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Abstract

A new method for computing the performance of uniformly
loaded wood floors is presented. The procedure presents a
floor as a simple structure consisting of a beam supported by
elastic springs. The method computes midspan joist
deflections which are virtually identical to those obtained
from a large-scale finite element program, but at a fraction of
the computational effort. Also, computations agree very
closely with laboratory results. A simple BASIC program is
presented for implementing the procedure.
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Loaded Floors
A Beam-Spring Analog

William J. McCutcheon, Engineer
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Introduction

Wood-joist floor systems have long been analyzed and
designed by assuming that the joists act as simple beams in
carrying the design load. This simple method neglects many
complex interactions among a floor’s components-the joists,
sheathing, and connectors-which affect its strength and
stiffness. It also neglects material variability in that it
assumes all joists have identical mechanical properties. A
simple analytical method is presented here which accurately
accounts for these interactions in computing floor stiffness;
deflections computed by this method compare very closely
with those obtained from a more complex and costly
procedure.

Prior research has addressed the problem of floor analysis
and produced analytical methods and computer models which
accurately predict the true behavior of light-frame floors.
McCutcheon (1977) presented an analytical method for
computing the stiffness of floors with partial composite
action. Based on a T-beam model, the method accounts for
interlayer slip due to the nonrigid attachment of the floor
sheathing to the joists. Thompson, Vanderbilt, and
Goodman (1977) developed a finite element computer
program, FEAFLO, for calculating the performance of wood
floors. Based on a crossing beam analysis, this model
considers some factors not included in the simpler T-beam
model, most notably joist-to-joist variability and two-way
action. However, when the two methods were used
concurrently in a cooperative study (McCutcheon et al. 1981)
to compute the average deflections of typical floor
configurations subjected to uniform loads, they produced
results which were in very close agreement.

Foschi (1982) presented a finite element analysis technique
which includes lateral and torsional joist deformations as
degrees of freedom and considers plate action in the
sheathing; these are not considered in the FEAFLO or
T-beam procedures.

Recently, the FEAFLO program was used to predict the
behavior of floors constructed with joists whose properties
were determined in an in-grade survey (Bufano et al. 1980;
Vanderbilt et al. 1980). These simulations considered three
stiffness criteria: average midspan joist deflection, soft-spot
deflection, and greatest individual joist deflection in each
floor.

The T-beam model is computationally much more efficient
than a large-scale finite element program. Because it
represents a floor as a single beam, it is applicable to the
computation of average joist deflection; however, it cannot
directly compute soft-spot or individual joist deflections. An
extension of the T-beam method to consider such additional
deflection criteria will provide a simple and economic
alternative for determining floor performance.

This paper presents a method for predicting the performance
of wood floors under uniform loads. Using an analog which
represents a floor as a beam supported by elastic springs, the
T-beam method (McCutcheon 1977) is extended to account
for variability of joist stiffness and two-way action due to the
cross-joist distributional properties of the sheathing. It is
shown that this method computes individual midspan joist
deflections which are virtually identical to those obtained
from a large-scale finite element program (Thompson et al.
1977), and is capable of accurately predicting the performance
of real floors. A simple BASIC program is presented for
implementing the procedure.



Methodology

A light-frame floor system consists of multiple parallel wood
joists to which are fastened a sheathing made of plywood or
other sheet material. In order to use the T-beam model to
account for composite joist behavior and to also consider
two-way action, it is necessary to conceptually simplify a floor
in two steps. At the first level of abstraction, the sheathing is
compressed into a narrow beam which spans across the
simply-supported joists (fig. 1). This beam distributes the
load among the joists. At the second level the joists, which
act as leaf springs in supporting the sheathing distribution
beam, are replaced by simple coil springs (fig. 2). These
spring stiffnesses account for joist-sheathing composite
action. The resulting structure is a beam supported by elastic
springs. The ends of the beam may be either simply
supported (fig. 2a) or spring supported (fig. 2b), depending
upon whether the end joists on the floor are fully supported
along their lengths or are free to deflect, respectively.

