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Simulations of Nonparametric Analyses of
Predictor Sort (Matched Specimens) Data

Steve P. Verrill, Mathematical Statistician
USDA Forest Service, Forest Products Laboratory, Madison, WI

David E. Kretschmann, Research General Engineer (retired!)
USDA Forest Service, Forest Products Laboratory, Madison, WI

1 Introduction

A type of blocked experiment has the potential of being poorly designed and/or analyzed. Ver-
rill (1993, 1999), Verrill et al. (2004), and Verrill and Kretschmann (2017) referred to such an
experiment as a “predictor sort” experiment. David and Gunnink (1997) spoke of “artificial pair-
ing.” In textbooks it is sometimes referred to as a “matched pair” or “matched subjects” design.
The associated design process is also sometimes described as “forming blocks via a concomitant
variable” (see, for example, Cox (1957)). In a wood research context, the response in such an
experiment might be lumber strength after a treatment, and the predictor used to form blocks
would be some combination of lumber stiffness, knot size, and slope of grain (all of which can be
measured nondestructively prior to specimen allocation).

Improperly designed and/or analyzed, predictor sort experiments can be associated with in-
correct power calculations, inappropriate sample sizes, incorrect tests of hypotheses, and incorrect
confidence intervals. Verrill and Kretschmann (2017) reviewed the main results in the literature,
added a section on multiple comparisons, and presented the results from power and confidence
interval coverage simulations that emphasized the importance of the proper design and analysis of
predictor sort experiments.

This work in Verrill and Kretschmann (2017) was based on the assumption that the predictor
and the response have a bivariate normal distribution.

The current paper can be thought of as a companion piece to Verrill and Kretschmann (2017). It
constitutes a nontheoretical, simulation-based first look at the effect of predictor sort allocation on
nonparametric hypothesis tests (Kruskal-Wallis, one-way on ranks, one-way on Van der Waerden
ranks, two-way on ranks, and Friedman tests) and nonparametric confidence bounds on quantiles.
It also considers situations in which a bivariate normal assumption for the predictor-response pair
does not hold.

2 Background

In the Introduction we loosely referenced “predictor sort sampling” and stated that the associated
design process is also sometimes described as “forming blocks via a concomitant variable.” We now
provide additional details.

In a wood research context, Warren and Madsen (1977) described the specimen allocation
procedure as follows:
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One can take steps, however, to ensure that the inherent [initial] strength distributions
of test and control samples are reasonably equivalent. Indeed, failure to do so can only
throw doubt on the results.

Specifically, then, all the boards in the experiment are ordered from weakest to strongest
as nearly as can be judged from their moduli of elasticity, knot size, and slope of grain.
To divide the material into J equivalent groups the first J boards, after ordering, are
taken and randomly allocated one to each group. This is repeated with the second,
third, fourth, etc., sets of J boards. The strength distributions of the resulting groups
should then be essentially the same. (Warren and Madsen, 1977, Number 3, page 46)

Here the response is lumber strength after a treatment, and the predictor used to form blocks (of
size J) would be some combination of lumber stiffness, knot size, and slope of grain (all of which
can be measured nondestructively prior to specimen allocation).

In an agricultural context, the predictor variable might be, for example, animal age, initial
animal weight, or plot fertility in a previous trial. In a behavioral or educational context, the
predictor might be, for example, IQ or performance on a pre-test.

In this paper we refer to this type of design as a “predictor sort” design (because we sort spec-
imens on the basis of a predictor that is correlated with the response, and then form blocks via
collections of specimens with adjacent predictor values). To properly design experiments and ana-
lyze data, statisticians and experimenters must be able to recognize cases in which their specimens
have been allocated by such a process.

Verrill (1999) cited discussions of this type of experiment in example 3.3 of Cox (1958), section
8.2 of Steel and Torrie (1960), section 5.1 of Kirk (1968), section 13.17 of Finney (1972), example
11.3 of Ostle and Mensing (1975), chapter 6 of Myers (1979), and example 6.13.1 of Snedecor and
Cochran (1989). A more recent sampling of statistical texts found such experiments discussed in
Kerlinger and Lee (1999), van Zutphen et al. (2001), example 5.1 of Toutenburg (2002), section 4.3
of Ruxton and Colegrave (2006), problem 3.8 of Casella (2008), Cozby and Bates (2011), Tuckman
and Harper (2012), and section 8.1 of Kirk (2013).

Among the variables suggested as predictors to be used to form blocks were age, reaction time,
initial weight, concentration of blood constituent, degree of disease, time since college, 1Q, scores on
a cognitive ability measure, grade point average, prior school performance, and pretest achievement.

As noted in Section 1, improperly designed and/or analyzed, predictor sort experiments can be
associated with incorrect power calculations, inappropriate sample sizes, incorrect tests of hypothe-
ses, and incorrect confidence intervals. These improper designs and analyses stem from an error in
the implicit underlying probability model. In general, authors act as if the appropriate model in a
“matched” one-factor case is

Yij = pj + pi. + oy X €; (1)
where the Y;; are responses, (.1, ..., .y denote the treatment effects, u1.,..., us. denote the block
effects, and the €’s are i.i.d. N(0,1)’s.

In fact, however, under a bivariate normal assumption, the correct probability model after a
predictor sort with J treatments and I “blocks” is

Yij = pj +oy (P (Xk(ijyn — Bx) Jox + /1 = pQPij) (2)

where p1,...,uy denote the treatment effects; for a fixed i, the J k(i,j)’s are a randomization
of the elements of {(i —1)J +1,...,iJ}; X;,, denotes the th order statistic among the X’s (the
predictors); and the P;;’s are i.i.d. N(0,1)’s that are independent of the X's.



This follows from the fact that if the predictor X and the response Y have a bivariate normal
distribution with correlation p and we do not use the predictor to form blocks, then we have

Y =p;+oy (p(X—ux)/Ux+\/1—p2P> (3)

where X and P are statistically independent normals, X has mean px and standard deviation ox,
and P is a N(0,1). Sorting the X,Y pairs by the X value and then forming blocks via J adjacent
(and then randomized) X'’s then leads to (2).

The differences between models (1) and (2) (and, in particular, the fact that X j,).n—Xk(ijo)n
tends to be smaller than an arbitrary X; — X5 and yet not equal to 0) are the source of both the
advantages and the problems associated with predictor sort experiments.

Verrill (1993) and David and Gunnink (1997) focused on potential problems with hypothesis
tests given a predictor sort design. Verrill (1999) focused on confidence intervals on the mean
response associated with a treatment. Verrill et al. (2004) focused on confidence intervals on
response quantiles associated with a treatment. Verrill and Kretschmann (2017) reviewed the
earlier work, extended it to multiple comparison tests, and performed extensive simulations that
documented the need for proper design and analysis of predictor sort experiments.

As noted in Section 1, this paper can be considered to be a companion piece to Verrill and
Kretschmann (2017). It constitutes a nontheoretical, simulation-based first look at the effect of
predictor sort allocation on nonparametric hypothesis tests (Kruskal-Wallis, one-way on ranks,
one-way on Van der Waerden ranks, two-way on ranks, and Friedman tests) and nonparametric
confidence bounds on quantiles.

Also, the predictor sort analyses described in Verrill and Kretschmann (2017) and earlier pub-
lications are based upon the assumption that prior to treatment, the predictor (that is used to
perform the allocation) and the response have a bivariate normal distribution. In Section 3.1 we
investigate the performance of nonparametric hypotheses tests of predictor sort data when the bi-
variate normal assumption holds. In later sections we consider the performance of parametric and
nonparametric tests when the bivariate normal assumption does not hold.

Note on analyses of covariance

Given a predictor sort design, a scientist or statistician might assume that an analysis of co-
variance (with the predictor as the covariate) will yield perfectly satisfactory results. In some cases
and for some purposes, it will. However, as was noted in Verrill (1993), if the relationship between
the predictor and the response is not linear, a blocked analysis of variance (ANOVA) can yield
better power than an analysis of covariance (ANCOVA). Also, as noted in Verrill and Kretschmann
(2017), given a predictor sort design, a standard ANCOVA will yield incorrect confidence intervals
on treatment means. Further, as established in the current paper, when the response is long-tailed
(rather than normal), blocked ANOVAs on ranks and (sometimes) Friedman tests can perform
much better than analyses of covariance. Finally, as noted in Verrill and Kretschmann (2017) and
as further illustrated in the current paper, a predictor sort design yields relatively simple ANCOVA
power calculations.

3 Simulations of Nonparametric Hypothesis Tests

We simulated the performance of parametric and nonparametric hypothesis tests under a variety of
assumptions about the bivariate predictor-response distribution. In addition to a bivariate normal
predictor—response distribution, we considered seven additional bivariate distributions. In all seven
of these bivariate distributions, the predictor was taken to have a standard normal distribution,



while the response was taken to have one of the seven distributions listed in Table 1. (We realize
that a normal assumption on the predictor is too restrictive. These simulations represent a first look
at a generalization of our original bivariate normal predictor-response assumption.) Plots of the
corresponding probability density functions are provided in Figures 1 — 3. Additional information
about these seven distributions is provided in the Appendix.

In the simulations, to generate our bivariate predictor—response distributions, we take a Gaus-
sian copula approach (see, for example, Nelsen (2006)). Thus, for example, to generate a Gaussian—
Weibull with correlation parameter p, we set

yi = pxi + /1 — p2z (4)

where z; and z; were independently drawn from a N(0,1) population. Thus x; and y; were N(0,1)’s
with correlation p. x; was taken as the ith value of the predictor (used in the predictor sort). The
corresponding Weibull random variable, w;, was obtained as

w; = F (@ (y:);7, B)

where ® denotes a N(0,1) cumulative distribution function (cdf) and Fy;' (u; 7, 3) denotes the inverse
of the Weibull cdf with parameters v and 3 (see the Appendix). (Note that the generating p in (4)
will differ somewhat from the sample correlation between the z;’s and w;’s. See, for example, table
10 in Verrill and Kretschmann (2010).)

The inverses of the other distributions are provided in the Appendix.

In all cases, the parameters of the distributions were set so that variances were 1. This ensured
that the powers associated with the different distributions would be at least roughly comparable.

In our simulations, we considered the one-factor case. As in Verrill and Kretschmann (2017),
for each combination of

e predictor and response generating correlations, p, equal to 0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,
and 0.99,

e number of treatments, J, equal to 2, 3, 5, 7, 9, 11, and 20,
e sample sizes, I, equal to 3, 5, 10, 20, and 40,
e and 21 noncentrality parameters,

we performed 40,000 trials. We created two versions of each of the resulting data sets. One version
was created by allocating the specimens in a data set to the J treatment conditions via a standard
randomization. The second version was created by allocating the specimens in a data set to the J
treatment conditions via a predictor sort.

Distinct ;s that varied with the “noncentrality parameter index” (see appendix A of Verrill and
Kretschmann (2017)) were added to the J groups of responses corresponding to the J treatments.

We then performed 10 hypothesis tests on the data sets, and two “theoretical power” calcula-
tions. The results from these simulations for the case in which the predictor-response distribution
was Gaussian—Weibull (0.30 coefficient of variation), p = 0.8, J = 5, and I = 10, 20 are provided in
Table 2. The full results of the simulation can be found at www1.fpl.fs.fed.us/ps_nonpar_table2.html.
Columns 1 through 3 of these tables contain the p, J, and I values. Column 4 of these tables con-
tains the “noncentrality parameter index” discussed in appendix A of Verrill and Kretschmann
(2017). The contents of the remaining columns in these tables can be described as follows:

e Column 5: Standard allocation, 1-way anova. The estimated power of a standard one-way
ANOVA on the standard randomization version of the data set.



e Column 6: Standard allocation, KW. The estimated power of a standard Kruskal-Wallis
nonparametric test on the standard randomization version of the data set.

e Column 7: Predictor sort allocation, uncorr KW. The estimated power of a standard (“un-
corrected”) Kruskal-Wallis nonparametric test on the predictor sort version of the data set.

e Column &: Predictor sort allocation, KW. The estimated power of a “corrected” Kruskal-
Wallis nonparametric test on the predictor sort version of the data set. The corrected statistic
is the standard KW statistic divided by 1—p?, where p is the (generating) correlation between
the predictor and the response.

e Column 9: Predictor sort allocation, one-way ranks. The estimated power of a “corrected”
one-way ANOVA on ranks (see, for example, Conover and Iman (1981)) on the predictor sort
version of the data set. The corrected statistic is the standard F statistic divided by 1 — p?.

e Column 10: Predictor sort allocation, Van der Waerden. The estimated power of a “corrected”
Van der Waerden test on the predictor sort version of the data set (in this paper, a “Van
der Waerden test” is a one-way ANOVA on the normal scores of the ranks of the data). The
corrected statistic is the standard statistic divided by 1 — p2.

e Column 11: Predictor sort allocation, 2-way anova. The estimated power of a two-way
ANOVA on the predictor sort version of the data set. (The blocks are formed by specimens
with adjacent [randomized within the block] values of the predictor.)

e Column 12: Predictor sort allocation, 2-way ranks. The estimated power of a two-way
ANOVA on ranks (see Conover and Iman (1981)) on the predictor sort version of the data
set.

e Column 13: Predictor sort allocation, Friedman. The estimated power of a Friedman test on
the predictor sort version of the data set.

e Column 14: Predictor sort allocation, ancova. The estimated power of an ANCOVA on the
predictor sort version of the data set.

e Column 15: “Theoretical,” 1-way. The calculated “theoretical power” for a corrected one-
way ANOVA on a predictor sort version of the data set. See expression (3) of Verrill and
Kretschmann (2017) for a detailed discussion of the calculation.

e Column 16: “Theoretical,” 2-way. The calculated “theoretical power” for a two-way ANOVA
on a predictor sort version of the data set. See expression (4) of Verrill and Kretschmann
(2017) for a detailed discussion of the calculation.

