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Abstract
To evaluate the reliability of lumber structures, we need 
(among many other things) good models for the strength 
and stiffness distributions of visual and machine-stress-
rated (MSR) grades of lumber. Verrill et al. established 
theoretically and empirically that the strength properties of 
visual and MSR grades of lumber are not distributed as two-
parameter Weibulls. Instead, strength properties of grades 
of lumber must have (at least to a first approximation) 
“pseudo-truncated” distributions. To properly implement 
Verrill et al.’s pseudo-truncation theory, we must know the 
true mill run modulus of elasticity (MOE) and modulus of 
rupture (MOR) distributions.

Owens et al. investigated the mill run distributions of MOE 
and MOR at two times for each of four mills. They found 
that univariate mill run MOE and MOR distributions are 
well-modeled by skewnormal distributions or mixtures of 
normal distributions, but not so well-modeled by normal, 
lognormal, two-parameter Weibull, or three-parameter 
Weibull distributions. 

Verrill et al. investigated a mixture of two bivariate normals 
model for the mill run bivariate MOE–MOR population 
at a single time at a single mill. (Some possible sources of 

two-component mixture relationships include a mixture of 
trees from a fast-grown plantation stand and a suppressed 
stand, trees of two separate species, small-diameter trees and 
large-diameter trees, and lumber from the pith region versus 
lumber from the bark region.) They found that a mixture of 
two bivariate normals model performed well. 

In this paper, we apply this model to all eight of the Owens 
et al. lumber samples. We find that the model continues 
to yield good fits. However, we also find that the fits 
differ from mill to mill and time to time. Some variability 
is, of course, to be expected. However, we find that the 
fitted models differ to such an extent that the calculated 
probability that a piece of lumber randomly drawn from a 
fixed “grade” breaks at a fixed load can vary by a factor as 
large as 35 when we permit both season and mill to vary, 
and as large as 15 when we permit only mill to vary. Similar 
factors were found when we replaced fixed loads with loads 
randomly drawn from fixed load distributions. 

Keywords: Machine-stress-rated lumber, MSR lumber, 
MOE binned lumber, visually graded lumber, lumber 
property distribution, lumber reliability, bivariate normal, 
mixture of bivariate normals
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1 Introduction

To evaluate the reliability of lumber structures, we need (among many other things) good mod-
els for the strength and stiffness distributions of visual and machine-stress-rated (MSR) grades
of lumber. Verrill et al. (2012, 2013, 2014, 2015, 2019, 2020) established theoretically and em-
pirically that the strength properties of visual and MSR grades of lumber are not distributed as
two-parameter Weibulls. Instead, strength properties of grades of lumber must have (at least to a
first approximation) “pseudo-truncated” distributions.

“Pseudo-truncation” has a technical meaning. The concept, at least, of pseudo-truncation was
recognized in an ASCE pre-standard report (ASCE 1988). Section B3 of that standard notes that
“an improved strength distribution can be obtained by . . . thinning the lower tail by sorting on a
correlated variable.” For example, if the full (“mill run”) bivariate modulus of elasticity–modulus
of rupture (MOE–MOR) distribution were a bivariate Gaussian (normal)–Weibull, then truncating
or “binning” on the basis of MOE values (as in MSR lumber) would lead to a pseudo-truncated

1now President, American Lumber Standard Committee, Inc., Frederick, MD
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MOR distribution. That is, because MOE and MOR are not perfectly correlated, truncating on the
basis of lower and upper MOE limits does not lead to perfect truncation of the MOR distribution,
but it does, of course, lead to a MOR distribution whose tails are thinned. For the case in which
the mill run joint MOE–MOR distribution is a bivariate Gaussian–Weibull, Verrill et al. (2012,
2015) derived the exact form of this “pseudo-truncated Weibull” distribution. (They obtained its
probability density function.) They also showed that it cannot have tail behavior that matches
that of a Weibull distribution.

To properly implement Verrill et al.’s (2012, 2015) pseudo-truncation theory, we must know the
true mill run MOE and MOR distributions.

Verrill et al. (2017) and Owens et al. (2018, 2019, 2020) investigated the mill run distributions of
Southern Pine 2x4 MOE and MOR at two times for each of four mills. They found that univariate
mill run MOE and MOR distributions are well-modeled by skewnormal distributions or mixtures
of normal distributions, but not so well-modeled by normal, lognormal, two-parameter Weibull, or
three-parameter Weibull distributions.

Verrill et al. (2018) investigated a mixture of two bivariate normals model for the mill run
bivariate MOE–MOR population at a single time at a single mill. (Some possible sources of two-
component mixture relationships include a mixture of trees from a fast-grown plantation stand and
a suppressed stand, trees of two separate species, small-diameter trees and large-diameter trees,
and lumber from the pith region versus lumber from the bark region.) They found that a mixture
of two bivariate normals model performed well.

In this paper, we apply this model to all eight of the Owens et al. (2018, 2019, 2020) lumber
samples. We find that the model continues to yield good fits.

However, we also find that the fits differ from mill to mill and from time to time. This finding
is in accord with Anderson et al. (2019), who focused on changes in mean and standard deviation
within a mill over time. Some variability in parameter estimates is, of course, to be expected.
However, we find that the fitted models differ to such an extent that the calculated probability
that a piece of lumber randomly drawn from a fixed “grade” breaks at a fixed load can vary by a
factor as large as 35 when we permit both season and mill to vary, and as large as 15 when we only
permit mill to vary.

Similar factors were found when we replaced fixed loads with loads randomly drawn from fixed
load distributions.

2 A Note on “Grade”

In this paper we place the word “grade” in quotation marks. We are not working with visual
grades. We are not working with MSR grades. Instead we are working with a “grade” that is based
on MOE boundaries. The boundaries, 1.311 and 1.772, are approximate 40th and 80th percentiles
of the 1591 MOE mill run samples that we obtained. For reference, these values lie above the
Southern Pine Inspection Bureau (SPIB) median value for No. 2 non-dense 2x4 lumber and below
the SPIB median value for No. 1 dense 2x4 lumber.

We are not working with visual grades because our pseudo-truncation work is not yet capable of
handling visual grades. We are not working with MSR grades because, in addition to MOE limits,
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MSR grades include both visual grade requirements and quality control requirements.

Instead, we are focusing on addressing the question of whether it is reasonable to believe that
the probabilities of breakage associated with a “grade” of lumber loosely associated with actual
grades of lumber might vary somewhat widely depending on mill and season.

If so, we expect that potentially large efficiencies may be gained through the development of
data-based models that better explain and predict the performance of individual pieces of lumber.