Joist “Spring” Properties

Each spring in the analog represents a floor joist, whose
bending stiffness is increased by partial interaction with the
sheathing. The aforementioned T-beam analysis
(McCutcheon 1977) derived the following equations to define
the composite bending stiffness, EIj, of a joist:

(1)

(2)

(3)

(4)

where

EIj

EIR

EIU

(EA)1, (EA)2

h

t
dj
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kn

= effective bending stiffness of the joist,
including partial composite action

= bending stiffness of the joist if the sheathing
is rigidly attached

= stiffness of the unconnected joist and
sheathing, taken as the stiffness of the bare
joist

= axial stiffness of the flange (sheathing) and
web (joist) of the T-beam

= distance between centroids of the flange and
web = ½ (t + dj)

= sheathing thickness
= joist depth
= distance between discontinuities (open gaps)

in the sheathing in the direction of the joist
span

= nail stiffness (load/slip ratio), assuming
linear nail behavior

= average nail spacing.

Figure I.--Floor system with sheathing
“distribution beam” supported by simply-
supported joists.
(ML84 5180)

Figure 2.--Beam-spring analog structure with end
joists fully supported (a) or free to deflect (b).
(ML84 5181)
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The midspan deflection, 4, of a uniformly loaded joist is

(5)

where

w = load per unit length
L = joist span.

The linear spring constant, kj, required for the analog is the
ratio of joist load to joist deflection:

Thus, the equivalent spring constant for each joist is
computed by equation (6) after the joist’s bending stiffness,
EIj, is computed by the T-beam method summarized by
equations (14).

Sheathing “Beam” Properties

The bending stiffness of the analog beam is equal to the
stiffness of the sheathing in the cross-joist direction. If there
are no discontinuities in the sheathing in this direction, that
is, if the sheathing is long enough to extend the full width of
the floor, the analog beam stiffness, EIb, is equal to  1/1 2  EsLt3.
However, gaps are usually present and these disrupt the
continuity of the sheathing and reduce its bending stiffness.
The resulting reduced stiffness can be approximated by
averaging out the effect of these discontinuities. For
example, if the sheathing spans six joist spaces (as occurs with
typical 16-in. spacing and 96-in. lengths of sheathing), a
discontinuity occurs at every sixth joist in each row of
sheathing. Thus, on the average, there is one-sixth of a gap
at each joist crossing, and the average stiffness is reduced by
one-sixth.

For the general case, the bending stiffness may be
approximated by

where

EIb = bending stiffness of analog beam
Es = bending MOE of sheathing in cross-joist

(7)

Solution of Analog Structure

Analyzing a wood floor system with a finite element program
involves the solution of a large number of simultaneous
equations. A single joist may be broken into as many as 20
segments, and analysis of a lo-joist floor will therefore
require the solution of up to 200 equations. The beam-spring
analog involves just one degree of freedom per joist and,
therefore, a lo-joist floor can be analyzed with just 10
simultaneous equations.

The actual equations which result from this method are
derived in appendix A, and a simple BASIC program for
implementing the method is presented in appendix B.
Appendix C presents complete input and output for analyzing
one floor.

direction
S = joist spacing

= length of sheathing (typically 96 in.)
L,t = previously defined.



Results

Comparison of Model with
Finite Element Solution

We used the finite element program FEAFLO to determine
the deflection characteristics and distributions of wood floors
constructed with joists whose properties were determined
from a large-scale sampling program (Bufano et al. 1980;
Vanderbilt et al. 1980). Each floor comprised ten 2 by 8
joists which were free to deflect, plus an additional
continually supported joist at each end (fig. 2a). Floor
performance was characterized by three values: (1) the
average midspan deflection of the eight interior joists, (2) the
“soft-spot” deflection, defined as the highest average
deflection of any three adjacent joists, and (3) the maximum
deflection of any single joist. The “as-graded” joist data
were used to analyze 138 floors for Douglas-fir (green) joists,
and 107 floors for southern pine joists.

From each group (Douglas-fir and southern pine), 11 floors
were analyzed by the beam-spring analog. These correspond
to the stiffest floor, the floors at the 10th percentile of the
stiffness distribution, the 20th percentile,. . . , 90th percentile,
and the most limber floor.

The input data to the beam-spring model were the same
values used in the FEAFLO analyses:

Joist spacing, s = 16 inches (ii.)
Joist span, L = 157 in. (Douglas-fir)

L = 154 in. (southern pine)
Sheathing thickness, t = 0.5782 in.
Sheathing axial modulus, along span, Ea = 0.9404 × 106 lb/in.2

Sheathing bending modulus, across span,
Eb = 1.487 × 106 lb/in.2

Nail stiffness (as assumed in FEAFLO analyses),
kn = 30,000 lb/in.