Listings of the simulation programs that produced the Table 2 power estimates can be obtained
at http://wwwl.fpl.fs.fed.us/ps_nonpar_powersim.html.

For the eight bivariate distributions, plots that present a portion of the results of these simula-
tions (J = 2,5; I = 10,20; p = 0.8) are provided in Figures 4-35. In these plots, the “noncentrality
parameter index” is the m in column 4 of the corresponding power table. See appendix A of Verrill
and Kretschmann (2017) for a discussion of this index. In these plots, “th” is the “theoretical
power” calculated by (3) in Verrill and Kretschmann (2017) and presented in column 15 of the
power table. “ps, ancova” is the estimated power of an ANCOVA after a predictor sort allocation
(column 14 of the power table). “ps, 2way anova” is the estimated power of a blocked ANOVA after
a predictor sort allocation (column 11 of the power table). “ps, 2way ranks” is the estimated power



of a blocked ANOVA on ranks after a predictor sort allocation (column 12 of the power table). “ps,
Friedman” is the estimated power of Friedman’s test after a predictor sort allocation (column 13 of
the power table). “no ps, KW” is the estimated power of the Kruskal-Wallis test after a standard
random allocation (column 6 of the power table). “ps, KW, uncorr” is the estimated power of
a standard (“uncorrected”) Kruskal-Wallis test after a predictor sort allocation (column 7 of the
power table). We note that in these plots, lines sometimes overlie each other and can be difficult
to discriminate.

Selected results from these simulations for the J = 2,5, 11; I = 10, 20, 40; p = 0.0,0.5,0.6,0.7,0.8,
0.9,0.95,0.99 cases are presented in Tables 3.1 to 3.24. These tables contain the same columns (with
the same meanings) as those contained in Table 2. However, Tables 3.1 to 3.24 contain only a subset
of the Table 2 rows. For each p, J, and I considered, only two rows are presented. The upper of
these two rows is the first row in the corresponding Table 2 in which a power above 0.9 is attained
for one of columns 5, 6, 11, 12, 13, or 14, or, if there is no such row, it is the m = 21 row. The lower
of these two rows is the corresponding m = 1 row (so it contains the empirical sizes of nominal
0.05 tests). However, values in this lower row that lie between 0.048 and 0.052 (not significantly
different from 0.05 for trials of size 40000) are left blank. These “streamlined” tables (together
with the plots) permit one to more readily see the conclusions that we draw below.

A review of the full Table 2 results (wwwl.fpl.fs.fed.us/ps nonpar table2.html) demon-
strates that in almost all cases where I > 10, test sizes reported in columns 5, 6, 11 — 14 are nominal
(between 0.047 and 0.053) or conservative (below 0.047).

3.1 Nonparametric hypothesis tests when the predictor and the response have
a bivariate normal distribution

See Tables 3.1 to 3.3 and Figures 4 to 7 for some of the simulation results. From the full simulation
results, we see

1. The conclusions obtained in the parametric case (see Verrill and Kretschmann (2017)) con-
tinue to hold in the nonparametric case. In particular, large increases in statistical power
and/or sample size reductions can be gained by performing a predictor sort allocation and
analysis. To see this, compare the powers in columns 5 and 6 of Tables 3.1 to 3.3 with those
in columns 11 to 14. The power improvements become larger as the generating correlation,
p, between the predictor and the response increases.

Also, if p is reasonably large, it is a statistical blunder to perform a predictor sort allocation
and then follow the allocation with a standard Kruskal-Wallis test. Such an approach can
considerably reduce power. (To see this, compare the values in column 7 of Tables 3.1 to 3.3
with the values in columns 5, 6, and 11 to 14.)

The conclusions stated above continue to hold for bivariate Gaussian—Weibull, Gaussian—
Uniform, Gaussian—right triangular, Gaussian—double exponential, and Gaussian-exponential
data. We will not repeat these conclusions below.

2. In general, as one would expect, if the predictor-response relationship is truly bivariate nor-
mal, the power relationships are (see columns 11 to 14 of Tables 3.1 to 3.3)

ANCOVA > two-way ANOVA > two-way on ranks > Friedman (5)

(However, for very high p and small I, two-way ANOVA power can be reduced below non-
parametric power.)



3. The theory in the parametric case leads (very roughly) to a conjecture that in the predictor
sort allocation, nonparametric analysis case, one might be able to divide Kruskal-Wallis,
one-way on ranks, and Van der Waerden test statistics by 1 — p? to obtain tests that have
approximately correct sizes and good power. The simulation results presented in the size rows
of columns 8 to 10 of Table 3 permit us to evaluate this conjecture. They indicate that in the
known p case, and for lower p’s, actual sizes are not greatly inflated over nominal sizes and
the resulting powers are comparable to those of a two-way ANOVA or an ANCOVA. This is
especially true for the Van der Waerden test.

However, as p increases, the inflation of nominal size over actual size for these modified one-
way nonparametric tests becomes considerable. Thus a two-way ANOVA on ranks appears
to be preferable to our “corrected” one-way nonparametric tests. However, the success of the
correction factor for lower p’s and higher I'’s suggests that efforts should be made to investigate
the asymptotic distributions of suitably corrected one-way nonparametric test statistics given
a predictor sort allocation.

4. The “theoretical power” obtained via (3) of Verrill and Kretschmann (2017) matches the
simulation estimate for an ANCOVA. (Compare columns 14 and 15 of Tables 3.1 to 3.3.)
Except in cases of high p and low I, the “theoretical power” obtained via (4) of Verrill
and Kretschmann (2017) matches the simulation estimate for a two-way ANOVA. (Compare
columns 11 and 16 of Tables 3.1 to 3.3.) In Verrill and Kretschmann (2017) we defined “high
p” as (very roughly) greater than 0.80, and we defined “low I” as (very roughly) less than 10.
For high p and low I, the “theoretical power” for a two-way ANOVA will overestimate the
actual power of a two-way ANOVA. Because of inequality (5), in the bivariate normal case
the powers of the nonparametric tests will be overestimated by results (3) and (4) of Verrill
and Kretschmann (2017).

3.2 Nonparametric hypotheses tests when the predictor and the response have
a bivariate Gaussian—Weibull distribution

At the Forest Products Laboratory we often work with strength properties (e.g., lumber modulus
of rupture and modulus of elasticity) that have coefficients of variation that lie roughly between
0.2 and 0.4. Thus, for this simulation, we considered only Weibulls (other than the exponential
distribution, see below) with coefficients of variation equal to 0.2, 0.3, and 0.4. The corresponding
shape parameters, 3, are given in Table 1. The inverse scale parameters, v, that yield variances
equal to 1 given the Table 1 shape parameters are also provided in Table 1. Further Weibull details
are provided in Section 7.1. The Weibull distributions are plotted in Figure 1.

See Tables 3.4 to 3.12 and Figures 8 to 19 for some of the simulation results. From the full
simulation results, we can conclude that for Weibull coefficients of variation between 0.2 and 0.4,
analyses based on bivariate Gaussian—Weibull predictor /sort allocations behave in the same manner
as analyses based on bivariate normal allocations, and the conclusions stated in Section 3.1 continue
to hold.

3.3 Nonparametric hypotheses tests when the predictor and the response have
a bivariate Gaussian—uniform distribution

A uniform distribution is an example of a symmetric, “short-tailed” (negative excess kurtosis)
distribution. The nature of the uniform distribution used in our simulations is described in Table
1 and Section 7.2. The distribution is plotted in Figure 2.



See Tables 3.13 to 3.15 and Figures 20 to 23 for some of the simulation results. From the full
simulation results we can see (using columns 11 to 15 of Tables 3.13 to 3.15):

1. The power ordering of the tests depends on the J, I, and p values. In general, for lower J, I,
and p values, the order

ANCOVA > two-way ANOVA > two-way on ranks > Friedman (6)

which holds in the bivariate normal and bivariate Gaussian—Weibull cases continues to hold.
However, for higher J, I, and p, we see orders such as

Friedman > two-way ANOVA > two-way on ranks > ANCOVA (7)

That is, we see a partial reversal of (6). The relative performance of the nonparametric tests
improves.

2. Because we are no longer working with bivariate normal distributions, we can no longer
expect the “theoretical power” reported in column 15 to match the empirical powers of the
best performing tests. However, for p less than or equal to 0.80, the column 15 “theoretical
power” still does a good job of approximating the power of the best performing test. Note that
in Tables 3.13 to 3.15, there are three cases (J = 5,1 = 40; J = 11,1 = 20; J = 11,1 = 40)
in which, for larger p, the best performing test is the Friedman test and the empirical power
exceeds the “theoretical power.”

3.4 Nonparametric hypotheses tests when the predictor and the response have
a bivariate Gaussian—right triangular distribution

A right triangular distribution is an example of a skewed, “short-tailed” (negative excess kurtosis)
distribution. The nature of the right triangular distribution used in our simulations is described in
Table 1 and Section 7.3. The distribution is plotted in Figure 3.

See Tables 3.16 to 3.18 and Figures 24 to 27 for some of the simulation results. From the full
simulation results we can see (using columns 11 to 15 of Tables 3.16 to 3.18):

1. The power ordering of the tests depends on the J, I, and p values.
For J =2, I = 10,20,40, and most of the p’s, the power order tends to be the same as the
order in the bivariate normal case. That is,

ANCOVA > two-way ANOVA > two-way on ranks > Friedman (8)

For J =11, I = 10, 20,40, and p > 0.60, the power order
Friedman > two-way on ranks > two-way ANOVA > ANCOVA 9)

tends to hold. This is the reverse of the power order that tends to hold in the J = 2 case.

For J = 5, the power ordering varies from (8) to (9) with (8) tending to hold for lower p and
I and (9) tending to hold for higher p and I.

2. Because we are no longer working with bivariate normal distributions, we can no longer
expect the “theoretical power” reported in column 15 to match the empirical powers of the
best performing tests. However, for J = 2 and 5 and p less than or equal to 0.080, the column
15 “theoretical power” still does a good job of approximating the power of the best performing



test. (The approximation is good for all p’s considered for I = 40.) For J = 11, the empirical
power of the best performing test is generally better than the “theoretical power.” However,
the difference between empirical power and “theoretical power” is small except in the I = 40
case. (For J = 11,1 = 40, the largest difference was between the 0.81 “theoretical power”
and 0.92 maximum empirical power for p = 0.90.)

3.5 Nonparametric hypotheses tests when the predictor and the response have
a bivariate Gaussian—double exponential distribution

A double exponential distribution is an example of a symmetric, “long-tailed” (positive excess
kurtosis) distribution. The nature of the double exponential distribution used in our simulations is
described in Table 1 and Section 7.4. The distribution is plotted in Figure 2.

See Tables 3.19 to 3.21 and Figures 28 to 31 for some of the simulation results. From the full
simulation results we can see (using columns 11 to 15 of Tables 3.19 to 3.21):

1. The power ordering of the tests depends on the J, I, and p values.
For J =2, I = 20,40, and most of the p’s, the power order is

two-way on ranks > ANCOVA > two-way ANOVA > Friedman (10)

For J =2, I =10, and p < 0.60, the power order is
two-way on ranks > ANCOVA > two-way ANOVA > Friedman (11)
but for J =2, I =10, and p > 0.70, the power order is

ANCOVA > two-way on ranks > two-way ANOVA > Friedman (12)

For J =5 and 11, in almost all cases the power order is
two-way on ranks > Friedman > ANCOVA > two-way ANOVA (13)
The exception is in the J = 5,1 = 10 case in which the power order is primarily

two-way on ranks > ANCOVA > Friedman > two-way ANOVA (14)

In any event, the two-way on ranks test dominates, and the Friedman test tends to be the
runner-up except in the low J case.

2. In all cases other than the higher p cases for J = 2, I = 10, the “theoretical power” in column
15 underestimates the empirical power of the best performing test (a two-way on ranks test
except in the higher p for J = 2, I = 10 cases mentioned above where an ANCOVA yields the
maximum power). The largest differences between empirical power and “theoretical power”
are on the order of 0.15.



3.6 Nonparametric hypotheses tests when the predictor and the response have
a bivariate Gaussian—exponential distribution

An exponential distribution is an example of a skewed, “long-tailed” (positive excess kurtosis)
distribution. The nature of the exponential distribution used in our simulations is described in
Table 1 and Section 7.5. The distribution is plotted in Figure 3.

See Tables 3.22 to 3.24 and Figures 32 to 35 for some of the simulation results. From the full
simulation results we can see (using columns 11 to 15 of Tables 3.22 to 3.24):

1. In all three of Tables 3.22 to 3.24, the most powerful test is a nonparametric test.

2. For the J =2 and J = 5 cases (Tables 3.22 and 3.23), the most powerful test is the two-way
on ranks test.

3. For the J = 11 case (Table 3.24) and lower I, the most powerful test is the two-way on ranks
test. For higher I and higher p, the Friedman test is most powerful.

4. In all cases other than those in which p is high and J = 2,1 = 10 or J = 5,1 = 10,
the “theoretical power” in column 15 greatly underestimates the empirical power of the best
performing test. The largest differences between empirical power and “theoretical power” are
on the order of 0.45.

4 Nonparametric Confidence Intervals on Quantiles after a
Predictor Sort Allocation

Just as a predictor sort allocation can be used to reduce the sample sizes needed for parametric
confidence bounds on treatment quantiles (see Verrill et al. (2004)), it can also be used to reduce the
sample sizes needed for nonparametric confidence bounds on quantiles. (In this section we restrict
ourselves to the case in which the predictor and the response have a bivariate normal distribution.)