3 A Note on “Probability of Breakage”

Formally, in our notation,

Probability of Breakage = Prob(Load > MOR)

In this paper, the MOR distribution is modeled as a pseudo-truncated mixture of normals. We
have theoretical and empirical reasons (discussed in Verrill et al. (2015, 2018), and in the current
paper) for believing that this is a reasonable model, and that our strength distribution fits may
have real-world implications.

On the other hand, in this paper, loads are fixed at (strength distribution 5th percentiles)/2.1
or are modeled as lognormal distributions that exceed 5th/2.1 values with probability 0.02 and
have coefficients of variation equal to 0.30.

Thus, in this paper, strength distributions are based on theory, on data, and on tests of goodness
of fit, but load distributions are not. Thus, we cannot and do not claim that our estimates of
“probability of breakage” have direct real-world meaning.

However, we also argue that the variability in estimates of “probability of breakage” across mills
and times observed in fits to our data is worthy of note and deserves further investigation.

In particular, we see probability of breakage ratios between mills or times or mill-times that
have similarly high values across a range of fixed “5th/2.1” loads (Section 9) and for a lognormal
load distribution (Section 10). This suggests that if we replace these load values with, for example,
values randomly drawn from an appropriate data-based 50 year max load distribution, we might
continue to see similarly high breakage ratios between mills, times, and mill-time combinations.

4 Data

The data collection process is described in detail in Owens et al. (2018, 2019, 2020). It yielded
eight samples (four mills at two times) of southern pine (Pinus spp.) 2x4 lumber, each containing
approximately 200 pieces. The MOE values used in our analyses are in millions of pounds per
square inch. The MOR values are in thousands of pounds per square inch.

We observed 7 “visual outliers” among the 1598 data points (2 of the 1600 pieces of lumber
were broken and untestable). We found that 2 of these visual outliers were statistically significant
outliers. The visual outliers are listed in Table 1. Statistical significance results are listed in column
6 of Table 1. The manner in which the statistical significance values were obtained is discussed in
Appendix A.
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By removing visual outliers we formed 3 modified data sets. The resulting 11 data sets (8
original, 3 modified) are identified in column 2 of Table 2. In the tables, the word “all” in a data
set description indicates that no outliers were omitted from the data set.

5 Graphical Evidence for a Mixture of Bivariate Normals

The models discussed in section 4.1 of Verrill et al. (2017) and Owens et al. (2018, 2019, 2020)
were “univariate” models. That is, they were models for the distributions of single variables.
This univariate work suggested that mill run MOE and MOR distributions might be modeled as
mixtures of two univariate normals, or as skew normal distributions, but not, in general, as normal,
lognormal, two-parameter Weibull, or three-parameter Weibull distributions.

Because strength and stiffness are correlated, we gain extra information by modeling the joint
behavior of MOE and MOR. In this section, we discuss a bivariate model — a mixture of two
bivariate normals — that is suggested by the data. We note that if a bivariate stiffness–strength
distribution is a mixture of bivariate normals, then the corresponding univariate (or “marginal”)
stiffness and strength distributions will be mixtures of univariate normals. (This is well known to
statisticians. For the convenience of readers, Verrill et al. (2018) provided an elementary proof in
their appendix A.) Thus, a MOE–MOR distribution that is well modeled by a mixture of bivariate
normals would explain the fact that MOE and MOR are individually well modeled by mixtures of
univariate normals.

Some possible sources of two-component mixture relationships include a mixture of trees from
a fast-grown plantation stand and a suppressed stand, trees of two separate species (for example,
Pinus taeda and Pinus palustris), small-diameter trees and large-diameter trees, and lumber from
the pith region versus lumber from the bark region.

We used maximum likelihood methods to fit mixtures of two bivariate normal distributions to
each of the 11 data sets. The probability density functions of a bivariate normal distribution, of a
mixture of two bivariate normal distributions, and of a pseudo-truncated mixture of two univariate
normals are given in or derived in appendices A and B of Verrill et al. (2018). For the reader’s
convenience, we also provide the probability density functions of a bivariate normal distribution
and of a mixture of two bivariate normal distributions in Appendix B of the current paper. The
programs that we wrote to perform the maximum likelihood fits can be found at
http://www1.fpl.fs.fed.us/mixbivn.2019.html. In Table 2, we provide the results of these
fits.

The fitted µ̂MOE,1, σ̂MOE,1, ρ̂1, µ̂MOR,1, σ̂MOR,1, µ̂MOE,2, σ̂MOE,2, ρ̂2, µ̂MOR,2, σ̂MOR,2, and p̂ in
Table 2 correspond to the parameters µX1, σX1, ρ1, µY1, σY1, µX2, σX2, ρ2, µY2, σY2, and p of
equation (1) in Appendix B. In particular, p̂ is our estimate of the proportion of specimens that
come from the leftmost bivariate normal population.

Given these fits, what is the graphical evidence for a mixture of bivariate normals?

Statisticians know that if variables X and Y have a bivariate normal distribution, then a plot
of Y versus X values will be an approximately elliptical cloud of data points. In Figures 1-12 we
provide scatter plots of MOR versus MOE for the eight populations. (There is an initial “summary
plot,” and there are two plots for Mill 2 “summer,” Mill 3 “summer,” and Mill 2 “winter” because
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these data sets contain visual outliers and we provide plots with and without outliers.) Each of the
scatter plots has been overlaid with the (elliptical) 0.90 probability content contours (calculated
from the maximum likelihood fits — again see http://www1.fpl.fs.fed.us/mixbivn.2019.html)
corresponding to the two bivariate normal components of the fitted mixture. The leftmost cloud
in a scatter plot corresponds to the “Leftmost” fit in Table 2. The rightmost cloud corresponds to
the “Rightmost” fit in Table 2. All 11 of the scatter plots suggest that the bivariate MOE–MOR
distributions might be well approximated by mixtures of two bivariate normal distributions.

The mixture of bivariate normal fits can also be used to calculate probability content contours
for the full distribution (as opposed to contours for the two components). (See
http://www1.fpl.fs.fed.us/mixbivn.2019.html for listings of the Fortran programs that were
used to perform the fits and calculate the contours.) In Figures 13–24 we plot 0.90 probability
content contours for the full mixed bivariate normal distributions. (Figure 13 is a “summary
plot.”) We obtain one of these “full distribution” contours by finding a line along which the fitted
mixed bivariate normal probability density function has a constant value and within which 0.90
of the data is expected to fall (from samples randomly drawn from the mixed bivariate normal
distribution). Again these plots suggest that a mixture of two bivariate normals model might be
reasonable for most of the 11 data sets.

Of course, the plots do not prove anything. However, they do lend support to the intuition that
mill run lumber stiffness–strength distributions can often be mixtures of bivariate distributions.
For our four mill, two times data, the MOE–MOR distributions appear to be generally well-fit by
mixtures of two bivariate normal distributions.