Average nail spacing, sn = 6.7 in.
Joist size, nominal 2 by 8, actual dimensions input for each

joist
Joist modulus input for each joist
Length of sheathing, = 96 in.

The T-beam model can account for the presence of complete
discontinuities, i.e., open gaps, in the sheathing; but the
FEAFLO analyses assumed flexible gaps between the 48-inch-
wide pieces of plywood. Therefore, it was necessary to
determine empirically an equivalent distance (greater than 48
in.) between open gaps, L '. Previously McCutcheon et al.
(1981) determined that L ' = 96 inches can be used to
account for flexible gaps with a stiffness of 10,000 lb/in.2/in.
In these analyses, a gap stiffness of 5,000 lb/in.2/in. was used
in the FEAFLO input, and L ' = 75 inches gave good
agreement between the two methods.

The FEAFLO and beam-spring analyses (table 1) give
virtually identical results for all three deflection criteria--
average interior deflection, soft spot, and maximum joist.
Complete FEAFLO data were available for southern pine
floor No. 74, and are compared to the beam-spring data in
table 2. These results are presented graphically in figure 3,
which also shows the results of a traditional bare joist
analysis, which assumes no composite action and no two-way
action.

Figure 3.--Comparison of bare joist, finite element
(FEAFLO). and beam-spring model analyses of
southern pine floor No. 74. (ML84 5182)
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Table 1.--Comparison of floor deflections as computed by finite element program (FEAFLO) and beam-spring analog

Floor No. Average eight interior joists Soft spot (three joist average) Maximum (at joist number)
FEAFLO Beam-spring Difference FEAFLO Beam-spring Difference FEAFLO Beam-spring Difference

In.

82 0.2315 0.2331 +0.7
69 .2989 .3007 +0.6

103 .3091 .3111 +0.6
15 .3189 .3209 +0.6

111 .3296 .3310 +0.4
99 .3421 .3443 +0.6

130 .3483 .3504 +0.6
29 .3576 .3586 +0.3
55 .3735 .3756 +0.6
62 .4047 4059 +0.3
35 .4591 .4609 +0.4

35 .2228
91 .2814
37 .2903
90 .3021
36 .3169
24 .3244

174 .3377
29 .3465
31 .3545
12 .3792
65 .4494

.2240

.2797

.2914

.3063

.3180

.3247

.3383

.3474

+0.5
-0.6
+0.4
+1.4
+0.3
+0.1
-0.2
+0.3

.3549 +0.1 .3939 .3912 -0.5 .3993 (9) .3989 (8) -0.1

.2366 .2390 +1.0 .2545 (2) .2593 (2) +1.9

.2977 .3022 +1.5 .3419 (9) .3218 (8) -5.9

.3106 .3102 -0.1 .3220 (7) .3224 (7) +0.1

.3166 .3140 -0.8 .3438 (9) .3301 (3) -4.0

.3472 .3484 +0.3 .3628 (6) .3572 (6) -1.5

.3675 .3658 -0.5 .3822 (9) .3810 (8) -0.3

.3713 .3708 -0.1 .3964 (9) .3842 (9) -3.1

.3653 .3643 -0.3 .3832 (9) .3770 (8) -1.6

.3792 0.0 .4120 .4097 -0.6 .4700 (9) .4508 (9) -4.1

.4512 +0.4 .4852 .4876 +0.5 .4993 (3) .4994 (3) +0.0
1Complete analyses of this floor are presented in table 2 and figure 3.

In. Pct In. In.

DOUGLAS-FIR

0.2673 0.2743
.3109 .3119
.3189 .3211
.3355 .3383
.3631 .3627
.3521 .3554
.3712 .3721
.3730 .3720
.4209 .4227
.4332 .4355
.4979 .4990

SOUTHERN PINE

Pct

+2.6 0.3078 (2) 0.3142 (2) +2.1
+0.3 .3220 (8) .3242 (8) +0.7
+0.7 .3273 (7) .3285 (7) +0.4
+0.8 .3441 (3) .3450 (3) +0.3
-0.1 .3755 (8) .3787 (8) +0.9
+0.9 .3580 (3) .3601 (3) +0.6
+0.2 .3758 (5) .3749 (8) -0.2
-0.3 .3996 (9) .3862 (9) -3.4
+0.4 .4460 (3) .4401 (3) -1.3
+0.5 .4410 (8) .4489 (8) +1.8
+0.2 .5174 (4) .5146 (4) -0.5

In. In. Pct

Table 2.--Complete analysis of southern pine floor No. 74

Joist
No.