For example, in the absence of a predictor sort, the probability that the kth order statistic from
a random sample of size n from a population lies below the gth quantile of the population is given
by (see, for example, David (1981))

Zn: ( 7; ) ¢(1—q"" (15)

i=k

A web program to calculate this probability can be found at
http://wwwl.fpl.fs.fed.us/nonpar_ci_quant.html. Using this program, one can see that in
the absence of a predictor sort allocation, appropriate order statistics for nonparametric one-sided,
lower 75% confidence bounds on fifth percentiles are 1, 2, and 3 for samples of size 28, 53, and
78, respectively. (These values are specified in table 2 of ASTM (2010) in association with the
calculation of “allowable properties” for grades of structural lumber.) The exact coverages of
such confidence bounds in the standard randomization case are provided in column 4 of Table
4. After a predictor sort allocation, the coverages of such nonparametric confidence intervals are
elevated above the value provided by (15). These elevated values increase as p (the correlation
between the predictor and the response in the predictor sort allocation) increases. See, for ex-
ample, Table 4. Estimated actual coverages are reported for p = 0.7, 0.8, and 0.9. (A listing
of the program that was used to perform the simulation that yielded Table 4 can be found at
http://wwwl.fpl.fs.fed.us/psnonpar table4 code.html)
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Because of this elevation, the actual sample sizes needed to obtain the nominal coverages are
reduced below the I values that would be determined from (15). In Table 5, we report the I’s
that are needed to obtain 75% coverage for J (the number of treatments) equal to 2, 3, or 5, and
p = 0.7, 0.8, or 0.9 when we use the first, second, or third order statistic (OS) associated with a
particular treatment as our nonparametric lower bound. These I’s should be contrasted with 28
(in the OS = 1 case), 53 (in the OS = 2 case), and 78 (in the OS = 3 case). Permissible I’s clearly
decrease as p and J increase. For example, in the first order statistic, J = 5, p = 0.9 case, the
necessary I declines from 28 to 21. (This 25% sample size reduction is the largest in the table.
As indicated in Table 4, if we incorrectly ignore the predictor sort allocation, this 25% sample size
reduction case corresponds to an actual coverage of 0.845 for a nominal 0.75 confidence interval.)
(A listing of the program that was used to perform the simulation that yielded Table 5 can be
found at http://wwwl.fpl.fs.fed.us/psnonpar_table5 code.html)

5 Summary

This paper represents a nontheoretical, simulation-based first look at the effect of predictor sort

allocation on nonparametric hypothesis tests and confidence bounds on quantiles. For hypothe-

sis tests, it also looks at the effects of replacing bivariate normal predictor/response distributions

with bivariate normal-Weibull, normal—uniform, normal-right triangular, normal-double exponen-

tial, and normal-exponential distributions (representing “near normal,” “symmetric short-tailed,”

“skewed short-tailed,” “symmetric long-tailed,” and “skewed long-tailed” response distributions).
Our simulations permit us to draw a number of conclusions:

e As in the parametric case, large increases in statistical power and/or sample size reductions
can be gained by performing a predictor sort allocation and analysis. The power improve-
ments become larger as the generating correlation, p, between the predictor and the response
increases.

Also, if p is reasonably large, it is a statistical blunder to perform a predictor sort allocation
and then follow the allocation with a standard Kruskal-Wallis test. Such an approach can
considerably reduce power (from that available from a standard random allocation followed
by a standard Kruskal-Wallis test).

These conclusions hold for bivariate Gaussian—Weibull, Gaussian—Uniform, Gaussian-right
triangular, Gaussian—double exponential, and Gaussian—exponential predictor-response data,
as well as for bivariate normal predictor-response data.

e The theory in the parametric case leads (very roughly) to a conjecture that in the predictor
sort allocation, nonparametric analysis case, one might be able to divide Kruskal-Wallis,
one-way on ranks, and Van der Waerden test statistics by 1 — p? to obtain tests that have
approximately correct sizes and good power. Our simulation results indicate that in the
known p case, and for lower p’s, actual sizes are not greatly inflated over nominal sizes and
the resulting powers are comparable to those of a two-way ANOVA or an ANCOVA. This is
especially true for the Van der Waerden test.

However, as p increases, the inflation of nominal size over actual size for these modified one-
way nonparametric tests becomes considerable. Still, the success of the correction factor
for lower p’s and higher I’s suggests that efforts should be made to investigate the asymp-
totic distributions of suitably corrected one-way nonparametric test statistics (and two-way
nonparametric test statistics) given a predictor sort allocation.
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If the predictor-response relationship is truly bivariate normal or bivariate normal-near nor-
mal (as in the case of the bivariate Gaussian-Weibull distributions considered in Section 3.2),
the power relationships are generally

ANCOVA > two-way ANOVA > two-way on ranks > Friedman (16)

For uniform and right triangular response distributions (negative excess kurtosis or “short-
tailed” distributions) and lower J, I, p values, the power relationships are generally well
represented by (16), but for higher J, I, p values, the Friedman test tends to dominate.

For double exponential and exponential response distributions (positive excess kurtosis or
“long-tailed” distributions), the two-way on ranks nonparametric test dominates and the
Friedman nonparametric test tends to be the runner-up. (In the J = 2 case, an ANCOVA
and a two-way ANOVA perform better than a Friedman test.)

The power ordering results tell us that if we perform a predictor sort allocation, our choice of
hypothesis test should depend on some or all of J, I, p, and the distribution of the response.

For bivariate normal distributions and the bivariate Gaussian—Weibulls that we considered
(Weibull coefficients of variation equal to 0.2, 0.3, and 0.4), the “theoretical power” in column
15 (of Tables 3.1 to 3.12) matched the power of the best performing test (an ANCOVA except
in a very few high p cases).

For bivariate Gaussian—uniform distributions and p < 0.80, the “theoretical power” in column
15 (of Tables 3.13 to 3.15) matched the the power of the best performing test. For p > 0.90,
the “theoretical power” in column 15 (of Tables 3.13 to 3.15) and the the power of the best
performing test were still reasonably close.

For bivariate Gaussian-right triangular distributions, J = 2 and 5, and p less than or equal
to 0.80, the “theoretical power” in column 15 (of Tables 3.16 to 3.18) still does a good job of
approximating the power of the best performing test. For J = 11, the empirical power of the
best performing test is generally better than the “theoretical power.” However, the difference
between empirical power and “theoretical power” is small except in the I = 40 case. (For
J = 11,1 = 40, the largest difference was between the 0.81 “theoretical power” and the 0.92
maximum empirical power for p = 0.90.)

For bivariate Gaussian—double exponential distributions, in all cases other than the higher p
cases for J =2, I = 10, the “theoretical power” in column 15 (of Tables 3.19 to 3.21) under-
estimates the empirical power of the best performing test. The largest differences between
empirical power and “theoretical power” are on the order of 0.15.

For bivariate Gaussian—exponential distributions, in all cases other than those in which p is
high and J =2, =10 or J = 5,1 = 10, the “theoretical power” in column 15 (of Tables 3.22
to 3.24) greatly underestimates the empirical power of the best performing test. The largest
differences between empirical power and “theoretical power” are on the order of 0.45.

Just as we can reduce necessary sample sizes or narrow parametric confidence intervals on
quantiles via a predictor sort allocation (see Verrill et al. (2004)), we can reduce necessary
sample sizes or increase nonparametric confidence interval coverage of quantiles via a pre-
dictor sort allocation. In this paper we establish this result (via simulations) only for a
bivariate normal predictor-response distribution, but we expect that it will also hold for
other predictor—response distributions.
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7 Appendix — Distributions

We note that all the material in this section has previously appeared in the literature. We record
it here for our future convenience and for the possible convenience of readers of this paper.

7.1 Weibull
7.1.1 pdf

For w > 0
fw(w;y, B) =47 Buw’ ' exp (—(Vw)ﬁ)

where 3 is the shape parameter and «y is the inverse of the scale parameter.

7.1.2 cdf
For w >0

Fy(w; 7, 8) =1 = exp (~(7u)?)
7.1.3 Inverse of the cdf

For y € [0, 1]
y P (7, 8) = (= log(1 — y))"/? /
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7.1.4 Moments

~——
U
S

B(w") = /OOO w*~” Buw’ " exp (—(vw)ﬁ
= 478 /OO wtFLexp (—(*yw)ﬂ> dw
- 55/ L+ exp AP )w%_l/ﬁdw

= 7'6/ wﬁexp< )dw
0
o k
= [ w?) exp(-w)du
0
1 [ &
= k/ wh exp(—w) dw
7 Jo
1
= T +k/B)
Y
where I'() denotes the gamma function.
7.1.5 Mean, variance, coefficient of variation, skewness, excess kurtosis

p=B(w) = ~T(1+1/8)

7t = B(w?) ~ E(w)® = 5 (D(1+2/8) ~T(1+1/8)")

cov=0c/u=+/T(1+2/8) —T(1+1/B8)2/T(1+1/8)

skewness = E ((w— ,u,)?’) /o3
= E(v®-3wn+ 3wy’ — 1) /o?
[(1+3/8)—30(1+2/8)T(1+1/8) +2I'(1 +1/38)3
(D(L+2/8) — T(1+1/8)%)*?

kurtosis = E ((w —p)*) Jot
= E(vw* - 4w’p+ 6w?p® — dwp® + p) Jo*
D(1+4/B)—4T(1+3/8)(14+1/8) +6I'(1+2/8)(1+1/3)?> —3T(1+1/3)*
(C(1+2/8) —=T(1+1/8)%)?

excess kurtosis = kurtosis — 3

7.2 Uniform
7.2.1 pdf

For z € [—a,d]
fu(z;a) =1/2a
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7.2.2 cdf

For x € [—a,al
Fy(z;a) = (v +a)/2a

7.2.3 Inverse of the cdf
For y € [0,1]

7.2.4 Moments

E(X*Y) =a'/5

7.2.5 Mean, variance, skewness, excess kurtosis

p=20

skewness = 0

kurtosis = E((X —p)?) Jot
= E(x%) /o
= (a'/5)/(a"/9) = 9/5

excess kurtosis = 9/5 -3 = —6/5

7.3 Right triangular
7.3.1 pdf
For z € [0, d]
frr(z;a) = 2/a — 2x/d?
7.3.2 cdf

For z € [0, d]
Frr(z;a) = 2z/a — 2% /a?
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7.3.3 Inverse of the cdf
For y € [0,1]
Fng(y;a) =a—ay/1—y
7.3.4 Moments
E(X*) = 2a*/((k + 1)(k +2))

SO

E(X%) =a'/15

7.3.5 Mean, variance, skewness, excess kurtosis

pw=a/3

o? =a*/18

skewness = E ((X —p)?) /o®
= E (X3 —3X%u +3Xp? — ug) /o?
= (a®/10 — a®/6 + 2a%/27)/(a® /18%/?)
= 18%/2/135) = 2v/2/5

kurtosis = E((X —p)?) /o

= E(X*—4X3u+6X%2 —4xp® + ) /o
(1/15 —4/30 4+ 1/9 — 1/27)/(1/18)?
= 12/5

excess kurtosis = 12/5 —3 = —3/5

7.4 Double exponential
7.4.1 pdf

For x < 0
foe(z;a) = aexp(az)/2

Forz >0
foe(z; a) = aexp(—ax)/2
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7.4.2 cdf

For x < 0

Forz >0

7.4.3 Inverse of the cdf
For y < 1/2

For y > 1/2

7.4.4 Moments

Fo(x; a) = exp(az) /2

Fpe(z;a) =1 — exp(—ax)/2

Fg(y;a) =log(2y) /a

Fpp(y;a) = —log(2(1 —y))/a

E(X)=0
E(X?) =2/a®
E(X3) =0

E(X?) = 24/a"

7.4.5 Mean, variance, skewness, excess kurtosis

7.5 Exponential
7.5.1 pdf

For x > 0

=0
o2 =2/a?

skewness = 0

kurtosis = E((X —p)*) /o
= E(Xx*) /o
— (24/a")/(4/a) =6

excess kurtosis=6 —3 =3

filws a) = a exp(—az)
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7.5.2 cdf

For z >0
Fg(z;a) =1 — exp(—ax)

7.5.3 Inverse of the cdf

For y € [0,1]
’ Fg ' (y;a) = —log(1 —y)/a

7.5.4 Moments
E(X*) = k!/d"

7.5.5 Mean, variance, skewness, excess kurtosis

pw=1/a

0?=2/a*—1/a* = 1/d*

skewness = E ((X — u)g) /o?
= E(X°-3X%u+3Xp*—p?) Jo?
(6/a® —6/a®+2/a)/(1/a®) = 2

kurtosis = E ((X — u)4) Jo?
= E(X*—4X3u+6X%u% —axpd + pt) Jo
= (24/a* —24/a* +12/a* — 3/a*)/(1/a*) =9

excess kurtosis=9—-3 =6
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Section Distribution Description Parameters Skewness | Excess kurtosis
Weibull, cv = 0.2 ~v=0.1852, B =5.796 | —0.3518 0.0036

7.1 Weibull, cv = 0.3 ~v=0.2708, 3 =3.714 | —0.0261 —0.2766
Weibull, cv = 0.4 ~v = 0.3557, B = 2.695 0.2769 —0.2124

7.2 uniform symmetric, short-tailed | a = V3 0.0000 —1.2000
7.3 right triangular skewed, short-tailed a=+/18 0.5657 —0.6000
7.4 double exponential | symmetric, long-tailed | a = /2 0.0000 3.0000
7.5 exponential skewed, long-tailed a=1 2.0000 6.0000

Table 1: Distributions. For definitions of v, 3, and a, see Sections 7.1 — 7.5.
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Standard Predictor sort
allocation allocation
Divided by 1 — p?