In the next two sections we supplement this “graphical” evidence with results from formal tests.

6 Likelihood Ratio Tests

For each of the 11 data sets, we performed a likelihood ratio test that compared a single bivariate
normal distribution to a mixture of two bivariate normals. As noted by a reviewer (we thank
the reviewer), for nested mixture models, the likelihood ratio statistic will have a non-standard
distribution, not the chi-squared distribution with 6 degrees of freedom that one might expect.
(See, for example, McLachlan and Rathnayake (2014).) In this case, one can perform a parametric
bootstrap. (See Efron and Hastie (2016) or Davison and Hinkley (1997) for a general discussion
of parametric bootstraps, and see, for example, the “Resampling Approach” section in McLachlan
and Rathnayake (2014) for a discussion of parametric bootstraps when comparing mixed normal
distributions). We performed 1,000 trial parametric bootstraps for each of the 11 data sets. The
resulting p-values are reported in column 3 of Table 3. Low p-values reject a single bivariate normal
distribution.

In column 4 of Table 3, we provide the p-value from a test of normality for the MOR values
of the data set. In column 5 of Table 3 we provide the p-value from a test of normality for the
MOE values of the data set. These p-values were calculated via the shapiro.test function of the R
statistical package (R Core Team, 2018).

The p-values reported in columns 3-5 of Table 3 suggest that, in general, a model that differs
from a single bivariate normal is required. Given the p-values in columns 4 and 5, the only case in
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which a single bivariate normal might be appropriate for the MOE–MOR distribution appears to
be the Mill 1, winter case. Listings of the programs that were used to perform the likelihood ratio
tests can be found at https://www1.fpl.fs.fed.us/mixbivn.2019.html.

7 Chi-Squared Goodness-of-Fit Tests

Having rejected a single bivariate normal model, we next wanted to test whether a mixture of two
bivariate normals might yield a good fit. To do so we implemented a “chi-squared” goodness-of-fit
test for a mixture of bivariate normals. Chi-squared goodness-of-fit tests are described in many
statistical textbooks. Moore (1986) provides a detailed description of such tests and suggests that
an appropriate number of “cells” lies between 1.88 × n2/5 and 3.76 × n2/5 where n is the sample
size. For a sample of size 200, this suggests a number of cells between 16 and 32. We chose to
work with 20 cells, each of which (under the null hypothesis of a mixture of two bivariate normal
distributions) contained about 0.05 of the probability. That is, the expected number of observations
in each cell was approximately 200× 0.05 = 10. (Moore (1986) recommends that cells should be of
approximately equal probability.)

We followed several steps to perform the test:

1. Obtain a maximum likelihood (ML) fit of a mixture of two bivariate normals to the set of
200 stiffness–strength data pairs.

2. Choose a rectangular region (e.g., 0 to 3 by 0 to 15 for a stiffness–strength region [MOE
values divided by 1,000,000, MOR values divided by 1,000]) that contains essentially all the
probability (e.g., 0.997 and above).

3. Divide this region into 1,000,000 (1,000 by 1,000) rectangles.

4. Take as the estimate of the probability of one of these small rectangles,

(pdf at center of small rectangle)× (area of small rectangle)

(This amounts to numerical integration.)

5. Use the small rectangles to divide the large rectangle into J columns, each of which contains
approximately 1/J of the probability.

6. Use the small rectangles to divide each of the J columns into I rows (where J × I = 20), each
of which contains approximately 0.05 of the probability. The exact probability associated with
a cell will be the sum of all the probabilities associated with the small rectangles contained
in the cell. For the ijth cell, j ∈ {1, . . . , J}, i ∈ {1, . . . , I}, denote this probability by pij .

7. Take the chi-squared statistic to be

χ2 =

J∑
j=1

I∑
i=1

(Oij − Eij)
2/Eij
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where Oij is the observed number of stiffness–strength pairs in the ijth cell and Eij = pij×N
where N is the number of observations in the data set.

8. Because we used full data maximum likelihood techniques rather than grouped data maxi-
mum likelihood techniques to estimate the parameters of the mixture of bivariate normals,
the “chi-squared” statistic is not actually distributed as a chi-squared random variable (see
section 3.2.2.1 in Moore (1986)). Thus, we needed to do a “parametric bootstrap” (a kind of
simulation) to obtain estimates of the p-values associated with the statistic. For each of the
chi-squared tests, we performed 1000 simulations. In each of these simulations, we generated
a sample of size N from the fitted (to the original stiffness–strength data) mixture of bivariate
normals. For each of these simulated data sets, we calculated a chi-squared statistic by the
same method used to calculate the chi-squared statistic for the original data. This resulted in
the original chi-squared statistic based on the original data, and 1000 chi-squared statistics
based on 1000 samples of size N drawn from the mixed bivariate normal distribution that
was fit to the original data.

9. From these simulations it is possible to obtain an approximate p-value. If we order the
1000 simulated chi-squared values from smallest to largest, and the original chi-squared value
calculated from the real data lies between the mth and (m + 1)th of the 1000 ordered chi-
squared values, then the approximate p-value is (1000 −m)/1000. Thus, for example, if the
original chi-squared statistic lies below only 100 of the 1000 simulated chi-squared values, we
would say that the approximate p-value is 0.10. If the original chi-squared statistic lies below
only 50 of the 1000 simulated chi-squared values, we would say that the approximate p-value
is 0.05.

Verrill et al. (2018) considered four J, I (column, row) cases — J = 5, I = 4; J = 4, I = 5;
J = 10, I = 2; and J = 2, I = 10. They found that their conclusions did not depend on the I, J
that were used. We use J = 5, I = 4 here.

Listings of the programs that we wrote to perform the chi-squared tests and simulations can be
found at http://www1.fpl.fs.fed.us/mixbivn.2019.html.

Column 6 of Table 3 contains the approximate p-values for the 11 chi-squared goodness-of-fit
tests. The p-values ranged from 0.057 to 0.763.

Taken together, the plots and the chi-squared tests suggest that we cannot reject the hypoth-
esis that the MOE–MOR values measured for the 11 data sets are drawn from mixtures of two
bivariate normals. Having said this, we realize that a mixture of bivariate normals model cannot
be completely correct because it predicts non-zero probabilities for negative stiffness and strength
values. Also, of course, we do not expect that mixtures will always have exactly two components
(as opposed to one or three or . . . ).

8 Tests of the Equality of the Parameter Fits

We are interested in whether the fitted mixture of two bivariate normals changes with mill and/or
time. We performed 26 comparisons. These comparisons are listed in Tables 4a and 4b.
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The statistical test that we used to perform the comparisons is discussed in Appendix C. Listings
of the programs that we wrote to perform the comparisons are provided at
https://www1.fpl.fs.fed.us/mixbivn.2019.html.