1

2

3

Width

In.
1.501

1.493

1.513

Joist properties Joist deflection
Depth Modulus of FEAFLO Beam-spring Difference Bare joist

elasticity
In. 106 lb/in2 In. In. Pct In

7.250 2.152 0.2102 0.2222 +5.7 0.3173

7.188 1.446 .3108 .3165 +1.8 .4871

7.219 1.835 .3106 .3128 +0.7 .3739

4 1.486 7.219 1.887 .3008 .3019 +0.4 .3702

5 1.500 7.250 1.629 .3197 .3197 0.0 .4194

6 1.505 7.219 1.127 .3462 .3433 -0.8 .6121

7 1.545 7.281 1.699 .3439 .3484 +1.3 .3855

8 1.505 7.219 1.304 .3734 .3797 +1.7 .5290

9 1.510 7.250 1.159 .3964 .3842 -3.1 .5856

10 1.514 7.219 1.476 .2564 .2714 +5.9 .4645

Average (8 interior joists) .3377 .3383 +0.2

Soft spot (joists 7, 8, and 9) .3713 .3708 -0.1

Maximum individual (joist 9) .3964 .3842 -3.1
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Comparison of Model with Test Data

In developing the original T-beam analysis method
(McCutcheon 1977), the performance of seven floors was
evaluated experimentally. Of these seven, two floors were
intentionally constructed with joists which had high degrees of
variability in their stiffnesses. (The other five had nearly
uniform joist properties.) Designated N-3 for the floor with
nailed sheathing and G-3 for the floor with the sheathing
attached by means of a rigid adhesive, these two are of the
greatest interest because they are most useful in assessing the
beam-spring model’s ability to properly account for joist-to-
joist variability.

The properties of the floors and the corresponding input data
to the model were:

Number of joists, all free to deflect (fig. 2b), 9
Joist span, L = 144 in.
Joist spacing, s = 15.8125 in. (average of six spaces at 16

in. and two at 15.25 in.)
Joist size, 2 by 8 in. nominal, 1.5 by 7.25 in. actual
Joist moduli, determined individually
Sheathing thickness, t = 0.625 in.
Sheathing properties, determined experimentally:

axial modulus, along span, Ea = 0.5 x 106 lb/in.2

bending modulus, across span, Eb = 1 x 106 lb/in.2

Length of sheathing, = 96 in.
Width of sheathing, L '  = 48 in. (N-3)

= 144 in. (G-3, glued tongue-and-
groove edges)

(N-3) nail stiffness (as computed by McCutcheon 1977),
kn = 9,400 lb/in. average nail spacing, sn = 7.43 in.

(G-3) rigid adhesive, kn = 1 x 1025 lb/in.
sn = 1

Except for end joists 1 and 9, the analog was an excellent
predictor of floor N-3’s performance, especially at the higher
load (table 3, fig. 4). However, it is unlikely that the same
nail-slip modulus would apply to both load levels. Use of a
higher modulus at the lower load, to account for the steeper
slope of a curvilinear load-slip curve, would bring the
computed results into even closer agreement with the
experimental.

The analog also did a good job of predicting the glued floor’s
performance (table 4, fig. 5), except for the anomaly at joists
7 and 8, where the experimental deflection of the apparently
stiffer joist, No. 8, was greater than that of the more limber
joist, No. 7.

Figure 4.--Experimental and analytical midspan
joist deflections for floor N-3. (ML84 5183)

Figure 5.--Experimental and analytical midspan
joist deflections for floor G-3. (*Deflection gage
No. 3 malfunctioned) (ML84 5184)
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Table 3.--Comparison of experimental and analytical performance of floor N-3

Joist Modulus

Joist deflection at
49.2 pounds per

square foot

Joist deflection at
98.8 pounds per

square foot
No. of

elas-
ticity

10 6 lb/in.2

Test

In.

Beam-
spring

In.

Differ-
ence

Pct

Test

In.

Beam-
spring

In.