1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I| m/|anova | KW | KW | KW | ranks | Waerden | anova | ranks | Friedman | ancova | 1-way \ 2-way
80| 510 1| .048 | .042 .000 .081 | .060 .058 .051 .052 .044 .051 .050 .050
80| 5110 2| .049 | .043 .000 .083 | .061 .060 .053 .052 .045 .052 .052 .052
80 510 3| .050 | .044 .000 .088 | .066 .065 .057 .056 .048 .057 .056 .056
80| 510 4| .053 | .046 .000 .097 | 072 .072 .065 .063 .053 .066 .064 .064
80| 510 5| .067 | .050 .000 110 | .082 .083 076 .073 .061 077 .076 .076
80| 5|10 6] .062 | .055 .000 126 | .097 .099 .090 .085 .072 .093 .092 .091
80| 510 7| .068 | .060 .001 149 | 115 119 .109 102 .085 114 113 112
80| 5110 8| .077 | .067 | .001 176 | 139 143 132 123 .103 .140 140 137
80| 510 9| .087 | .076 .002 .208 | .168 174 159 147 124 172 172 .168
80| 5] 10|10 | .098 | .084 .002 245 | 202 .209 .193 178 149 .209 210 .205
80| 5] 10| 11 d11 .096 .004 287 238 251 .230 212 178 .252 .254 .248
80| 510 | 12| .127 | .108 .005 335 | 281 297 277 .250 211 .300 304 297
80| 510 | 13 | .144 | .123 .008 385 | .328 .347 .326 .293 .249 .355 .359 .350
80| 5110 |14 | .163 | .141 .011 1439 | .380 402 .380 .343 .290 413 418 .408
80| 5|10 | 15| .18 | .159 .016 496 | 435 .459 .436 .394 .336 AT5 .480 .469
80| 5]10 |16 | .210 | .180 .023 551 | 492 519 .498 .450 .386 .b38 .543 531
80| 510 | 17 | .237 | .203 .032 607 | 547 578 .558 .505 436 .602 .605 .593
80| 510 | 18 | .264 | .229 .043 .663 | .606 .636 617 .562 .490 .662 .666 .653
80| 51019 | .296 | .256 .057 | 715 | .661 .693 .673 .619 .542 .720 722 .710
80| 51020 | .326 | .285 .074 764 | 715 .745 726 673 .b93 173 174 762
80| 5 (10|21 | .360 | .315 .095 .808 | .762 .793 776 724 .644 .818 .821 .809
801 5120 1| .050 | .047 | .000 .069 | .058 .054 .049 .049 .045 .050 .050 .050
80| 5120 2| .052 | .048 .000 .071 | .061 .058 .052 .051 .049 .053 .053 .053
80| 5120 3] .055 | .051 .000 .082 | .070 .067 .063 .060 .057 .064 .063 .063
80 5120 4| .062 | .057 | .000 102 | 087 .086 .080 .075 .069 .082 .082 .081
80| 520 5| .071 | .065 .001 128 | 113 112 107 .098 .089 .109 .109 .108
80| 5120 6| .083 | .075 .001 166 | .148 151 144 130 A17 147 .148 .146
80| 5120 7| .099 | .088 .002 215 | 193 201 .192 172 154 197 .198 .196
801 5120 8| .119 | .106 .003 275 | 251 .261 .252 .225 201 .259 .262 .259
80| 520 9| .142 | .128 .006 345 | 318 .333 .325 .290 .256 .337 .338 .334
801 512010 170 .153 .010 421 .393 415 .406 .362 319 421 423 418
801 5(20 11| .202 | .180 017 | 503 | 474 .503 491 .440 .391 511 513 .508
80| 5120 (12| .237 | .212 .029 .5b88 | .559 591 .580 524 467 .600 .604 .598
80| 5120 |13 .278 | .249 .045 .668 | .642 .676 .667 .607 .546 .686 .691 .685
80| 5120 (14| .326 | .292 .068 745 | 719 .753 .746 .688 .624 .765 .769 .763
80| 51]20 15| .3714 | .338 102 812 | 790 .822 817 762 .697 .832 .835 .830
80| 51]20 |16 | .426 | .388 147 | .865 | .850 .878 .872 .824 .766 .886 .888 .884
80| 5120 |17 | .481 | .438 .204 908 | .895 918 917 .876 .825 927 .928 .924
80| 5120 |18 | 535 | .491 271 940 | 931 .949 947 916 871 .955 .956 .953
80| 520 | 19| .589 | .542 .348 962 | .955 .969 .968 .945 909 974 974 972
80 52020 | .643 | .594 433 977 | 973 .982 982 .966 938 .986 .986 .985
80| 51]20 (21| .692 | .645 .522 987 | .984 990 .990 .980 961 .992 .993 1992

Table 2: Power simulation (see Section 3 for details, including column definitions), bivariate Gaussian—Weibull(.3cv), p = 0.80,
J =5, 1 =10,20. The full simulation results (covering eight bivariate predictor-response distributions, and a range of p, J, and

I values) can be found at wwwl.fpl.fs.fed.us/ps_nonpar_table2.html.
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?

1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”

0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way

.00 10 | 21 | .567 | .554 .552 552 | .552 .b51 b17 .507 273 .560 .562 .b14
.022

.50 10 | 21 | .557 | .545 .550 .662 | .662 .661 .624 .601 .346 .680 .685 .634
.028 .054 | .054 .020

.60 10 | 21 | .562 | .550 .550 742 | 707 726 .687 .661 401 .748 .753 .702
.021 .064 .055 .022

.70 10 | 21 | .558 | .545 .555 822 | 791 .810 772 .740 482 .838 .841 795
.012 .067 | .054 .058 .022

.80 10 | 20 | .518 | .505 .501 901 | .877 .888 .850 .818 574 914 917 .882
.003 .079 | .062 .063 .021

.90 10 | 15 | .317 | .311 191 .899 | .868 .888 .819 788 .543 923 .924 .890
.000 .091 | .067 .080 .022

.95 10 | 11 | .185 | .183 .029 .880 | .880 .875 742 728 476 .920 .923 .889
.053 .000 112 112 114 .021

.99 10 6| .085 | .086 .000 912 | .851 .870 501 .580 .338 961 .963 .940
.053 .000 284 | .170 275 .042 .021

.00 20 | 21 | .873 | .853 .849 .849 | .849 .861 .850 .834 .662 .868 .869 .851
.042

.50 20 | 20 | .833 | .812 .837 906 | .901 912 .906 .886 .730 921 .922 .908
.047 .026 .054 .043

.60 20 | 18 | .746 | .722 .760 .895 | .888 .896 .888 .864 .709 .906 .906 .890
.016 .057 | .053 .041

.70 20 | 17 | .693 | .665 718 919 | .913 .920 .913 .891 747 931 .932 .919
.008 .059 | .054 .053 .041

.80 20 | 14 | .516 | .493 .489 900 | .892 .904 .892 .860 712 918 .916 901
.002 .065 | .059 .056 .041

.90 20 | 11 | .338 | .322 178 925 | 917 .925 .904 .875 738 .940 .942 .930
.000 .077 | .069 .067 .042

.95 20 8| .192 | .182 .014 916 | .903 .914 .863 .840 .698 931 .932 .919
.000 .093 | .080 .084 .041

.99 20 4| .075 | .075 .000 .868 | .868 .861 .624 .698 .538 .906 .906 .890
.000 147 147 .180 .045 .042

.00 40 | 16 | 911 | .898 .897 897 | .897 .908 .905 .893 710 912 912 .905
.038

.50 40 | 14 | .816 | .796 .833 .899 | .899 .909 .907 .887 715 914 912 .905
.047 .025 .038

.60 40 | 13 | .755 | .736 N 897 | .895 .906 .904 .883 710 912 912 .905
.016 .054 | .053 .037

.70 40 | 12 | .682 | .662 .709 910 | .908 .920 918 .894 734 927 .925 .919
.008 .056 | .055 .039

.80 40 | 10 | .514 | .494 .482 .892 | .889 .904 .899 .869 .705 911 912 .905
.002 .060 | .058 .055 .039

.90 40 8| .342 | .326 171 926 | .921 .936 .930 901 .756 .944 .944 .938
.000 .068 | .063 .060 .040

.95 40 6 | .197 | .190 .010 924 | .920 .932 .914 .887 745 941 .943 .937
.000 077 | .072 .069 .040

.99 40 4| .101 | .098 .000 993 | .991 .992 .962 .979 .909 997 .997 .996
.000 109 | .098 121 .040

Table 3.1: Some power and size results for bivariate normal data. J = 2, I = 10,20,40. For columns 5 — 16, the upper

number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10 21 | .363 | .328 .320 320 | .347 .351 .350 .340 .268 .355 .359 .350
.042 .043 .043 .043
b0 | 5110 |21 | .357 | .322 241 456 | .448 .459 .453 431 .351 470 471 .460
.042 .014 .054 .053 .043
60| 5110 | 21| .360 | .322 211 .b38 | .515 .526 521 493 408 .545 .543 531
.042 .007 .060 | .053 .044
700 5110 | 21| .361 | .324 .162 .653 | .615 .630 .621 .586 495 .654 .654 .641
.042 .002 .067 | .055 .043
80| 5110 | 21| .362 | .324 .102 819 | 777 795 770 735 .649 .818 .821 .809
.042 .000 .081 | .060 .059 .045
90| 5110 | 18 | .266 | .236 .013 929 | .897 .910 .864 .846 .765 931 .931 .924
.042 .000 108 | .073 .080 .043
95| 5110 | 13| .147 | .128 .000 922 | .884 .902 775 .786 .695 921 .923 915
.042 .000 148 | .099 125 .044
99 | 5|10 71 .069 | .059 .000 958 | .937 941 .505 .681 .558 .966 .967 .962
.047 | .041 .000 367 | 281 .465 .041 .045
00| 5120 |21 | .689 | .655 .659 .659 | .672 .688 .687 .665 .567 .694 .691 .685
.045 .047 .047 .047
bSO 512021 .689 | .656 .625 .803 | .800 817 .819 792 702 .828 .827 .821
.045 .014 .054 | .053 .047
.60 | 5120 |21 | .696 | .662 .609 874 | .868 .881 .882 .858 .780 .889 .888 .884
.047 .006 .056 .046
2701 5120 |20 | .637 | .606 507 914 | .906 918 917 .893 .830 927 .926 .923
.045 .002 .062 | .056 .047
80| 5120 | 17 | .476 | .446 .220 914 | .903 .916 912 .885 .827 925 .928 .924
.047 .000 .069 | .059 .055 .047
90 | 5120 | 13| .274 | .252 .009 938 | .924 .938 .922 .897 .841 945 .943 .940
.045 .000 .084 | .069 .064 .046
95| 5120 9| .137 | .127 .000 .900 | .879 .897 .839 .823 754 .903 .904 .900
.045 .000 .096 | .078 .081 .046
99| 5120 51| .066 | .062 .000 950 | .939 .943 .710 .832 742 .955 .956 .953
.044 .000 179 | 1148 .246 .045 .047
00| 5|40 | 19| .909 | .890 .893 .893 | .896 .909 .910 .894 .818 912 .908 .906
b0 | 5140 | 17 | .818 | .795 .789 907 | .906 .919 921 .903 .837 923 .923 .922
.047 .014 .054 | .053
.60 | 5|40 | 16 | .763 | .735 707 915 | .912 .925 .927 .907 .847 .929 .931 .930
.005 .056 | .054
70| 5140 | 14 .625 .597 .492 901 .897 911 911 .887 .823 915 915 913
.001 .058 | .055
80| 5140 | 12 | .463 | .439 .206 .906 | .900 .914 .913 .883 .829 .920 .919 917
.000 .065 | .059 .054
90| 5140 | 9| .257 | .241 .005 908 | .900 .914 .908 .878 .826 921 .920 918
.000 .072 | .065 .056
95| 5|40 7| .154 | .145 .000 931 | .923 .939 .923 .895 .852 942 .943 .942
.047 | .047 .000 .082 | .073 .067
99 | 5140 | 4| .071 | .069 .000 971 | .967 972 .905 .934 .895 977 .978 977
.046 .000 11 | .099 135 .047