The test is simulation-based and results will depend on which of the two time-mill combinations
being compared provides the parameter estimates being used as the basis for the simulation. (See
Appendix C.) Taking the p-value for a comparison — a row in Table 4a or 4b — to be the larger
of the two values in columns 4 and 5 of the row, we find that 10 of the 16 comparisons in Table 4a
(complete data) are statistically significant at a 0.05 level, while 7 of the 10 comparisons in Table
4b (visual outliers removed) are statistically significant at a 0.05 level.

A careful look at appropriate pairs of plots from among Figures 1-24 suggest that this statistical
significance is unsurprising. To facilitate the comparisons of the figures we have produced a web
page, https://www1.fpl.fs.fed.us/4x2.mix.plots.html, that permits one to readily compare
relevant figures.

9 The Variability of Probability of Breakage at a Fixed Load as a
Function of Mill and Time

Given the discussions and analyses provided above, we claim that a mixture of two bivariate normals
model for MOE–MOR makes physical sense (at least in some cases) and does a good job of fitting
our eight mill run populations.

However, as noted in Section 8, we have also found that although a mixture of two bivariate nor-
mals model is not rejected visually or via chi-sqared tests, the particular fits (parameter estimates)
differ (at least statistically) from mill to mill and time to time.

In this section we discuss the fact that these statistically detectable differences in parameter
estimates have practical implications. In particular, we have found that because the fitted model
parameter values (see Table 2) vary from mill to mill and time to time, the estimated probabilities
of breakage for pieces of lumber randomly drawn from a fixed “grade” when the load is at a fixed
value can vary widely from mill to mill and time to time.

Given a fit of a mixture of two bivariate normals to a mill run MOE–MOR sample, one can
calculate the MOR distribution obtained when we restrict ourselves to a truncated range of MOE
values. For this study, the truncating MOE values, 1.311 and 1.772, were approximate 40th and
80th percentiles of the 1591 MOE mill run samples. This excludes two missing values and seven
“outliers.” The results should not change much if we were to include the “outliers.” As noted in
the Introduction, we refer to the resulting MOR distribution as a pseudo-truncated distribution.
The density function of a pseudo-truncated mixture of two bivariate normals is derived in appendix
B of Verrill et al. (2018).

In Table 5 we report estimated probabilities of breakage for the 11 data sets (columns 4 through
14) at 11 fixed loads (column 3). The fixed load in row i of column 3 corresponds to the calculated
5th percentile/2.1 for the pseudo-truncated MOR distribution fit to the data set in row i, column
2 of the table.

The probabilities of breakage in columns 4 through 14 of Table 5 were obtained from the
pseudo-truncated MOR distributions calculated from the eleven fitted mixture models. (The es-
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timated probabilities of breakage were calculated via numerical integrations of the fitted pseudo-
truncated probability density functions — see equation 18 in Verrill et al. (2018) and the listing of
test.allow3.11.f, which is available at http://www1.fpl.fs.fed.us/mixbivn.2019.html.)

Table 5 indicates that the breakage probability (reported in one of columns 4 through 14 of the
table) associated with a fixed load (loads are specified in column 3 of the table) and one of the 11
fitted pseudo-truncated MOR distributions (corresponding to one of columns 4 through 14 of the
table) can vary considerably with the fit.

The breakage probabilities indicate that mills can be different for a fixed season. Compare, for
example, summer mills 2 and 4 or winter mills 1 and 3. Comparing winter mill 3 with winter mill
1 yields breakage probability ratios as large as 15.

The breakage probabilities also indicate that seasons can be different for a fixed mill. Compare
summer and winter breakage probabilities for mill 1, or summer and winter breakage probabilities
for mill 4.

Combining mill and season changes can yield even larger differences. Comparing summer mill
4 with winter mill 1 yields breakage probability ratios as large as 35.

These differences suggest that for a fixed load, probabilities of breakage can vary significantly
from mill to mill and time to time.

To obtain estimates of the uncertainty in the “35” and “15” probability of breakage ratios
mentioned above, we performed bootstraps (a type of simulation).

In the “35” case, we drew (with replacement) 100 samples of size 200 from the summer mill 4
data set and 100 independent samples of size 200 from the winter mill 1 data set. For each of the
100 pairs of simulated samples, we fit separate mixtures of two bivariate normals to the summer
and winter samples. From each of these 100 pairs of fits, we then obtained estimates at shared
loads (column 3 of Table 5) of probabilities of breakage corresponding to the summer mill 4 fits and
of probabilities of breakage corresponding to the winter mill 1 fits. This permitted us to calculate
100 probability of breakage ratios at the various loads (column 3 of Table 5). In column 4 of Table
6 we provide the probability of breakage ratios for the original data sets. In column 5 we provide
the 5th order statistic of the 100 simulated ratios. In column 6 we provide the median of the 100
simulated ratios. In column 7 we provide the 95th order statistic of the 100 simulated ratios. These
results suggest that in the “35” case, the probability of breakage ratios are both statistically and
practically different from 1.

Our corresponding “15” case results appear in Table 7 and again suggest that the probability
of breakage ratios in this case are statistically and practically different from 1.

Listings of the computer programs that were used to obtain Tables 5 through 7 are available at
https://www1.fpl.fs.fed.us/mixbivn.2019.html.

10 Variability of Probability of Breakage Under a Lognormal Load
Distribution as a Function of Mill and Time

We extended the work discussed in Section 9 by replacing fixed loads with load distributions. A
reviewer of Verrill et al. (2013) suggested that it would be reasonable to model the load as a
lognormal with coefficient of variation 0.30 and probability equal to 0.02 of exceeding a 5th/2.1
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strength distribution value (e.g., the values in column 3 of Tables 5 through 10). (Obviously, one
could consider other load distribution forms and other values for the load distribution parameters.)

Tables 8 through 10 correspond to Tables 5 through 7 with lognormal load distributions replac-
ing fixed loads.

Probability of breakage values clearly decline in Tables 8 through 10 in comparison to Tables
5 through 7 as we would expect when we go from loads fixed at 5th/2.1 values to lognormally
distributed loads that can approach zero and that only exceed 5th/2.1 values with probability 0.02.
However, Tables 8 through 10 demonstrate that, again, probability of breakage values can vary
widely from mill to mill and time to time.

In Table 8 we see summer mill 4 to winter mill 1 ratios on the order of 50, and winter mill 3 to
winter mill 1 ratios on the order of 20.

Tables 9 and 10, like Tables 6 and 7, are based on bootstrapping. They demonstrate that in
the lognormal load case, as in the fixed load case, probability of breakage ratios for different mills
and times are statistically and practically different from 1.

Listings of the computer programs that were used to obtain Tables 8 through 10 are available
at https://www1.fpl.fs.fed.us/mixbivn.2019.html.