Differ-
ence

Pct

1 2.32 0.183 0.139 - 24.0 0.386 0.279 - 27.7
2 1.85 .303 .320 + 5.6 .639 .644 + 0.8
3 1.29 .349 .370 + 6.0 .734 .742 + 1.1
4 2.40 .297 .318 + 7.1 .646 .639 - 1.1
5 2.03 .290 .317 + 9.3 .638 .636 - 0.3
6 1.42 .331 .339 + 2.4 .692 .680 - 1.7
7 2.27 .291 .298 + 2.4 .594 .599 - 0.8
8 2.67 .232 .240 + 3.4 .483 .483 0
9 1.74 .190 .151 - 20.5 .381 .304 - 20.2

Table 4.--Comparison of experimental and analytical performance of floor G-3

Joist
No.

Modulus
of

elas-

Joist deflection at Joist deflection at Joist deflection at
48.1 pounds per 97.8 pounds per 156.4 pounds per

square foot square foot square foot

Test Beam- Differ- Test Beam- Differ- Test Beam- Differ-
ticity

106 lb./in.2 In.
spring

In.
ence

Pct In.
spring

In.
ence

Pct In.
spring

In.
ence

Pct

1
2
3
4
5
6
7
8
9 1.75 .137 .108

1Deflection gage malfunctioned, floor G-3, joist 3.

2.34 0.115 0.097
1.88 .182 .200
1.26 (1) .223
2.39 .189 .191
2.05 .197 .191
1.40 .216 .207
2.22 .158 .188
2.67 .178 .161

- 15.7
+ 9.9

-
+ 1.1
-  3 . 0
-  4 . 2
+ 19.0
-  9 . 6
- 21.2

0.232 0.196
.369 .408
(1) .454

.384 .388

.398 .389

.428 .422

.325 .382

.344 .328

.277 .220

- 15.5
+ 10.6

-
+ 1.0
-  2 . 3
-  1 . 4
+ 17.5
-  4 . 7
- 20.6

0.376
.593
(1)

.620

.636

.678

.539

.544

.443

0.314
.652
.727
.620
.622
.675
.611
.524
.352

-16 .5
+ 9.9

0
-  2 . 2
-  0 . 4
+ 13.4
-  3 . 7
-20 .5
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Discussion

The input to this method consists of the physical dimensions
and mechanical properties of the floor’s components.

Joist bending stiffnesses can be easily determined from simple
beam flexure tests, such as those specified by ASTM Standard
D 198 (ASTM 1976). Similarly, sheathing properties (axial
stiffness parallel to the joists and bending stiffness
perpendicular) can be measured from axial and bending tests
of appropriately oriented sheathing specimens. Standards for
these tests may be found in ASTM D 3500, D 3501, and
D 3043.

Appropriate nail stiffnesses may be more difficult to define.
The performance of mechanical fasteners is the subject of
continuing research by a number of investigators. As
research in this area progresses, it should be possible to
determine which test procedures are most appropriate for
defining nail performance in various structural applications.
The current state of the art for testing mechanical fasteners is
given in ASTM D 1761.

However, a floor’s performance is relatively insensitive to
changes in the interlayer fastener stiffness. For example, if
the nail stiffness kn in experimental floor N-3 (table 3) is
increased by a factor of 2.5 from 9,400 to 23,500, the
computed joist deflections will decrease by about 6 percent.
Similarly, if kn in southern pine floor No. 74 (table 2) is
reduced by 2.5 from 30,000 to 12,000, the deflections will
increase by an average of only 16 percent.

Conclusion

A simple method has been presented for computing the
midspan joist deflections in a uniformly loaded wood joist
floor. A T-beam model accounts for the composite action
between the joists and sheathing, and a beam-on-elastic-
springs model accounts for joist variability and two-way
action.

The method yields calculated results which are virtually
identical to those obtained from a large-scale finite element
analysis, but at a fraction of the computational effort, and
results also compared closely with experimental data.

8



Literature Cited

American Society for Testing and Materials. Annual book of
ASTM standards. Part 22. Wood, Adhesives. Philadelphia,
PA: ASTM; 1976.

Bufano, J. T.; Criswell, M. E.; Vanderbilt, M. D. Response
of uniformly loaded floors using in-grade lumber data.
Struct. Res. Pap. No. 27. Fort Collins, CO: Colorado
State University, Civil Engineering Department; 1980.