Table 3.2: Some power and size results for bivariate normal data. J = 5, I = 10,20,40. For columns 5 — 16, the upper

number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .243 | .210 212 212 | 237 242 242 .236 195 .244 .245 .243
.043 .041 .041 .042
b0 | 11 | 10 | 21| .245 | .210 .100 318 | .307 314 .320 .305 .260 .326 .328 .325
.042 .007 .056 | .053 .042
.60 | 11 | 10 | 21 | .244 | .210 .057 393 | .361 370 375 .354 .305 .387 .387 .384
.041 .002 .060 .047 .047 .041 .047
270 | 11 | 10 | 21 | .243 | .209 .025 503 | .449 461 461 435 .382 .486 488 484
.042 .000 .073 | .054 .043
80 | 11 | 10 | 21 .244 211 .005 .692 .621 .641 .625 .589 .534 .668 .670 .666
.042 .000 .084 | .057 .056 .042
90 | 11 | 10 | 20 | .217 | .188 .000 1925 | .880 903 .851 .837 .789 .916 918 .916
.041 .000 116 | .070 .078 .041
95| 11 (10| 15| .131 | .112 .000 .949 | .908 932 .804 .832 771 .935 .935 .932
.043 .000 163 | .097 143 .043
99 | 11 | 10 71 .062 | .053 .000 955 | .922 .966 370 .586 479 .905 .902 .899
.042 .000 458 | .336 704 .040 .040
.00 | 11 ] 20| 21 | .522 | .488 487 487 | .503 .520 .520 .501 .446 .523 .520 518
.046 .046 .046
b0 | 11 | 20 | 21| .529 | .493 .349 .653 | .647 .663 .668 .638 .584 .674 .674 671
.047 .007 .054 .046
.60 | 11 | 20 | 21 | .524 | .487 .280 741 | 728 743 .750 717 .669 .755 .759 .756
.045 .002 .060 | .055 .047
2701 11120 | 21| 524 | .485 194 .854 | .837 .854 .856 .826 .789 .865 .866 .864
.046 .000 .062 | .054 .046
80| 11 120 | 19| .420 | .386 .042 909 | .892 .907 905 .876 .851 .916 916 915
.047 .000 .072 | .059 .046
90 | 11 | 20 | 14 .219 .199 .000 .909 .886 .904 .885 .858 831 911 912 911
.047 .000 .088 | .068 .062 .047
95| 11 |20 | 11| .139 | .125 .000 949 | .932 .946 .906 .899 .874 .949 .952 .951
.046 .000 .108 | .081 .088 .046
99 |11 120| 6| .068 | .062 .000 984 | .976 .984 798 .922 .878 .983 .984 .983
.047 .000 198 | 155 .356 .044 .045
.00 | 11 | 40 | 21 | .880 | .858 .861 .861 | .865 .881 .881 .864 .824 .882 .882 .882
.046 .046 .046 .047
b0 | 11 140 | 19| .791 | .764 .694 .893 | .891 905 906 .885 .855 .908 910 .909
.045 .007 .056 | .055
.60 | 11 | 40 | 18 | .731 | .700 .560 911 | .908 .920 922 .901 .874 .924 .924 .923
.002 .057 | .055 .047
70 | 11 | 40 | 16 | .598 | .568 281 903 | .898 911 913 .886 .861 .916 917 .916
.000 .059 | .055 .047
.80 | 11 | 40 | 14 | .450 | .427 .054 928 | .921 .933 .932 .906 .887 .937 .935 .935
.047 .000 .068 | .061 .047
90 | 11 | 40 | 10 | .213 | .200 .000 .899 | .888 902 .895 .856 .839 .905 .906 .905
.000 077 | .068 .055
95 | 11 |40 | 8| .142 | .133 .000 946 | .938 .950 .935 .910 .899 .953 .952 .952
.000 .089 | .078 .065
99 | 11 |40 | 4| .062 | .060 .000 .930 | .918 .939 .800 .852 .824 .925 925 .924
.047 .000 122 | 107 .168

Table 3.3: Some power and size results for bivariate normal data. J = 11, I = 10,20,40. For columns 5 — 16, the upper

number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .566 | .555 .552 552 | .552 .553 .515 .506 270 .558 .562 .b14
.055 .053 .053 | .053 .022
.50 10 | 21 | .563 | .554 .555 .667 | .667 .669 .624 .607 .354 677 .685 .634
.031 .057 | .057 .054 .023
.60 10 | 21 .562 .554 .553 743 711 731 .684 .661 401 742 753 .702
.054 .021 .062 .053 .054 .022
.70 10 | 21 | .558 | .547 .559 .829 | .798 .819 772 744 488 .835 .841 795
.053 .011 .066 | .053 .057 .021
.80 10 | 20 | .22 | .512 b1l 905 | .883 .894 .850 .822 .584 911 917 .882
.054 .004 .077 | .060 .062 .022
.90 10 | 15 | .322 | .318 191 902 | .872 .896 .816 .789 .549 915 .924 .890
.001 .091 | .067 .079 .022
.95 10 | 11 | .184 | .183 .030 .881 | .881 .880 742 .729 491 .907 .923 .889
.000 111 111 112 .022 .046
.99 10 6| .082 | .084 .000 913 | .853 .874 .505 .b84 .339 916 .963 .940
.000 286 | .173 .276 .043 .023 .032
.00 20 | 21 | .871 | .853 .852 .852 | .852 .867 .852 .838 .661 .869 .869 .851
.042
.50 20 | 20 | .832 | .813 .843 911 | .905 918 .905 .890 744 921 .922 .908
.026 .056 .043
.60 20 | 18 | .744 | .724 761 .894 | .887 .900 .884 .864 713 .904 .906 .890
.017 .059 | .055 .054 .042
.70 20 | 17 .691 .670 724 921 915 927 914 .892 .756 931 932 919
.008 .060 | .055 .053 .042
.80 20 | 14 | .517 | .500 .502 904 | .895 .910 .891 .863 .726 916 .916 901
.002 .065 | .060 .059 .042
.90 20 | 11 | .339 | .326 .185 929 | .920 .932 .907 .880 755 .936 .942 .930
.000 .073 | .065 .065 .041 .047
.95 20 8| .192 | .184 .015 920 | .908 .920 .862 .845 .710 921 .932 .919
.000 .092 | .079 .085 .042 .046
.99 20 51 .093 | .091 .000 976 | .976 971 .843 .909 .786 976 .992 .989
.000 147 147 181 .040 .028
.00 40 | 16 | 912 | .899 .902 902 | .902 .916 .906 .896 719 913 912 .905
.038
.50 40 | 14 | .819 | .805 .832 .899 | .899 912 .902 .887 716 .909 912 .905
.025 .040
.60 40 | 13 | .754 | .739 .784 .899 | .897 .913 .903 .886 717 911 912 .905
.015 .054 | .053 .040
.70 40 | 12 | .677 | .662 719 913 | 911 .926 .916 .898 744 .924 .925 .919
.007 .055 | .053 .038
.80 40 | 10 | .510 | .497 .495 897 | .895 .914 .900 .875 719 908 912 .905
.002 .059 | .057 .054 .038
.90 40 8 | .343 | .332 .182 933 | .927 .945 .930 .906 771 941 .944 .938
.000 .068 | .062 .061 .037
.95 40 6| .199 | .194 .009 931 | .927 .942 918 .895 758 933 .943 .937
.000 .073 | .069 .067 .039 .043
.99 40 4| .101 | .099 .000 993 | .992 .993 .967 .979 912 991 .997 .996
.000 109 | .097 .116 .038 .024

Table 3.4: Some power and size results for bivariate Gaussian—Weibull(.2cv) data. J = 2, I = 10,20, 40. For columns 5 — 16,

the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10 |21 | .355 | .322 321 321 | .348 .357 .345 .339 .269 .352 .359 .350
.043 .044 .044 .045
bSO | 511021 .359 | .326 .248 455 | .449 .463 .452 .435 .355 470 471 .460
.043 .013 .053 .043
60| 5110 | 21| .355 | .323 .209 540 | 517 .534 .520 .498 415 .540 .543 531
.043 .006 .060 | .053 .043
700 5110 | 21| .363 | .328 .166 .657 | .621 .642 .621 591 .508 .650 .654 .641
.047 | .041 .002 .067 | .054 .042
80| 5110 | 21 .360 .326 11 .824 783 .807 775 744 .661 817 .821 .809
.043 .000 .083 | .061 .060 .044
90| 5110 | 18 | .261 | .234 .012 929 | .898 917 .862 .849 776 923 .931 .924
.043 .000 105 | .071 .077 .043 .045
95| 5110 | 14| .163 | .143 .000 958 | .933 .946 .849 .863 787 .947 .959 .954
.046 | .041 .000 146 | .096 121 .046 .043 .041
99 | 5|110| 8| .077 | .065 .000 986 | .978 977 .656 .834 718 972 .995 .993
.047 | .041 .000 365 | .280 .460 .040 .044 .020
00| 5120 |21 | .689 | .663 .667 .667 | .679 701 .688 672 570 .693 .691 .685
.045 .046 .046 .046
SO | 512021 | .692 | .662 .633 .810 | .808 .828 817 .796 711 .824 .827 .821
.046 .014 .053 .047
.60 | 5120 |21 | .693 | .666 .615 873 | .867 .887 877 .858 787 .883 .888 .884
.006 .055 .045
2700 5120 |20 | .641 | .613 17 919 | 912 .927 917 .900 .842 925 .926 .923
.046 .002 .062 | .056 .045
80| 5120 | 17 | .481 | .455 227 921 | .910 .927 915 .893 .837 .926 .928 .924
.047 .000 .069 | .059 .054 .047 .047
90| 5120 | 13| .278 | .260 .011 936 | .924 .940 .919 .898 .849 .934 .943 .940
.047 .000 .083 | .067 .063 .047 .045
95| 5120 | 10| .168 | .157 .000 958 | .947 .960 .924 915 871 .950 .962 .960
.045 .000 .096 | .076 .083 .045 .040
99| 5120 6| .078 | .071 .000 995 | .993 .993 .905 .969 .930 .984 .997 .997
.046 | .043 .000 180 | .148 251 .046 .046 .016
00| 5|40 | 19| .908 | .894 .897 .897 | .900 917 .908 .898 .825 910 .908 .906
b0 | 5140 | 17| .823 | .803 .801 914 | 914 .931 .922 .909 .849 924 .923 .922
.014
.60 | 5|40 | 16 | .761 | .739 .720 921 | .920 .936 .930 913 .857 932 .931 .930
.006 .055 | .054 .047
70| 5140 | 14 | .624 | .600 .496 902 | .898 918 .907 .887 .831 911 915 913
.047 .001 .060 | .056
80| 5140 | 12 | .468 | .450 213 910 | .904 .924 912 .889 .840 916 .919 917
.000 .062 | .057 .046 .047
90| 5140 | 9| .257 | .244 .005 912 | .904 .924 .907 .880 .837 911 .920 918
.000 .071 | .064 .056 .046
95| 5|40 7| .155 | .149 .000 937 | .930 .949 .925 .904 .867 .930 .943 .942
.000 .082 | .074 .068 .040
99| 5 (40| 4| .072 | .071 .000 974 | .970 977 .916 .939 .904 .924 .978 977
.047 .000 114 | 102 135 .047 .047 .014

Table 3.5: Some power and size results for bivariate Gaussian—Weibull(.2cv) data. J =5, I = 10, 20, 40. For columuns 5 — 16,

the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .243 | .215 214 214 | .239 .249 241 .238 .196 .242 .245 .243
.047 | .041 .044 .044 | .053 .053 .053 .043
b0 | 11 | 10 | 21 | .247 | .215 .099 325 | .314 324 321 .310 .265 .327 .328 .325
.042 .007 .054 .041
60 | 11 | 10 | 21 | .245 | .215 .061 396 | .365 .380 373 .356 .310 .383 387 .384
.042 .002 .061 .042
70| 11 | 10 | 21 | .243 | 214 .025 510 | .456 AT7 .463 438 391 481 488 484
.041 .000 .069 .042
80 | 11 | 10 | 21 | .246 | .215 .006 705 | .634 .663 627 .601 551 .662 .670 .666
.043 .000 .086 | .057 .054 .044
90 | 11 | 10 | 20 | .226 | .197 .000 928 | .887 911 .853 .845 .804 .906 918 .916
.044 .000 117 | .070 .079 .042 .045
95 | 11 |10 | 15| .128 | .110 .000 948 | 909 937 .802 .834 .780 910 .935 932
.041 .000 163 | .098 142 .047 .047 .041 .038
99 (11 (10| 9| .073 | .063 .000 2996 | .991 .995 .653 .878 .793 963 .996 .996
.043 .000 456 | .333 702 .037 .040 .011
.00 | 11 120 | 21| .522 | .493 .492 492 | 507 535 518 .505 .450 521 520 518
.047 .044 .044 .047 .044
b0 | 11 | 20| 21| 517 | .489 .355 .662 | .656 .684 .668 .647 597 673 674 671
.045 .006 .047 .045
60 | 11 | 20 | 21| .521 | 491 .289 749 | 737 .763 .750 725 .683 .756 .759 .756
.046 .002 .060 | .055 .046
701 11120 | 21| 522 | .493 201 .860 | .845 .869 .856 .832 .801 .863 .866 .864
.046 .000 .066 | .057
80 | 11 120 | 19 | 423 | .395 .045 913 | .896 917 .903 .879 .861 912 916 915
.045 .000 .072 | .058 .045
90 | 11 | 20 | 15| .250 | .232 .000 951 | .936 .953 931 915 900 .942 .953 952
.046 .000 .088 | .068 .063 .046 .043
95 |11 |20 | 11| .138 | .125 .000 954 | 937 .955 .909 .903 .886 931 .952 951
.046 .000 .108 | .082 .088 .047 .036
99 111 20| 6| .066 | .061 .000 985 | 978 987 .813 .926 .888 .904 .984 .983
.045 .000 194 | 151 .355 .043 .047 .046 .008
.00 |11 |40 | 21| .878 | .863 .866 .866 | .869 .892 .880 .869 .826 .881 .882 .882
b0 | 11 140 | 19| 788 | .T67 701 900 | .898 920 909 .894 .865 911 910 .909
.006 .053
.60 | 11 | 40 | 18 | .728 | .705 573 916 | 913 931 921 .905 .883 923 924 .923
.047 .002 .055
270 | 11 | 40 | 16 | .600 | .575 .294 2910 | .905 925 915 .894 .874 916 917 916
.047 .000 .061 | .057
80 | 11 | 40 | 14 | .450 | .433 .058 929 | 923 .939 .930 .907 .895 .930 935 .935
.000 .068 | .062
90 | 11 | 40 | 11 | .259 | .246 .000 958 | 952 967 .954 .933 .928 .955 .962 .961
.047 .000 .078 | .068 .054 .045 .042
95 |11 (40| 8| .139 | .132 .000 952 | 944 .959 937 917 912 933 .952 .952
.000 .090 | .078 .065 .046 .035
99 |11 40| 5| .073 | .071 .000 998 | 997 .998 .983 1991 .988 979 .998 .998
.000 120 | 104 163 .046 .047 .006