11 Summary

We obtained 11 mill run MOE–MOR lumber data sets by collecting mill run samples of lumber
from four mills at each of two times (roughly “summer” and “winter”). The extra three data sets
correspond to cases in which we have removed “outliers.”

We found via plots and statistical tests that these data sets appear to be well fit by mixtures
of bivariate normals.

For each of these data sets, we calculated the MOR distribution of the corresponding “grade”
consisting of only those specimens for which the MOE lies between bounds that approximate
the 40th and 80th percentiles of our combined sample of 1591 specimens. The calculated MOR
distributions for these “grades” are pseudo-truncated mixtures of two normals.

We used these fitted pseudo-truncated MOR distributions to estimate the probabilities of break-
age associated with the 11 data sets under fixed loads and under lognormal load distributions. We
found that the probabilities of breakage at a fixed load can vary by a factor as large as 35 when we
permit both season and mill to vary, and as large as 15 when we only permit mill to vary. Under
a lognormally distributed load (rather than a fixed load), factors as large as 50 were found when
we permitted both mill and time to vary, and as large as 20 when we permitted only mill to vary.
Very roughly, lower 90% confidence bounds on the 35, 15, 50, and 20 factors are 7, 3.2, 10, and 3.6
— see Tables 6, 7, 9, and 10. These estimates also depend on the mixture of two bivariate normals
model.

This suggests that a purely MOE-based grading system might yield lumber that is more vari-
able than we would desire. Of course, this does not directly apply to MSR lumber, which also
includes visual grade restrictions and quality control procedures. We also emphasize that we are
not suggesting that lumber that has been visually graded is less variable than lumber that has
been graded via an MSR process. We have not yet developed the statistical tools needed to obtain
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theoretical estimates of the mill to mill and time to time variabilities of breakage probabilities for
either MSR or visual grades of lumber.

We do argue that our variability results for a set of purely MOE-based “grades” suggest that
there may be significant efficiencies that can be obtained through the development of computer
models that yield real-time in-line estimates of lumber properties based on measurements of stiff-
ness, specific gravity, knot size and location, slope of grain, and other strength predictors.
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13 Appendix A — Checking for “Outliers”

We identified seven subjective visual outliers. They are listed in Table 1. (Also, see Figures 13, 15,
and 19.) We checked these subjective judgments with quantitative tests. A test
(see http://www1.fpl.fs.fed.us/mixbivn.2019.html for a listing of the programs used to per-
form outlier tests) consisted of the following steps:

1. Use maximum likelihood methods to fit a mixture of two bivariate normals to the data set
(of size n).

2. Use the fit to estimate the probability p of obtaining (on any given draw) a data point with
probability density function (pdf) as small as or smaller than the observed pdf at the visual
outlier.

3. Then, if there were n observations in the original data set, calculate the probability of seeing
a data point with pdf value as small as or smaller than the pdf at the visual outlier as
1 − (1 − p)n. If this value is 0.10 or smaller, report this “p-value” in column six of Table 1.
If it is greater than 0.10, then report the value as “NS” (for “not significant”) in Table 1.

The results reported in Table 1 suggest that we have no statistical justification for deleting any
data points from the summer mill 3 data set. However, it might be reasonable to consider the
summer mill 2 and winter mill 2 visual outliers as true outliers. In Tables 2 – 5 we provide results
with and without the (possible) outliers for all three cases (the summer mill 2, summer mill 3, and
winter mill 2 cases). The summer mill 2 and winter mill 2 outlier results should be granted more
credibility than the summer mill 3 outlier results.

14 Appendix B — Probability Density Functions of a Mixture of
Two Bivariate Normal Distributions

The probability density function of a mixture of two bivariate normal distributions has the form

fM(x, y;µX1, σX1, ρ1, µY 1, σY 1, µX2, σX2, ρ2, µY 2, σY 2, p) (1)

= p× f(x, y;µX1, σX1, ρ1, µY 1, σY 1) + (1− p)× f(x, y;µX2, σX2, ρ2, µY 2, σY 2)

where p is the mixing fraction (at any given “draw”, we draw from population 1 with probability
p and from population 2 with probability 1 − p); µX1, σX1, ρ1, µY 1, σY 1 are the parameters of
the population 1 bivariate normal; µX2, σX2, ρ2, µY 2, σY 2 are the parameters of the population 2
bivariate normal; and f(w, z;µW , σW , ρ, µZ , σZ) is the pdf of a single bivariate normal given by

f(w, z;µW , σW , ρ, µW , σZ) =
1

2π
× 1

σWσZ
√

1− ρ2
× exp (−arg) (2)

where

arg =

[(
w − µW
σW

)2

− 2ρ

(
w − µW
σW

)(
z − µZ
σZ

)
+

(
z − µZ
σZ

)2
]
÷ (2(1− ρ2))
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and µW , σW are the mean and standard deviation of W ; ρ is the correlation between W and Z;
and µZ , σZ are the mean and standard deviation of Z.

15 Appendix C — Test of the Equality of Two Mixtures
of Bivariate Normals

In Section 6 we discuss the results of tests that compared mixtures of two bivariate normals. Here
we briefly outline the nature of these tests. Details can be found in the FORTRAN programs that
implemented the tests. These can be found at http://www1.fpl.fs.fed.us/mixbivn.2019.html.

The tests are based on maximum likelihood fits of a mixture of two bivariate normals to
MOE–MOR data. From maximum likelihood theory we know that (in the material below, a

non-statistician can read
D→ as ≈)

√
n(β̂ − β)

D→ N(0,Σ) (3)

where, in the notation of Appendix B, N(0,Σ) denotes a multivariate normal distribution with
mean vector 0 and covariance matrix Σ,

βT = (µX1, σX1, ρ1, µY 1, σY 1, µX2, σX2, ρ2, µY 2, σY 2, p),

β̂ denotes the maximum likelihood estimate of β, the covariance matrix Σ is equal to the inverse
of the information matrix associated with the maximum likelihood estimation, and the information
matrix is approximated by

n∑
i=1

−

[
∂2 log(fM (xi, yi; β̂))

∂βj∂βk

]/
n (4)

Now, suppose that we want to compare mill–season combination 1 with mill–season
combination 2.