Foschi, R. O. Structural analysis of wood floor systems.
Journal of Structural Division, Proceedings American
Society of Civil Engineers 108(ST7): 1557-1574; 1982.

McCutcheon, W. J. Method for predicting the stiffness of
wood-joist floor systems with partial composite action.
Res. Pap. FPL 289. Madison, WI: U.S. Department of
Agriculture, Forest Service, Forest Products Laboratory;
1977.

McCutcheon, W. J.; Vanderbilt, M. D.; Goodman, J. R.;
Criswell, M. E. Wood joist floors: Effects of joist
variability on floor stiffness. Res. Pap. FPL 405. Madison,
WI: U.S. Department of Agriculture, Forest Service,
Forest Products Laboratory; 1981.

Thompson, E. G.; Vanderbilt, M. D.; Goodman, J. R.
FEAFLO: A program for the analysis of layered wood
systems. Computers and Structures VII: 237-248;1977.

Vanderbilt, M. D.; Criswell, M. E.; Bodig, J.; Moody, R. C.;
Gromala, D. Linear and nonlinear floor behavior. Struct.
Res. Pap. No. 34. Fort Collins, CO: Colorado State
University, Civil Engineering Department; 1980.



Appendix A
Derivation of Beam-Spring Equations

Simply Supported Beam

A simply supported beam on elastic springs is shown in figure
A-l. If ∆w, is the deflection at node i due to the uniform load
w, and ∆Fj is the deflection due to spring force j, then the
deflection at spring i, ∆i, is:

or

Expanding the expressions:

But:

and, defining

(A-1)

(A-2)

(A-3)

Equation (A-3) becomes:

(A-4)

Figure A-1. --Beam on elastic springs with simply-
supported ends. (ML84 5178)

Thus, from equation (A-4), the deflections of the beam
(floor) and every spring (joist) can be determined by solving n
simultaneous equations of the form:
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Beam with “Free” Ends

A beam with its ends spring-supported is shown in figure A-2.
The derivation for this case is similar to that for the simply-
supported beam except that additional terms are required to
account for the movement of the beam ends. The deflection
at node i is

(A-5)

Again, the problem reduces to a set of n simultaneous
equations of the form

[K] {∆ } = {W}

Figure A-2.--Beam on elastic springs with “free”
ends. (ML84 5179)

and

for all i
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Appendix B:
Basic Program for Floor Analysis

The following BASIC program implements the method
presented. It is written to run on a Sharp model 1500 pocket
computer but can easily be modified for other machines. The
program prompts for input data and requires that all units be
consistent; e.g., if span is in inches, then joist dimensions
must also be in inches, and if joist E is in pounds per square
inch, then uniform load must also be in pounds per square
inch, not pounds per square foot.

The program is organized as follows:

Segment “F”, statements 10-40
Initiate new problem (clear memory).
Input floor type (simply supported or “free”).
Input number of joists.

“J”, 100-170
Input joist data (spacing, span, widths, depths, elastic
moduli).
Note: Input zero for properties which are not identical for

all joists.

“S”, 200-250
Input sheathing data (thickness, Eaxial, Ebending, gap

spacings).

“N”, 300-320
Input nail data (stiffness, spacing).

“D”, 400-790
Solution:
400-450 computes T-beam stiffnesses.
455 computes load vector.
460-495 assembles stiffness matrix.
500-507 modifies stiffness matrix for “free” ends.
510-740 solves simultaneous equations.
750-790 computes average, soft spot, and maximum

deflection coefficients.

“L” 795
Input uniform load.

“A”, 800-860
Display joist deflections.

999 End.
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Program Listing

10: “F”:CLEAR :WAIT 0
15: CLS :PRINT “FLOOR TYPE(SS or FRee)

”;:INPUT F$
16: IF F$ = “SS”GOTO 30
17: IF F$ = “FR”GOTO 30
20: GOTO 15
30: CLS :PRINT “No. of JOISTS = ”;:INPUT N
40: DIM B(N),D(N),E(N),K(N,N),Q(N),BT(N)

