the 
6 tests: 

� fast, intermediate, or slow ramp loading. 

� high, intermediate, or low constant load. 

For further details see Gerhards and Link (1983). 

The cumulative damage model was fit to the ramp and 
constant load data separately. The program used to estimate 
these parameters (Link 1987) is available from the National 
Technical Information Service, 5285 Port Royal Road, 
Springfield, VA 22161. For the constant load tests, the 
parameters were fit using only constant load failures with 
the natural logarithm of total time on test serving as the 
dependent variable. The results for the lognormal 
distribution were 

Estimate Estimated 
(standard error) correlations 

Tests c b w cb cw bw 

Using a Hotelling’s T2 two-sample test statistic (T2 = 8.018), 
the null hypothesis of equality of parameters for the two test 
groups is rejected (p < 0.005). Looking at one variable at a 
time with univariate two- sample z tests yields 

Ho: Values equal for two test groups 

Parameter z p 

Fitting the cumulative damage model to both ramp and 
constant load data will yield estimates close to those using 
ramp load data only due to the down weighting of constant 
load failures. 

The data and the fitted cumulative damage model for the 
ramp data are plotted in figure 1. The values plotted on the 
y axis are the approximate expected values of order statistics 
from a standard normal distribution. The natural logarithm 
of load (in pounds) is plotted along the x axis. Using the 
estimated variance-covariance matrix, 95 percent confidence 
bands for the expected values of order statistics are plotted as 
dashed bands around the fitted curve. To graphically compare 
the data to the fitted curve, Kolmogorov-Smirnov-type bands 
are given about the data (95 pct confidence bands indicated 
by +). Values to construct these bands if the lognormal 
distribution is assumed can be found in Conover (1980) 
(Lillifors test, table A15), or if the Weibull distribution is 
assumed, see Chandra et al. (1981). Note that the 
interpretation of these bands is quite different. The dashed 
band is a confidence band on the expected values of order 
statistics (produced horizontally). The Kolmogorov-Smirnov
type bands are a test of goodness of fit of the data to a fitted 
curve (produced vertically). The Kolmogorov-Smirnov bands 
give only an approximate goodness-of-fit test, as they are 
based on maximum likelihood estimation. We are not using 
maximum likelihood estimation, but asymptotically the bands 
are correct if asymptotically our estimates are equivalent to 
maximum likelihood estimates as Gupta’s estimate s* is 
asymptotically equivalent to the maximum likelihood estimate 
of s. 

The data and the fitted cumulative damage model are plotted 
for the constant load tests in figure 2. The natural logarithm 
of total time on test (in minutes) is plotted on the x axis for 
failures under the preliminary uploading or constant load 
phases of the test. For the failures under the second ramp 
loading, the natural logarithm of time until failure under the 
second ramp loading is plotted. Confidence bands are only 
given for failures under constant load. Note that the fitted 
model in the region of failures under the second ramp loading 
continues the trend in the region of failures under the first 
ramp loading. The little curve at the beginning of failures 
under the second ramp loading results from the damage that 
the model predicts for the weaker surviving pieces, due to the 
prior constant load. 
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Figure 1 - Edge knot study ramp loading K = 1,460, 5.806, Figure 2 - Edge knot study constant load = 702, 631, 478
0.0245 pounds per minute. (ML85 5188) pounds. (ML85 5189) 
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Conclusions Literature Cited 

Conclusions from this paper can be summarized as follows: 

� 	The estimation and confidence interval procedures 
developed give relatively unbiased estimates and 
approximately correct confidence coverages for sample sizes 
of at least 50 per test. 

� 	Matching of errors helps the estimation in small sample 
sizes but its influence diminishes as the sample size 
increases. 

� 	The parameter estimates are not yet asymptotically normal 
for sample size of 200 but the approximation is adequate. 

In practice 

� both constant and ramp load tests 

� 	at least three and preferably more rates of loading, k, or 
constant load levels 

are needed to see if the cumulative damage model is 
appropriate. 

2.0-2/88 
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