We have √
n1(β̂1 − β1)

D→ N(0,Σ1) (5)

and √
n2(β̂2 − β2)

D→ N(0,Σ2) (6)

Thus,
√
n2(β̂1 − β1)

D→ N(0, (n2/n1)Σ1) (7)

and combining results (6) and (7) we have

√
n2(β̂2 − β̂1 − (β2 − β1))

D→ N(0, (n2/n1)Σ1 + Σ2) (8)

Under the null hypothesis that β2 = β1, this yields

√
n2(β̂2 − β̂1)

D→ N(0, (n2/n1)Σ1 + Σ2) (9)
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or √
n2((n2/n1)Σ1 + Σ2)

−1/2(β̂2 − β̂1)
D→ N(0, I11) (10)

or
S = n2 × (β̂2 − β̂1)

T ((n2/n1)Σ1 + Σ2)
−1(β̂2 − β̂1)

D→ χ2
11 (11)

That is, under the null hypothesis of no difference between mill–season combinations, the statis-
tic S on the left of equation (11) should have approximately the distribution of a chi-squared random
variable with 11 degrees of freedom. One can show that if β2 6= β1, S will tend to be inflated.

The p-values that were initially reported by our software are the probabilities that a chi-squared
random variable with 11 degrees of freedom would be as large as or larger than the observed S (from
equation (11) with the Σ values replaced by approximations based on equation (4)). However, these
p-values were so low that we suspected that we might have made a programming error or errors.

We found instead that the “asymptotics” that justify equation (11) had not yet kicked in. That
is, for the sample sizes that were available to us (n ≈ 200) the theoretical estimates of Σ1 and Σ2

were too “small” and the resulting estimates of S in equation (11) were too large. (In a simulation
this problem did disappear as sample sizes became sufficiently large (between 1000 and 2000 in our
case).)

Thus, rather than relying on asymptotic theory for the distribution of S in equation (1), we
had to perform a “parametric bootstrap” (a form of simulation) to obtain correct p-values. These
simulation-based p-values are reported in columns 4 and 5 of Tables 4a and 4b. The programs that
were used to perform the simulations are available at
http://www1.fpl.fs.fed.us/mixbivn.2019.html. (See the summ*f, wint*f, and mill compare*f
files.) The simulation results differ somewhat (as we would expect) depending on whether the
“generating” parameter vector comes from the data set corresponding to the second column in
Tables 4a and 4b or the data set corresponding to the the third column in Tables 4a and 4b. Thus
two distinct p-values are reported in columns 4 and 5 of Tables 4a and 4b. A more conservative
conclusion about mill and time differences can be obtained by taking the larger of the columns 4
and 5 p-values as the estimated p-value.
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Season Mill n MOE MOR p-value

Summer 2 199 2.669 5.551 0.04

2.818 10.148 NS
2.817 9.511 NS

Summer 3 200 2.733 16.783 NS
2.662 16.107 NS
2.800 16.098 NS

Winter 2 200 2.746 8.404 0.10

Table 1: Visual outliers. The MOE, MOR values identify the visual outlier data points. The p-values are the
probabilities that a probability density function (pdf) value as low as or lower than the observed pdf value at the
visual outlier would occur in a sample of size n. “NS” indicates a value larger than 0.10. The MOE values used
in the analyses are in millions of pounds per square inch. The MOR values used in the analyses are in thousands
of pounds per square inch.

“Leftmost” population “Rightmost” population
Mill µ̂MOE,1 σ̂MOE,1 µ̂MOR,1 σ̂MOR,1 ρ̂1 µ̂MOE,2 σ̂MOE,2 µ̂MOR,2 σ̂MOR,2 ρ̂2 p̂

1, all 200 1.26 .28 6.68 2.40 .54 1.63 .32 9.29 1.35 .79 .554
2, all 199 1.15 .23 5.20 1.61 .72 1.64 .46 8.20 2.90 .66 .687

S 2, 198 1.13 .22 5.11 1.55 .70 1.57 .44 7.89 2.88 .75 .629
3, all 200 1.45 .30 7.47 2.79 .74 2.30 .33 12.49 2.32 .27 .901
3, 195 1.33 .23 5.93 2.15 .61 1.72 .34 10.07 2.16 .70 .543
4, all 200 1.45 .32 7.28 2.86 .57 1.98 .38 11.86 2.83 .86 .755

1, all 200 1.44 .35 7.18 2.88 .85 1.68 .40 9.92 2.18 .53 .766
2, all 200 1.28 .27 5.90 1.94 .72 2.03 .39 11.82 1.46 .15 .921

W 2, 199 1.29 .28 5.91 1.95 .72 1.97 .37 12.20 1.00 .70 .929
3, all 200 1.12 .26 5.50 2.24 .73 1.73 .35 8.15 3.08 .81 .572
4, all 199 1.55 .43 7.13 3.05 .83 1.66 .30 10.26 1.38 .67 .665

Table 2: Maximimum likelihood parameter estimates for MOE–MOR data sets fitted as mixtures of two bivariate
normals. “S” denotes summer. “W” denotes winter. The summer, Mill 2, all 199 data set had one missing data
point. The summer, Mill2, 198 data set had one missing data point and one “outlier.” The summer, Mill 3, 195
data set had five “outliers.” The winter, Mill 2, 199 data set had one “outlier.” The winter, Mill 4, all 199 data
set had one missing data point. p̂ is our estimate of the proportion of specimens that come from the leftmost
bivariate normal population. The MOE values used in the analyses are in millions of pounds per square inch. The
MOR values used in the analyses are in thousands of pounds per square inch.
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Likelihood MOR MOE Chi-squared
ratio test S-W test S-W test test
p-values p-values p-values p-values

Mill 1, all 200 .005 .001 .371 .140
Mill 2, all 199 .004 .001 .001 .763

Summer Mill 2, 198 .006 .001 .001 .736
Mill 3, all 200 .004 .104 .001 .469
Mill 3, 195 .213 .004 .126 .057
Mill 4, all 200 .291 .064 .024 .194

Mill 1, all 200 .325 .258 .298 .248
Mill 2, all 200 .006 .001 .001 .316

Winter Mill 2, 199 .012 .001 .001 .656
Mill 3, all 200 .137 .001 .001 .519
Mill 4, all 199 .072 .027 .194 .467

Table 3: Likelihood ratio test — small p-values reject single bivariate normal distributions. S-W test (Shapiro-
Wilk test of normality) — small p-values reject univariate normality (for MOR or MOE). Chi-squared test —
small p-values reject a mixture of two bivariate normal distributions.
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Simulation-based p-values

First time–mill Second time–mill The generating β̂ The generating β̂
in the in the is from the fit of is from the fit of

Comparison comparison comparison the first time–mill the second time–mill

summer, mill 1, all 200 winter, mill 1, all 200 .005 .155
S mill summer, mill 2, all 199 winter, mill 2, all 200 .009 .015
versus summer, mill 3, all 200 winter, mill 3, all 200 .009 .040
W mill summer, mill 4, all 200 winter, mill 4, all 199 .112 .018

summer, mill 1, all 200 summer, mill 2, all 199 <.001 .001
S mill summer, mill 1, all 200 summer, mill 3, all 200 .001 .023
versus summer, mill 1, all 200 summer, mill 4, all 200 <.001 .050
S mill summer, mill 2, all 199 summer, mill 3, all 200 <.001 <.001

summer, mill 2, all 199 summer, mill 4, all 200 <.001 .011
summer, mill 3, all 200 summer, mill 4, all 200 .237 .352

winter, mill 1, all 200 winter, mill 2, all 200 .221 .029
W mill winter, mill 1, all 200 winter, mill 3, all 200 .097 .049
versus winter, mill 1, all 200 winter, mill 4, all 199 .246 .060
W mill winter, mill 2, all 200 winter, mill 3, all 200 .007 .046

winter, mill 2, all 200 winter, mill 4, all 199 .001 .003
winter, mill 3, all 200 winter, mill 4, all 199 .009 <.001

Table 4a: Simulation-based fit comparisons. “Outliers” present in some cases. Low p-values indicate a statistical
difference between the fits of the two time–mill cases being compared. S – summer. W – winter.