Table 3.6: Some power and size results for bivariate Gaussian—Weibull(.2cv) data. J = 11, I = 10,20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .561 | .542 .538 538 | .538 .542 .512 .495 .260 .557 .562 514
.054 .053 .053 | .053 .021
.50 10 | 21 | .559 | .B37 531 643 | .643 .650 .617 .b84 .338 672 .685 .634
.054 .029 .055 | .055 .053 .053 .054 .024
.60 10 | 21 | .559 | .537 .539 730 | .695 721 .688 .649 .397 .749 .753 .702
.020 .064 .054 .053 .022
.70 10 | 21 | .558 | .539 .542 815 | .786 .810 773 731 476 .837 .841 795
.011 .066 .057 .022
.80 10 | 20 | .518 | .496 487 .895 | .869 .886 .853 .808 572 913 917 .882
.055 .004 .078 | .060 .063 .053 .022
.90 10 | 15 | .311 | .301 176 .892 | .860 .886 .824 776 .544 921 .924 .890
.000 .090 | .066 .078 .020
.95 10 | 11 | .185 | .182 .027 874 | .874 .873 .749 715 478 914 .923 .889
.054 .000 112 112 .110 .022
.99 10 6| .085 | .085 .000 907 | .843 .868 515 b71 .332 .954 .963 .940
.053 | .056 .000 288 | .174 .274 .042 .020 .047
.00 20 | 21 | .868 | .838 .836 .836 | .836 .855 .848 .821 .643 .865 .869 .851
.043
.50 20 | 20 | .835 | .804 .831 903 | .896 912 .908 .882 724 .923 .922 .908
.025 .053 .041
.60 20 | 18 | .742 | .704 .746 .884 | 877 .892 .888 .854 .700 905 .906 .890
.016 .058 | .053 .041
.70 20 | 17 | .694 | .658 .700 911 | .905 921 .915 .882 .744 .932 .932 .919
.009 .061 | .056 .053 .041
.80 20 | 14 | .515 | .482 .469 .892 | .883 .901 .894 .850 711 916 .916 901
.002 .063 | .057 .055 .041
.90 20 | 11 | .333 | .309 173 919 | .910 .927 911 .869 744 .940 .942 .930
.000 .076 | .067 .066 .040
.95 20 8| 189 | .177 .012 908 | .895 911 871 .830 .699 928 .932 .919
.000 .095 | .081 .087 .042
.99 20 51 .094 | .090 .000 972 | .972 .968 .868 .897 775 .989 .992 .989
.000 147 147 179 .047 .041 .047
.00 40 | 16 | .913 | .889 .888 .888 | .888 .905 .903 .879 .696 .909 912 .905
.040
.50 40 | 14 | .821 | .787 .818 .889 | .889 .907 .906 877 .700 913 912 .905
.026 .054 | .054 .039
.60 40 | 13 | .754 | .720 .759 .886 | .884 .903 .903 .870 .700 911 912 .905
.017 .056 | .054 .039
.70 40 | 12 | .679 | .642 .692 904 | .902 .920 918 .885 726 .926 .925 .919
.007 .056 | .055 .040
.80 40 | 10 | .509 | 477 .465 .885 | .881 .905 .900 .859 .705 911 912 .905
.002 .058 | .056 .053 .038
.90 40 8| .335 | .314 .162 922 | .916 .937 .932 .893 757 .944 .944 .938
.000 .066 | .060 .058 .040
.95 40 6| .196 | .183 .008 920 | .916 .935 .923 .880 147 942 .943 .937
.047 .000 .074 | .070 .067 .037 .047
.99 40 4| .103 | .099 .000 2992 | .990 .992 .976 .974 .907 .996 .997 .996
.000 106 | .095 115 .039 .044

Table 3.7: Some power and size results for bivariate Gaussian—Weibull(.3cv) data. J = 2, I = 10,20, 40. For columns 5 — 16,

the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10 21| .362 | .314 312 312 | .338 .349 .347 .330 .262 .356 .359 .350
.042 .043 .043 .043
b0 | 511021 .358 | .313 .233 441 | .433 .449 .452 418 .345 .468 471 .460
.041 .015 .056 | .054 .053 .044
60| 5110 | 21| .357 | .312 197 524 | .500 .522 521 .480 .396 541 .543 531
.041 .006 .062 | .054 .043
700 51 10 | 21| .354 | .309 147 .636 | .598 .623 .613 .567 .485 .646 .654 .641
.043 .002 .067 | .055 .044
80| 5|10 |21 | .360 | .315 .095 808 | .762 .793 776 724 .644 .818 .821 .809
.042 .000 .081 | .060 .058 .044
90| 5110 | 18 | .261 | .226 .010 919 | .884 .908 .870 .832 .764 928 .931 .924
.044 .000 105 | .071 .077 .043
95| 5110 | 13| .146 | .123 .000 919 | .879 .902 797 782 .697 922 .923 915
.040 .000 146 | .098 123 .044
99 | 5|10 71 .069 | .059 .000 954 | .932 941 .542 .670 .552 .956 .967 .962
.041 .000 366 | .284 .462 .044 .042 .046
00| 5120 |21 | .693 | .646 .640 .640 | .653 .683 .683 .646 .549 .690 .691 .685
.047
SO 512021 .694 | .644 .606 791 | .789 817 .821 .780 .696 .826 .827 .821
.047 .014 .053
.60 | 5120 |21 | .689 | .640 .588 .861 | .855 .880 .881 .843 770 .888 .888 .884
.046 .006 .056 | .053 .046
701 5120 |20 | .641 | .592 482 904 | .896 917 .916 .882 .825 923 .926 .923
.046 .001 .061 | .055
80| 5120 | 17 | .481 | .438 .204 908 | .895 .918 917 .876 .825 927 .928 .924
.047 .000 .069 | .058 .054 .045
90 | 5120 | 13 277 .249 .008 927 912 .934 .922 .882 .838 941 .943 .940
.045 .000 .083 | .068 .065 .046
95| 5120 9| .137 | .124 .000 .890 | .869 .896 .854 .810 754 .902 .904 .900
.047 | .045 .000 .100 | .080 .086 .047
99| 5120 51| .070 | .065 .000 945 | .932 .945 768 .824 742 944 .956 .953
.000 180 | .149 .248 .046 .045 .046
00| 5|40 | 19| .909 | .878 .880 .880 | .883 .907 .906 .882 .804 .908 .908 .906
.047 .047
b0 | 5140 | 17| .821 | .780 775 .899 | .898 .922 .922 .892 .829 924 .923 .922
.015 .055 | .055
.60 | 5|40 | 16 | .759 | .720 .691 909 | .907 .928 .930 .900 .843 932 .931 .930
047 | .047 .006 .055 | .054
70| 5| 40 | 14 | .622 | 577 .463 .893 | .888 913 .913 .876 .821 917 915 913
.001 .057 | .054 .047
80| 5140 | 12 | .465 | .428 .189 897 | .891 915 .914 .873 .826 919 .919 917
.000 .063 | .058 .054
90| 5140 | 9| .252 | .230 .004 .899 | .891 .918 911 .863 .825 919 .920 918
.000 073 | .067 .057
95| 5|40 7| .156 | .143 .000 925 | 917 .940 .927 .888 .853 .940 .943 .942
.000 .082 | .073 .067
99 | 5140 | 4| .072 | .068 .000 967 | .963 .973 931 .926 .891 972 .978 977
.000 113 | .101 .133 .043

Table 3.8: Some power and size results for bivariate Gaussian—Weibull(.3cv) data. J =5, I = 10, 20, 40. For columuns 5 — 16,

the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .243 | .203 .204 204 | .230 242 242 .228 .188 .245 .245 .243
.040 .042 .042 .043
b0 | 11 | 10 | 21 | .243 | .205 .091 .310 | .300 312 321 .295 .252 .328 .328 .325
.042 .007 .054 .043
.60 | 11 | 10 | 21 | .245 | .205 .053 378 | .348 .365 374 .342 .298 .387 .387 .384
.042 .002 .060 .047 .043
270 | 11 | 10 | 21 | .246 | .205 .023 491 | 439 .465 .465 423 .380 487 488 484
.043 .000 .072 | .055 .042
80 | 11 | 10 | 21 | .243 | .204 .004 .676 | .605 .641 .630 572 .529 .666 .670 .666
.040 .000 .087 | .058 .056 .041
90 | 11 |10 | 20 | .222 | .185 .000 917 | 871 .904 .861 .826 788 .916 918 .916
.041 .000 117 071 .078 .042
95|11 (10| 15| .133 | .109 .000 937 | .896 .930 .824 .816 .763 .929 .935 .932
.042 .000 .165 | .100 145 .042
99 | 11 | 10 | 8| .067 | .055 .000 982 | .965 .984 .564 735 .631 .965 976 .975
.040 .000 460 | .338 708 .042 .042 .044
.00 | 11 120 | 21| .516 | .462 A72 AT72 | 487 521 521 484 431 .524 .520 518
.047 | .044 .047
b0 | 11 | 20 | 21| .520 | .468 .328 633 | .627 .661 .666 .618 .b71 .670 .674 671
.047 .007 .045
.60 | 11 | 20 | 21 | .517 | .465 .259 723 | 710 745 .749 .697 .659 .756 .759 .756
.045 .002 .059 | .054 .045
2701 11120 | 21| .520 | .469 178 .841 | .824 .857 .858 .809 782 .866 .866 .864
.046 .000 .065 | .056 .047
80| 11 120 | 19 | .417 | .373 .036 .900 | .881 .906 .904 .862 .842 915 916 915
.046 .000 .072 | .059 .047
90 | 11 | 20 | 14 214 188 .000 .900 .876 .906 .890 841 .829 910 912 911
.044 .000 .091 | .070 .062 .046
95 | 11 | 20 | 11 | .140 | .124 .000 946 | .927 .949 918 .888 .873 .949 .952 .951
.046 .000 .107 | .081 .088 .046
99 |11 120| 6| .069 | .062 .000 982 | 974 .985 .854 912 .875 978 .984 .983
.047 .000 196 | .153 .354 .046 .044 .040
.00 | 11 | 40 | 21 | .885 | .849 .848 .848 | .853 .885 .885 .851 .807 .885 .882 .882
b0 | 11 1 40 | 19 | 787 | .742 .666 .881 | .879 .908 909 .873 .843 .910 910 .909
.007 .053
.60 | 11 | 40 | 18 | .729 | .683 537 .900 | .896 922 923 .888 .868 .925 .924 .923
.002 .058 | .056
70 | 11 | 40 | 16 | .594 | .549 .258 .893 | .886 913 914 .873 .855 915 917 .916
.000 .061 | .057 .047
80 | 11 | 40 | 14 | .449 | .409 .048 916 | .908 931 .930 .891 .884 .935 .935 .935
.000 .068 | .061 .047
90 | 11 | 40 | 10 | .212 | .192 .000 .887 | .875 903 .897 .842 .836 .903 .906 .905
.000 .076 | .067 .054
95 | 11 |40 | 8| .137 | .127 .000 1939 | .929 951 .938 .898 .897 .948 .952 .952
.047 .000 .087 | .076 .066 .047
99 | 11 |40 | 4| .063 | .060 .000 918 | .907 .939 .839 .834 .820 .903 925 .924
.000 122 .105 .163 .040

Table 3.9: Some power and size results for bivariate Gaussian—Weibull(.3cv) data. J = 11, I = 10,20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .561 | .542 .542 542 | .542 .549 .513 497 .261 .558 .562 .514
.053 .053 | .053 .053 .053 .022
.50 10 | 21 | .558 | .B37 .540 .656 | .656 .663 .622 .590 .342 .678 .685 .634
.028 .054 | .054 .022
.60 10 | 21 | .556 | .536 .540 734 | .700 728 .682 .649 .395 .743 .753 .702
.021 .066 | .054 .056 .053 .023
.70 10 | 21 | .556 | .541 .546 821 | .790 .818 774 734 .480 .839 .841 795
.054 .012 .065 .056 .022
.80 10 | 20 | .514 | .498 494 898 | .874 .892 .853 .813 .580 910 917 .882
.004 .076 | .059 .061 .022
.90 10 | 15 | .316 | .306 176 897 | .864 .894 .824 781 .548 915 .924 .890
.053 .000 .091 | .067 .080 .021 .047
.95 10 | 11 | .182 | .180 .027 .879 | .879 .881 752 721 .490 .908 .923 .889
.000 112 112 112 .022 .047
.99 10 6| .083 | .085 .000 908 | .847 .872 .520 .576 .338 919 .963 .940
.054 .000 283 | 172 .274 .043 .021 .037
.00 20 | 21 | .870 | .843 .844 .844 | 844 867 .854 .828 .649 871 .869 .851
.041
.50 20 | 20 | .835 | .805 .830 902 | .895 915 .904 .879 729 .920 .922 .908
.047 | .047 .026 .055 .053 .042
.60 20 | 18 | .745 | .709 .746 .886 | .879 .898 .885 .855 .700 903 .906 .890
.015 .057 | .053 .041
.70 20 | 17 | .691 | .656 .706 912 | .907 .924 .914 .883 745 931 .932 .919
.053 .009 .061 | .057 .054 .042
.80 20 | 14 | .519 | .487 473 .893 | .884 .908 .891 .851 715 912 .916 901
.002 .064 | .058 .056 .042
.90 20 | 11 | .335 | .312 172 921 | .912 .930 .905 .868 751 .936 .942 .930
.000 .079 | .070 .068 .042
.95 20 8| .190 | .177 .012 913 | .900 .923 .873 .835 .709 .924 .932 .919
.000 .092 | .079 .083 .041 .044
.99 20 51 .096 | .091 .000 973 | .973 971 .864 .898 .780 974 .992 .989
.053 .000 151 151 182 .047 .044 .033
.00 40 | 16 | 915 | .893 .893 .893 | .893 .914 .908 .886 .703 914 912 .905
.038
.50 40 | 14 | .817 | .786 .818 .888 | .888 .910 .903 .876 .709 .909 912 .905
.027 .053 | .053 .038
.60 40 | 13 | .756 | .724 .766 .891 | .889 912 .902 .874 .709 910 912 .905
.016 .055 | .053 .038 .047
.70 40 | 12 | .682 | .649 .692 903 | .901 .925 917 .886 732 925 .925 .919
.007 .055 | .053 .037
.80 40 | 10 | .513 | .482 .468 .886 | .883 912 .900 .863 714 .909 912 .905
.002 .058 | .056 .054 .039
.90 40 8| .340 | .320 .164 921 | .916 .942 .929 .892 .765 .939 .944 .938
.000 .067 | .061 .060 .038 .047
.95 40 6 | .202 | .188 .008 921 | 917 941 .920 .882 756 935 .943 .937
.000 .075 | .070 .069 .038 .044
.99 40 4| .104 | .100 .000 991 | .989 .993 972 975 910 .990 .997 .996
.000 109 | .097 .119 .038 .030