100: “J”:J$ = “JOIST”:WAIT 0
102: CLS :PRINT J$ + “ SPACING = ”;:INPUT S
103: LL=(N-1+(F$=“SS”)*2)*S
105: CLS :PRINT J$+ “ SPAN = ”;:INPUT L
110: CLS :PRINT J$+ “ WIDTH (all) = ”;:INPUT B
115: CLS :PRINT J$+ “ DEPTH (all) = ”;:INPUT D
120: CLS :PRINT J$+ “ MOE (all) = ”;:INPUT E
125: USING “# # #”
130: FOR J = 1TO N
140: IF B>0LET B(J) = B:GOTO 150
145: CLS :PRINT J$;J;“ WIDTH = ”;:INPUT B(J)
150: IF D>0LET D(J)=D:GOTO 160
155: CLS :PRINT J$;J;“ DEPTH = ”;:INPUT D(J)
160: IF E>0LET E(J)=E:GOTO 170
165: CLS :PRINT J$;J;“ MOE = ”;:INPUT E(J)
170: NEXT J
200: “S”:S$ = “SHTHNG”:WAIT 0
210: CLS :PRINT S$+ “THICKNESS = ”;:INPUT T
220: CLS :PRINT S$+ “E(axia1) = ”;:INPUT EA
230: CLS :PRINT S$+ “E(bndg) = ”;:INPUT EB
240: CLS :PRINT “GAP(along joist) = ”;:INPUT LJ
250: CLS :PRINT “GAP(perp to joist) = ”;:INPUT LS
300: “N”:N$ = “NAIL”:WAIT 0
310: CLS :PRINT N$+ “STIFFNESS = ”;:INPUT KN
320: CLS :PRINT N$+ “SPACING = ”;:INPUT SN
400: “D”:IS=EB*T^3/12*L*(1-S/LS)
405: FOR J = 1TO N:JJ =(J - 1 + (F$ = “SS”))*S/LL
410: A1 =EA*T*S:A2=E(J)*B(J)*D(J):IU=A2*

D(J) ^ 2/12
415: IF F$ = “FR”AND(J = 1 OR J =N)LET A1 = A1/2
420: H2 = (D(J) + T) ^ 2/4:IR= IU + A1*A2/(A1+ A2)*H2
430: FD = 10/(H2*KN/SN*LJ ^ 2*IR/IU/(IR - IU) + 10)
440: EI = IR/( 1 + FD*(IR/IU - 1))
450: BT = 76.8*EI/IS*(LL/L)^3:BT(J) = BT
455: Q(J)=LL^4*L/4/IS*JJ*(1-2*JJ ^2 + J J^ 3 )
460: FOR I = 1TO N:II = (I - 1 + (F$ = “SS”))*S/LL
470: IF I>JLET K(I,J)=BT*JJ*(1 - II)*

(2*II-II  ^ 2 - JJ ^ 2)
480: IF I = JLET K(I,J) = 2*(3 + BT*II ^  2*(1-II) ^  2)
490: IF I< JLET K(I,J) = BT*(1 - JJ)*II*

(2*J J - I I^ 2 - J J ^2 )
495:  NEXT I:NEXT J
500:   IF F$ = “SS”GOTO 510

501: FOR I = 1TO N:II = (I - 1)/(N - 1)
502: Q(I) = Q(I) + 3*LL ^ 4*L/IS*((1- II)/BT(1) +

II/BT(N))
503: FOR J=1TO N:JJ=(J - 1)/(N-1)
504: K(I,J)=K(I,J)+6*BT(J)*((1- II)*(1 - JJ)/BT

(1) + II*JJ/BT(N))
505: IF J=1OR J=N LET K(I,J)=0
506: NEXT J:NEXT I
507: K(1,1) = 6:K(N,N) = 6
510: FORK=1TO N-1
520: FOR I=K+1TO N
530: IF K = 1GOTO 570
540: FOR J=1TO K-1
550: K(I,K) = K(I,K) - K(I,J)*K(J,K)
560: NEXT J
570: K(I,K) = K(I,K)/K(K,K)
580: NEXT I
590: FOR I=K + 1TO N
600: FOR J=1TO K
610: K(K+1,I)=K(K+1,I)-K(K+1,J)*K(J,I)
620: NEXT J:NEXT I
630: NEXT K
640: FOR I=2TO N
650: FOR K=1 TO I-1
660: Q(I) = Q(I) - K(I,K)*Q(K)
670: NEXT K:NEXT I
680: FOR I = NTO 1 STEP - 1
690: IF I = NGOTO 730
700: FOR K=I+1TO N
710: Q(I) = Q(I) - K(I,K)*Q(K)
720: NEXT K
730: Q(I) = Q(I)/K(I,I)
740: NEXT I
750: MX=0:SS=0:SI=0
760: FOR J=2TO N-1
770: IF Q(J) > MXLET MX = Q(J):AM = J
780: X = (Q(J - 1) + Q(J) + Q(J + 1))/3:IFX > SSLET