Simulation-based p-values

First time–mill Second time–mill The generating β̂ The generating β̂
in the in the is from the fit of is from the fit of

Comparison comparison comparison the first time–mill the second time–mill

S mill versus summer, mill 2, 198 winter, mill 2, 199 <.001 <.001
W mill summer, mill 3, 195 winter, mill 3, all 200 <.001 .055

summer, mill 1, all 200 summer, mill 2, 198 <.001 .001
S mill versus summer, mill 1, all 200 summer, mill 3, 195 <.001 <.001
S mill summer, mill 2, 198 summer, mill 3, 195 .004 <.001

summer, mill 2, 198 summer, mill 4, all 200 <.001 .007
summer, mill 3, 195 summer, mill 4, all 200 .081 .276

W mill versus winter, mill 1, all 200 winter, mill 2, 199 .160 .002
W mill winter, mill 2, 199 winter, mill 3, all 200 <.001 .006

winter, mill 2, 199 winter, mill 4, all 199 <.001 .005

Table 4b: Simulation-based fit comparisons. “Outliers” removed. Low p-values indicate a statistical difference
between the fits of the two time–mill cases being compared. S – summer. W – winter.
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Probability that MOR lies below 5th/2.1
Source of Summer Winter
5th/2.1 M1 M2 M2 M3 M3 M4 M1 M2 M2 M3 M4

Season Mill 5th/2.1 all all 198 all 195 all all all 199 all all

1, all 200 2.413 .0027 .0035 .0022 .0032 .0044 .0127 .0006 .0009 .0009 .0076 .0036
2, all 199 2.138 .0018 .0024 .0015 .0021 .0028 .0094 .0004 .0005 .0004 .0052 .0023

S 2, 198 2.168 .0019 .0025 .0015 .0022 .0030 .0097 .0004 .0005 .0005 .0054 .0024
3, all 200 2.188 .0020 .0026 .0016 .0023 .0031 .0099 .0004 .0005 .0005 .0056 .0025
3, 195 2.059 .0016 .0022 .0013 .0019 .0025 .0086 .0003 .0004 .0004 .0047 .0020
4, all 200 1.841 .0012 .0016 .0009 .0013 .0017 .0067 .0002 .0002 .0002 .0034 .0014

1, all 200 2.431 .0028 .0036 .0023 .0033 .0045 .0129 .0007 .0010 .0009 .0078 .0037
2, all 200 2.158 .0019 .0025 .0015 .0022 .0029 .0096 .0004 .0005 .0005 .0054 .0024

W 2, 199 2.167 .0019 .0025 .0015 .0022 .0030 .0097 .0004 .0005 .0005 .0054 .0024
3, all 200 1.915 .0013 .0018 .0010 .0015 .0020 .0073 .0002 .0003 .0002 .0038 .0016
4, all 199 2.140 .0019 .0025 .0015 .0021 .0028 .0094 .0004 .0005 .0004 .0052 .0023

Table 5: Probabilities of breakage at fixed loads (the 5th/2.1 values in column 3) for the 11 cases (4 mills × 2
seasons, all data cases and three cases in which “outliers” have been removed). S – Summer, W – Winter. M1 –
Mill 1, M2 – Mill 2, M3 – Mill 3, M4 – Mill 4.
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Source of pBr(S,M4) / pBr(W,M1)
5th/2.1 Bootstrap

Season Mill 5th/2.1 Original 5% median 95%

1, all 200 2.413 21 6.3 21 93
2, all 199 2.138 23 7.6 28 141

S 2, 198 2.168 24 7.4 28 135
3, all 200 2.188 24 7.3 27 131
3, 195 2.059 28 8.0 31 160
4, all 200 1.841 33 9.3 40 228

1, all 200 2.431 18 6.2 21 90
2, all 200 2.158 24 7.5 28 137

W 2, 199 2.167 24 7.4 28 135
3, all 200 1.915 36 8.8 37 202
4, all 199 2.140 23 7.6 28 141

Table 6: Bootstrap results for probability of breakage ratios at fixed loads (the 5th/2.1 values in column 3) for the
11 cases (4 mills × 2 seasons, all data cases and three cases in which “outliers” have been removed). S – Summer,
W – Winter. M1 – Mill 1, M4 – Mill 4. 100 trials.

Source of pBr(W,M3) / pBr(W,M1)
5th/2.1 Bootstrap

Season Mill 5th/2.1 Original 5% median 95%

1, all 200 2.413 12.7 3.2 13.4 66
2, all 199 2.138 13.0 3.4 16.7 94

S 2, 198 2.168 13.5 3.4 16.3 90
3, all 200 2.188 14.0 3.4 16.0 88
3, 195 2.059 15.7 3.4 17.6 104
4, all 200 1.841 17.0 3.6 20.9 135

1, all 200 2.431 11.1 3.1 13.3 65
2, all 200 2.158 13.5 3.4 16.4 91

W 2, 199 2.167 13.5 3.4 16.3 90
3, all 200 1.915 19.0 3.5 19.8 124
4, all 199 2.140 13.0 3.4 16.6 93

Table 7: Bootstrap results for probability of breakage ratios at fixed loads (the 5th/2.1 values in column 3) for the
11 cases (4 mills × 2 seasons, all data cases and three cases in which “outliers” have been removed). W – Winter.
M1 – Mill 1, M3 – Mill 3. 100 trials.
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106 × Probability that the MOR lies below the lognormal load
Source of Summer Winter
5th/2.1 M1 M2 M2 M3 M3 M4 M1 M2 M2 M3 M4

Season Mill 5th/2.1 all all 198 all 195 all all all 199 all all

1, all 200 2.413 800 1148 613 875 1132 4792 120 140 127 2297 935
2, all 199 2.138 604 820 417 615 806 3557 75 81 71 1572 623