Table 3.10: Some power and size results for bivariate Gaussian—Weibull(.4cv) data. J = 2, I = 10,20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10|21| .360 | .318 311 311 | .337 .352 .347 .330 .261 .354 .359 .350
.042 .046 .046 | .054 .053 .054 .045
bSO | 511021 | .357 | .313 .233 442 | 434 457 .449 .420 .347 467 471 .460
.042 .014 .053 .043
60| 5110 |21 | .359 | .314 198 522 | .500 .526 518 .480 .404 .539 .543 531
.042 .006 .058 .043
700 5110 | 21| .362 | .319 .154 .640 | .600 .634 .619 .b74 .496 .647 .654 .641
.043 .002 .068 | .055 .043
80| 5110|21 | .359 | .313 .096 .809 | .764 .800 772 724 .656 .809 .821 .809
.044 .000 .078 | .057 .057 .047 .043 .046
90| 5110 | 18 | .260 | .227 .010 919 | .887 913 .869 .835 171 921 .931 .924
.047 | .041 .000 107 | .073 .080 .044 .046
95| 5110 | 13| .144 | .125 .000 917 | .878 .910 797 782 .705 .904 .923 915
.042 .000 150 | .099 125 .043 .045
99 | 5|110| 8| .076 | .066 .000 985 | .975 .978 .693 .820 .708 972 .995 .993
.047 | .041 .000 365 | .281 .465 .042 .044 .028
00| 5120 |21 | .691 | .646 .644 .644 | .656 .693 .683 .651 .548 .688 .691 .685
.045 .046 .046 .044
bSO 512021 | .691 | .646 .613 794 | 791 .825 .819 782 .700 .826 .827 .821
.047 .013 .053
60 | 5120 |21 | .692 | .646 .590 .859 | .853 .884 877 .841 776 .884 .888 .884
.045 .006 .057 | .054
701 5120 |20 | .638 | .594 492 910 | .901 .927 .919 .888 .837 927 .926 .923
.002 .061 | .055 .046
80| 5120 | 17 | .475 | 434 .207 909 | .897 .924 .914 .878 .834 923 .928 .924
.046 .000 .068 | .058 .054 .046
90 | 5120 | 13| .277 | .252 .007 930 | .916 .944 .922 .888 .848 .935 .943 .940
.047 .000 .079 | .064 .063 .045 .046
95| 5120 | 10| .167 | .150 .000 951 | .939 .960 .926 .903 .866 951 .962 .960
.047 .000 .099 | .079 .085 .045 .043
99| 5120 6| .08 | .074 .000 993 | .991 .992 921 .962 .924 .982 .997 .997
.046 .000 180 | .151 .248 .046 .047 .024
00| 5|40 | 19| .910 | .881 .881 .881 | .885 .916 .907 .882 .808 .909 .908 .906
.047
b0 | 5140 | 17| .817 | .780 776 901 | .900 .928 .919 .894 .834 921 .923 .922
.046 .046 .014
.60 | 5|40 | 16 | .760 | .721 .695 910 | .907 .936 .929 .900 .850 931 .931 .930
.006 .057 | .055
70 | 5|40 | 14 | .618 | .577 470 .893 | .889 .919 .910 877 .825 913 915 913
.001 .058 | .055
80| 5140 | 12 | .463 | .427 .193 .896 | .889 .924 911 .873 .834 915 .919 917
.000 .065 | .061
90| 5140 | 9| .253 | .234 .004 902 | .893 .927 911 .866 .835 915 .920 918
.047 .000 .070 | .063 .055 .045
95| 5|40 7| .150 | .139 .000 925 | 917 .948 .927 .888 .863 931 .943 .942
.047 | .044 .000 .080 | .071 .066 .042
99 | 5140 | 4| .069 | .067 .000 968 | .964 .978 .927 .929 .903 931 .978 977
.047 .000 113 | .100 .136 .018

Table 3.11: Some power and size results for bivariate Gaussian—-Weibull(.4cv) data. J =5, I = 10,20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .245 | .204 .204 204 | .229 .246 241 .228 .190 .243 .245 .243
.042 .042 .042 .043
b0 | 11 | 10 | 21| .243 | .203 .092 308 | .298 317 316 .293 .252 .322 .328 .325
.042 .006 .054 .040
60 | 11 | 10 | 21 | .246 | .204 .055 382 | 351 .376 373 .344 .302 .385 387 .384
.040 .002 .061 .042
70| 11 | 10 | 21 | .245 | .204 .023 493 | 441 473 462 424 .384 483 488 484
.043 .000 .070 | .053 .042
80 | 11 | 10 | 21 | .244 | .205 .004 .681 | .607 .657 .628 579 .b44 .662 .670 .666
.042 .000 .087 | .056 .055 .042
90 | 11 |10 | 20 | .218 | .183 .000 920 | 871 913 .860 .828 .798 .908 918 .916
.041 .000 117 .072 .081 .042 .047
95 | 11 |10 | 15| .129 | .108 .000 943 | 903 .939 .823 817 775 915 .935 932
.041 .000 165 | .101 143 .043 .043
99 |11 10| 9| .072 | .059 .000 2995 | 1990 .995 .700 .866 784 967 .996 .996
.041 .000 456 | .336 704 .040 .041 .021
.00 | 11 |20 | 21 | .521 | .472 467 467 | 483 530 515 481 428 518 520 518
.047 .046 .046 .046
b0 | 11 | 20| 21| 519 | 472 .336 640 | .634 .682 .669 .625 .b84 674 674 671
.046 .007 .056 | .054 .047
.60 | 11 | 20 | 21 .022 475 .266 731 717 .763 .749 704 .671 .756 .759 756
.047 .002 .057 .045
701 11120 | 21| 517 | .468 178 .842 | 826 .867 .856 811 .790 .862 .866 .864
.047 .000 .062 | .054 .043 .047
80 | 11 120 | 19| 415 | .374 .038 901 | .884 918 .905 .865 .853 913 916 915
.044 .000 .074 | .059 .045
90 | 11 | 20 | 15 251 221 .000 .942 927 .954 .936 .904 .900 .945 .953 952
.046 .000 .087 | .067 .059 .047 .044
95 |11 |20 | 11| .138 | .125 .000 943 | 925 .955 914 .887 .880 934 .952 951
.045 .000 .108 | .081 .088 .045 .037
99 | 11120 6| .068 | .062 .000 982 | 975 .988 .850 915 .886 918 .984 .983
.045 .000 197 | 153 .356 .046 .046 .015
.00 | 11 |40 | 21 | .884 | .849 .850 .850 | .855 .896 .885 .854 .809 .886 .882 .882
b0 | 11 140 | 19 | 786 | .745 672 .885 | .883 920 910 .878 .852 911 910 .909
.047 | .047 .007 .047
.60 | 11 | 40 | 18 | .731 | .686 .539 902 | .898 .930 919 .890 .872 921 924 .923
.002 .057 | .055
270 | 11 | 40 | 16 .594 .b47 .266 .894 .888 .924 912 874 .863 .914 917 916
.000 .062 | .059
80 | 11 | 40 | 14 | 451 | .415 .051 916 | .909 .940 927 .892 .890 .929 935 .935
.047 .000 .070 | .063 .054
90 | 11 | 40 | 11 | .264 | .240 .000 949 | 942 .966 .954 921 .928 .955 .962 .961
.000 .078 | .069 .055 .044
95 |11 40| 8| .137 | .126 .000 943 | 934 961 .939 903 910 937 .952 .952
.000 .087 | .075 .065 .038
99 |11 (40| 5| .074 | .070 .000 2996 | .995 .998 .985 .988 987 .982 .998 .998
.000 119 | 103 164 .046 .047 .047 .010

Table 3.12: Some power and size results for bivariate Gaussian-Weibull(.4cv) data. J = 11, I = 10,20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .544 | .508 .508 508 | .508 .b51 497 463 .239 .543 .562 .514
.054 | .055 .054 .053 .021
.50 10 | 21 | .545 | .505 .503 .620 | .620 .666 .612 .560 .328 .661 .685 .634
.028 .055 | .055 .053 .022
.60 10 | 21 | .546 | .506 .503 704 | .667 .739 677 .617 .385 731 .753 .702
.054 .020 .063 .054 .021
.70 10 | 21 | .545 | .507 .506 789 | .756 .826 765 .698 479 .819 .841 795
.011 .065 .054 .020 .047
.80 10 | 21 | .549 | .510 .504 904 | .881 .927 .879 .815 .620 .920 941 911
.053 | .053 .004 .075 | .058 .062 .021 .047
.90 10 | 16 | .341 | .324 197 918 | .892 .949 .875 811 .637 916 .953 .927
.053 | .053 .001 .091 | .068 .079 .022 .042
.95 10 | 13 | .233 | .227 .046 953 | .953 977 .903 .846 .680 .937 .982 .968
.053 .000 112 112 114 .047 .022 .036
.99 10 9| .128 | .128 .000 997 | .992 .998 .948 .926 774 944 1.000 | 1.000
.000 285 | .173 .276 .046 .021 .015
.00 20 | 21 | .872 | .812 813 813 | .813 .882 .855 797 .607 .874 .869 .851
.039
.50 20 | 20 | .834 | .770 798 .880 | .873 .930 .907 .852 718 922 .922 .908
.025 .054 .042
.60 20 [ 19 | 792 | .728 .769 897 | .891 .943 915 .865 751 .930 .934 921
.016 .057 .040
.70 20 | 17 | .687 | .628 .664 .893 | .886 .944 .906 .851 755 921 .932 .919
.008 .061 | .056 .054 .042
.80 20 | 15 | .568 | .520 .537 919 | .912 .964 .926 .878 .808 .937 .949 .938
.002 .062 | .057 .055 .040 .045
.90 20 | 11 | .329 | .305 155 918 | .909 .968 .902 .856 .804 .906 .942 .930
.000 .076 | .067 .066 .042 .041
.95 20 9| .227 | .215 .020 962 | .956 .990 .943 .904 .866 .930 977 .970
.047 .000 .092 | .078 .085 .043 .031
.99 20 51 .094 | .090 .000 978 | .978 .995 .937 .906 .857 .760 .992 .989
.000 148 .148 179 .043 .008
.00 40 | 16 | 911 | .868 .870 .870 | .870 .943 .908 .862 .670 915 912 .905
.038
.50 40 | 14 | 817 | .764 798 873 | .873 .949 .901 .860 718 .909 912 .905
.023 .039
.60 40 | 13 | .754 | .700 .746 878 | .875 .953 .901 .858 .740 .907 912 .905
.017 .053 .037
.70 40 | 12 | .682 | .635 .678 .894 | .892 .964 912 872 788 918 .925 .919
.007 .055 | .054 .037
.80 40 | 11 | .596 | .555 .585 933 | .931 .984 .944 912 .859 .946 .957 .953
.002 .055 | .053 .047 .047 .037 .045
.90 40 8| .337 | .317 .159 923 | .916 .985 .919 .885 .856 .909 .944 .938
.000 .066 | .060 .059 .038 .039
.95 40 6| .192 | .185 .006 927 | .923 .989 913 .883 .863 872 .943 .937
.000 .074 | .070 .070 .041 .028
.99 40 4| .099 | .098 .000 994 | .993 1.000 .989 977 .964 .841 .997 .996
.000 106 | .095 117 .039 .003