SS=X:AS=J
790: SI = SI + Q(J):NEXT J:BEEP I
795: “L”:WAIT 0:CLS:PRINT “UNIFORM LOAD =

”;:INPUT Q
800:  “A”:U$ = “ # # . # # # # ”:WAIT :CLS
810: PRINT “AVE. DEFL = ”;USING U$;SI/(N - 2)*Q
820: PRINT “SOFT SPOT = ”;USING U$;SS*Q;

“ @ ”;USING ;AS
830: PRINT “MAX. DEFL = ”;USING U$;MX*Q;

“ @ ”;USING ;AM
840: FOR I = 1TO N
850: PRINT “DEFL”; USING “ # # # ”;I; “ = ”;USING

U$;Q(I)*Q
860: NEXT I
999: END
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Appendix C:
Sample Input and Output

To demonstrate the use of the BASIC program, complete
input and output are presented for experimental floor N-3
(table 3).

Program Prompt Input

FLOOR TYPE (SS OR FR)? FR
NO. OF JOISTS = ? 9
JOIST SPACING = ? 15.8125
JOIST SPAN = ? 144
JOIST WIDTH (all) = ?1 1.5
JOIST DEPTH (all) = ?1 7.25
JOIST MOE (all) = ?1 0
JOIST 1 MOE = ? 2.32E6
JOIST 2 MOE = ? 1.85E6
JOIST 3 MOE = ? 1.29E6
JOIST 4 MOE = ? 2.40E6
JOIST 5 MOE = ? 2.03E6
JOIST 6 MOE = ? 1.42E6
JOIST 7 MOE = ? 2.27E6
JOIST 8 MOE = ? 2.67E6
JOIST 9 MOE = ? 1.74E6
SHTHNG THICKNESS = ? .625
SHTHNG E (axial) = ? .5E6
SHTHNG E (bndg) = ? 1E6
GAP (along joist) = ? 48
GAP (perp to joist) = ? 96
NAIL STIFFNESS = ? 9400
NAIL SPACING = ? 7.43

(Program computes for approximately 2 minutes)

UNIFORM LOAD = ? 49.2/144

1Enter zero if joist properties are not all identical; in this case,
program prompts for individual entry.

14

output

AVE. DEFL = 0.3145
SOFT SPOT = 0.3360 @ 3
MAX. DEFL = 0.36% @ 3
DEFL 1 = 0.1388
DEFL 2 = 0.3204
DEFL 3 = 0.3696
DEFL 4 = 0.3181
DEFL 5 = 0.3167
DEFL 6 = 0.3385
DEFL 7 = 0.2981
DEFL 8 = 0.2403
DEFL 9 = 0.1511



Appendix D:
Program Variables

Program
Variable

2.5-10/84

Text
Variable Meaning

Floor type: SS for simply supported
FR for “free”

Number of joists
Joist widths
Joist depths
Joist modulus of elasticity
Stiffness matrix element
Load vector element (solution)
Displacements (output)
Uniform load
Nondimensional spring stiffness
Joist spacing
Floor width
Floor span
Sheathing thickness
Sheathing axial modulus of elasticity,

along joist
Sheathing bending modulus of elasticity,

across joist
Sheathing gap, along joist
Sheathing gap, across joist
Nail stiffness
Nail spacing
Sheathing EI
Nondimensional joist location
Nondimensional joist location
Sheathing axial stiffness
Joist axial stiffness
Square of distance between centroids of

T-beam flange and web
Stiffness of bare joist
Stiffness of rigidly connected T-beam
Joist T-beam stiffness
See equation (3)
Maximum joist deflection coefficient
Location (joist No.) of maximum deflection
“Soft-spot” deflection coefficient
Location (central joist No.) of soft spot
Sum of interior joist deflection coefficients
Average deflection coefficient, three joists

U. S. GOVERNMENT PRINTING OFFICE 1984–754-040-10010

15