S 2, 198 2.168 624 852 436 641 839 3679 79 86 75 1642 653
3, all 200 2.188 639 875 450 660 862 3768 82 90 79 1693 675
3, 195 2.059 549 735 367 546 718 3240 64 70 60 1390 543
4, all 200 1.841 409 542 252 379 502 2519 39 46 39 986 362

1, all 200 2.431 814 1172 627 894 1155 4880 123 146 132 2350 958
2, all 200 2.158 618 842 430 633 828 3641 77 85 74 1620 643

W 2, 199 2.167 624 851 436 640 838 3676 79 86 75 1640 652
3, all 200 1.915 455 601 288 432 571 2739 47 53 45 1108 417
4, all 199 2.140 605 822 418 616 808 3565 75 82 71 1576 624

Table 8: 106 times the probability that a value randomly drawn from a lognormal load distribution exceeds a value
randomly drawn from a fitted MOR distribution. The load distribution is constant for a row of the table. The
fitted MOR distribution is constant for a column of the table. All of the lognormal distributions have coefficients
of variation equal to 0.30. For a row, the lognormal distribution exceeds the value in column 3 with probability
0.02. The value in column 3 of row i is the estimated 5th percentile/2.1 of the pseudo-truncated mixed normal fit
to the ith data set.

The 11 cases correspond to the 4 mills × 2 seasons, all data cases and the three cases in which “outliers” have
been removed. S – Summer, W – Winter. M1 – Mill 1, M2 – Mill 2, M3 – Mill 3, M4 – Mill 4.
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Source of pBr(S,M4) / pBr(W,M1)
5th/2.1 Bootstrap

Season Mill 5th/2.1 Original 5% median 95%

1, all 200 2.413 40 10 40 224
2, all 199 2.138 47 11 48 307

S 2, 198 2.168 47 10 47 298
3, all 200 2.188 46 10 46 292
3, 195 2.059 51 11 51 334
4, all 200 1.841 65 13 62 443

1, all 200 2.431 40 10 40 212
2, all 200 2.158 47 10 47 301

W 2, 199 2.167 47 10 47 298
3, all 200 1.915 58 12 58 397
4, all 199 2.140 48 11 48 307

Table 9: Bootstrap results for ratios of the probability that a value randomly drawn from a lognormal load
distribution exceeds a value randomly drawn from a fitted MOR distribution. The load distribution is constant
for a row of the table. All of the lognormal distributions have coefficients of variation equal to 0.30. For a row,
the lognormal distribution exceeds the value in column 3 with probability 0.02. The value in column 3 of row i is
the estimated 5th percentile/2.1 of the pseudo-truncated mixed normal fit to the ith data set.

The 11 cases correspond to the 4 mills × 2 seasons, all data cases and the three cases in which “outliers” have
been removed. S – Summer, W – Winter. M1 – Mill 1, M4 – Mill 4. 100 trials.
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Source of pBr(W,M3) / pBr(W,M1)
5th/2.1 Bootstrap

Season Mill 5th/2.1 Original 5% median 95%

1, all 200 2.413 19 3.6 20 107
2, all 199 2.138 21 3.7 22 153

S 2, 198 2.168 21 3.7 22 149
3, all 200 2.188 21 3.7 22 147
3, 195 2.059 22 3.8 23 163
4, all 200 1.841 25 3.9 25 196

1, all 200 2.431 19 3.6 20 102
2, all 200 2.158 21 3.7 22 151

W 2, 199 2.167 21 3.7 22 149
3, all 200 1.915 24 3.8 24 183
4, all 199 2.140 21 3.7 22 153

Table 10: Bootstrap results for ratios of the probability that a value randomly drawn from a lognormal load
distribution exceeds a value randomly drawn from a fitted MOR distribution. The load distribution is constant
for a row of the table. All of the lognormal distributions have coefficients of variation equal to 0.30. For a row,
the lognormal distribution exceeds the value in column 3 with probability 0.02. The value in column 3 of row i is
the estimated 5th percentile/2.1 of the pseudo-truncated mixed normal fit to the ith data set.

The 11 cases correspond to the 4 mills × 2 seasons, all data cases and the three cases in which “outliers” have
been removed. W – Winter. M1 – Mill 1, M3 – Mill 3. 100 trials.
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Figure 1: 0.90 content ellipses for the two bivariate normals in the fitted mixture distribution.
Column 1 — Mill 1. Column 2 — Mill 2. Column 3 — Mill 3. Column 4 — Mill 4. Row 1
— Summer, full. Row 2 — Summer, “outliers” out. Row 3 — Winter, full. Row 4 — Winter,
“outliers” out. The N values in the lower right corners of the plots are sample sizes.
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Figure 2: Summer, mill 1, 0.90 ellipses, all 200 data points
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Figure 3: Summer, mill 2, 0.90 ellipses, all 199 data points
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Figure 4: Summer, mill 2, 0.90 ellipses, 198 data points
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Figure 5: Summer, mill 3, 0.90 ellipses, all 200 data points
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Figure 6: Summer, mill 3, 0.90 ellipses, 195 data points
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Figure 7: Summer, mill 4, 0.90 ellipses, all 200 data points
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Figure 8: Winter, mill 1, 0.90 ellipses, all 200 data points
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Figure 9: Winter, mill 2, 0.90 ellipses, all 200 data points
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Figure 10: Winter, mill 2, 0.90 ellipses, 199 data points
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Figure 11: Winter, mill 3, 0.90 ellipses, all 200 data points
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Figure 12: Winter, mill 4, 0.90 ellipses, all 199 data points
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Figure 13: 0.90 content contours for the mixture distributions. Column 1 — Mill 1. Column 2 —
Mill 2. Column 3 — Mill 3. Column 4 — Mill 4. Row 1 — Summer, full. Row 2 — Summer,
“outliers” out. Row 3 — Winter, full. Row 4 — Winter, “outliers” out. The N values in the lower
right corners of the plots are sample sizes.
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Figure 14: Summer, mill 1, 0.90 contour, all 200 data points
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Figure 15: Summer, mill 2, 0.90 contour, all 199 data points
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Figure 16: Summer, mill 2, 0.90 contour, 198 data points
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Figure 17: Summer, mill 3, 0.90 contour, all 200 data points
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Figure 18: Summer, mill 3, 0.90 contour, 195 data points
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Figure 19: Summer, mill 4, 0.90 contour, all 200 data points
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Figure 20: Winter, mill 1, 0.90 contour, all 200 data points
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Figure 21: Winter, mill 2, 0.90 contour, all 200 data points
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Figure 22: Winter, mill 2, 0.90 contour, 199 data points
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Figure 23: Winter, mill 3, 0.90 contour, all 200 data points
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Figure 24: Winter, mill 4, 0.90 contour, all 199 data points