Table 3.13: Some power and size results for bivariate Gaussian—uniform data. J = 2, I = 10,20, 40. For columns 5 — 16, the
upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10 |21 | .352 | .295 291 291 | 317 .397 .337 312 .248 .345 .359 .350
.043 .043 .043 .043
b0 | 511021 .352 | .296 217 422 | 415 .518 441 401 .357 .450 471 .460
.042 .015 .056 | .054 .053 .054 .053 .046 .053
60| 5110 | 21| .352 | .296 .180 505 | .482 .600 511 .462 431 .524 .543 531
.041 .007 .060 | .053 .044
700 5110 | 21| .352 | .297 133 .621 | .584 712 .609 .551 .539 .624 .654 .641
.043 .002 .069 | .056 .054 .044
80| 5|10 | 21| .354 | .300 077 801 | .754 872 772 .708 .708 .783 .821 .809
.041 .000 .081 | .059 .059 .045 .047
90| 5110 | 19| .288 | .242 .009 947 | .919 .979 .916 .863 .876 912 .956 951
.042 .000 105 | .071 .076 .047 .042 .038
95| 5110 | 15| .182 | .153 .000 975 | .959 .993 .935 .896 .903 913 .981 978
.047 | .040 .000 146 | .098 .119 .043 .028
99 | 5110 9| .08 | .072 .000 997 | .995 1.000 .949 928 .909 767 .999 .999
.040 .000 370 | .283 .466 .047 .045 .005
00| 5120 |21 | .68 | .619 .620 .620 | .632 778 .682 .625 521 .687 .691 .685
.047 | .044 .047 .047 .045
SO | 512021 | .689 | .619 575 771 | 768 .894 .810 753 713 817 .827 .821
.046 .014 .053 .045
.60 | 5120 |21 | .688 | .620 .559 .844 | .838 .942 .872 .822 .806 .878 .888 .884
.006 .058 | .054 .047
701 5120 20| .635 | .571 457 .894 | .885 .966 911 .865 871 913 .926 .923
.046 .002 .063 | .057 .053
80| 5120 | 17 | .471 | .419 .188 903 | .890 .974 .906 .862 .891 .906 .928 .924
.045 .000 .068 | .057 .055 .046 .044
90 | 5120 | 13| .272 | .246 .007 930 | .916 .988 .916 .879 923 .894 .943 .940
.046 .000 .082 | .067 .064 .035
95| 5120 |10 | .164 | .149 .000 956 | .946 .996 .934 .905 .944 .872 .962 .960
.045 .000 .099 | .079 .084 .046 .022
99| 5120 6| .079 | .072 .000 996 | .994 1.000 .980 .967 977 .632 .997 .997
.046 .000 180 | .149 .247 .046 .001
00| 5|40 |19 | .910 | .867 .864 .864 | .868 .966 .905 .866 .785 .908 .908 .906
.047
b0 | 5140 | 17 | .821 | .768 757 .888 | .887 977 918 .880 .859 918 .923 .922
.047 .015 .055 | .054
.60 | 5|40 | 16 | .762 | .709 .678 903 | .900 .982 .924 .889 .891 925 .931 .930
.047 .006 .055 | .054
70| 5140 | 14| .619 | .569 452 .887 | .883 .980 .903 .865 .895 .902 915 913
.002 .056 | .054 .047 .047
80| 5140 | 12 | .460 | .423 .188 .899 | .892 .986 .905 871 .922 .898 .919 917
.047 .000 .064 | .059 .053 .044
90| 5140 | 9| .253 | .235 .003 906 | .897 .992 .896 .867 .944 .864 .920 918
.000 .071 | .064 .056 .046 .033
95| 5|40 7| .156 | .149 .000 937 | .930 .998 918 .897 .964 .828 .943 .942
.000 .081 | .071 .067 .018
99 | 5140 | 4| .073 | .070 .000 976 | .973 1.000 .954 .940 .980 374 .978 977
.000 11 | .098 134 .047 .000

Table 3.14: Some power and size results for bivariate Gaussian—uniform data. J =5, I = 10, 20, 40. For columns 5 — 16, the
upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 |11 | 10 | 21 | .240 | .200 .200 .200 | .226 .320 241 .223 185 .242 .245 .243
.041 .043 .043 .042
b0 | 11 | 10 | 21 | .240 | .197 .089 308 | .297 428 316 .292 .283 321 .328 .325
.040 .006 .057 | .053 .044
60 | 11 | 10 | 21 | .243 | .200 .048 373 | 342 .495 .366 .334 .345 .369 387 .384
.043 .002 .061 .047 .041
S0 | 11 | 10 | 21 | .242 | .200 .020 488 | 435 .618 .459 A17 457 .462 488 484
.042 .000 .069 .041 .047
.80 | 11 | 10 | 21 .245 .200 .003 .681 .605 811 622 .068 .647 .619 .670 .666
.040 .000 .086 | .056 .055 .040 .044
90 | 11 | 10 | 21| .242 | .199 .000 2946 | 910 .988 908 .863 919 .887 947 .945
.042 .000 114 .068 .078 .046 .045 .042 .032
95|11 |10 | 16 | .141 | .116 .000 970 | .945 .996 912 .879 .925 .842 .966 .964
.041 .000 162 | .097 142 .046 .047 .042 .021
99 (11 10| 9| .074 | .061 .000 997 | 993 1.000 910 .890 .892 447 .996 .996
.043 .000 453 | 331 701 .047 .040 .001
.00 | 11 120 | 21| .518 | .460 .460 460 | 474 .686 .b14 472 420 b7 520 518
.046 .047 .047 .046
b0 | 11 | 20 | 21| .520 | .462 .316 622 | .616 .833 .655 .605 623 .659 674 671
.046 .007 .053 .047
.60 | 11 | 20 | 21 | .523 | .464 .255 717 | 705 .897 .740 .688 737 742 .759 .756
.047 .002 .058 | .053 .047 .047
701 11120 | 21| 519 | .460 172 .838 | .821 .962 .848 .799 .867 .846 .866 .864
.047 .000 .066 | .057 .053 .047
.80 | 11 120 | 18 | .381 | .336 .020 .859 | .837 972 .851 .806 901 .838 .875 .874
.046 .000 .071 | .059 .046 .044
90 | 11 | 20 | 13| .184 | .165 .000 .853 | .820 979 .807 770 1901 .746 .851 .849
.045 .000 .087 | .067 .061 .047 .047 .045 .030
95 |11 (20| 10| .120 | .109 .000 901 | .872 .992 .840 .812 .930 .669 .888 .887
.047 .000 .106 | .079 .086 .047 .046 .014
99 11120 6| .072 | .065 .000 988 | .983 1.000 .946 .930 972 212 .984 .983
.053 .000 198 | 155 .356 .046 .000
.00 | 11 | 40 | 21 .885 .841 .841 .841 .846 976 .883 .844 798 .884 .882 .882
.047
b0 | 11 1 40 | 19 | 787 | .736 .659 879 | 878 .986 904 .870 .891 .906 910 .909
.047 .007 .047 .047
.60 | 11 | 40 | 18 | .727 | .677 .529 .899 | .895 .990 916 .883 .925 916 924 .923
.001 .056 | .054
70 | 11 | 40 | 15| 523 | 481 .188 .848 | .840 .982 .855 .819 908 .851 .867 .866
.000 .061 | .057
.80 | 11 | 40 | 13 | .382 | .353 .025 .867 | .857 .989 .859 .827 .940 .845 .882 .882
.053 .000 .067 | .060 .047 .047 .042
90| 11140 9| .171 | .160 .000 815 | .796 .984 172 747 .923 .693 .807 .806
.000 .080 | .070 .057 .029
95 (11 (40| 7| .111 | .105 .000 .861 | .844 .994 .810 .790 .952 .593 .850 .849
.000 .092 | .079 .068 .011
99 | 11 40| 4| .063 | .061 .000 2940 | .930 1.000 .876 .864 972 .053 .925 924
.047 .000 121 | 104 164 .047 .000

Table 3.15: Some power and size results for bivariate Gaussian—uniform data. J = 11, I = 10,20,40. For columns 5 — 16,
the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .552 | .549 .b51 551 | 651 573 .505 .504 .269 .550 .562 .b14
.053 .053 | .053 .022
.50 10 | 21 | .553 | .551 .549 .661 | .661 .686 .614 .599 .352 .666 .685 .634
.029 .054 | .054 .022
.60 10 | 21 | .553 | .h47 .549 738 | .705 751 .675 .654 .408 728 .753 .702
.020 .062 .053 .021 .047
.70 10 | 21 | .552 | .548 .554 .819 | .789 .835 762 734 .492 .818 .841 795
.053 .010 .063 .055 .020 .047
.80 10 | 21 | .554 | .550 .567 922 | .902 931 .876 .844 .629 919 941 911
.053 .004 .075 | .059 .062 .022 .045
.90 10 | 16 | .348 | .357 .256 934 | .913 .950 .866 .838 .629 917 .953 .927
.053 .000 .091 | .068 .080 .046 .021 .037
.95 10 | 13 | .238 | .252 .082 962 | .962 977 .886 .866 .667 931 .982 .968
.053 .000 110 110 .110 .047 .021 .030
.99 10 9| .135 | .145 .002 998 | .994 .998 .901 .933 746 935 1.000 | 1.000
.053 .000 281 | .165 .270 .042 .021 .010
.00 20 | 21 | .872 | .850 .846 .846 | .846 .884 .851 .832 .653 .867 .869 .851
.040
.50 20 | 20 | .833 | .809 .840 906 | .901 .935 .903 .883 147 918 .922 .908
.026 .055 .042
.60 20 | 19 | .789 | .771 .815 921 | .916 .947 914 .893 779 928 .934 921
.017 .059 | .054 .053 .042
.70 20 | 17 | .691 | .677 728 921 | .915 .950 .905 .887 778 .920 .932 .919
.007 .058 | .053 .047 .041 .045
.80 20 | 15 | .575 | 574 .611 941 | .936 .967 .922 .906 .817 .932 .949 .938
.002 .065 | .059 .058 .042 .045
.90 20 | 11 | .335 | .344 .220 939 | .932 .970 .898 .884 .805 902 .942 .930
.000 .078 | .069 .068 .047 .040 .036
.95 20 9| .231 | .243 .045 973 | .968 .989 .937 .930 .864 925 977 .970
.000 .095 | .081 .086 .042 .027
.99 20 51 .093 | .097 .000 985 | .985 .995 .909 .928 .850 722 .992 .989
.000 .145 .145 181 .041 .004
.00 40 | 16 | .916 | .908 .905 905 | .905 .947 .904 .898 726 912 912 .905
.047 | .046 .039
.50 40 | 14 | .818 | .816 .846 908 | .908 .953 .900 .896 .759 907 912 .905
.026 .039
.60 40 | 13 | .754 | .758 .804 911 | .909 .956 .897 .896 771 .904 912 .905
.016 .056 | .055 .038
.70 40 | 12 | .677 | .687 .746 927 | .924 .968 .910 .909 .808 916 .925 .919
.008 .054 | .053 .037 .046
.80 40 | 11 | .598 | .613 671 956 | .954 .985 941 .938 .870 .944 .957 .953
.002 .059 | .058 .053 .039 .044
.90 40 8| .334 | .356 .229 950 | .946 .986 921 .923 .857 .906 .944 .938
.000 .065 | .060 .058 .037 .035
.95 40 6| .195 | .209 .015 951 | .948 .988 913 917 .860 .863 .943 .937
.000 075 | .071 .069 .038 .024
.99 40 4| .101 | .109 .000 997 | .997 1.000 .985 .987 .962 .803 .997 .996
.000 108 | .097 118 .038 .002

Table 3.16: Some power and size results for bivariate Gaussian-right triangular data. J =2, I = 10, 20, 40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10 |21 | .355 | .339 341 341 | .369 422 .346 .359 .285 .353 .359 .350
.047 | .041 .044 .044 .043
b0 | 51 10|21 | .354 | .339 .262 481 | .473 .543 .446 453 .390 .457 471 .460
.042 .014 .055 .042
60| 5110 | 21| .354 | .337 .226 560 | .B37 .618 .509 .b14 .459 .522 .543 531
.047 | .041 .006 .061 | .054 .045
70| 5110 | 21| .354 | .338 177 679 | .642 728 .608 .605 .561 .620 .654 .641
.044 .002 .068 | .055 .053 .043 .046
80| 5|10 |21 | .353 | .337 117 841 | .802 .878 .763 752 719 71 .821 .809
.047 | .041 .000 077 | .057 .057 .044 .040
90| 5110 | 19| .289 | .276 .022 964 | .945 .980 .907 .899 .878 .906 .956 951
.043 .000 107 | .072 .076 .044 .032
95| 5110 | 15| .182 | .175 .000 984 | .973 .993 921 .922 .897 901 .981 978
.043 .000 148 | .098 123 .047 .044 .018
99 | 5110| 9| .082 | .076 .000 998 | .997 .999 .888 .949 .903 .681 .999 .999
.045 | .038 .000 368 | .285 461 .044 .043 .002
00| 5120 |21 | .688 | .682 .685 .685 | .696 791 .684 .689 .589 .690 .691 .685
.046 .045 .045 .046
SO 512021 | .695 | .690 .657 .833 | .830 .905 .816 .816 761 .820 .827 .821
.046 .015 .055 | .054
.60 | 5120 |21 | .690 | .685 .648 .892 | .887 .946 .874 .872 .838 .879 .888 .884
.047 .006 .055 .045 .047
2700 5120 |20 | .640 | .639 .556 930 | .923 971 912 .906 .888 913 .926 .923
.001 .061 | .055 .046 .047
80| 5120 | 17 | .475 | .479 .267 938 | .929 977 .904 .906 .904 902 .928 .924
.046 .000 .069 | .058 .055 .042
90| 5120 | 13| .278 | .287 .015 958 | .948 .989 .915 919 .925 .886 .943 .940
.000 .083 | .068 .066 .029
95| 5120 | 10| .166 | .173 .000 974 | 967 .995 .928 .936 .942 .850 .962 .960
.045 .000 .101 | .080 .087 .015
99| 5120 6| .081 | .080 .000 998 | .997 1.000 .964 .980 975 .520 .997 .997
.046 .000 179 | 1149 .246 .047 .000
00| 5|40 | 19| .909 | .912 .913 913 | .915 .969 .908 913 .847 910 .908 .906
.047 .053
b0 | 5140 | 17 | .819 | .827 .833 929 | .928 .980 .916 923 .895 917 .923 .922
.047 .013 .0563 | .053
.60 | 5|40 | 16 | .761 | .775 .765 939 | .938 .984 .923 .929 915 923 .931 .930
.005 .053 .047
70| 5140 | 14| .618 | .639 .564 928 | .925 .981 901 910 911 .899 915 913
.001 .060 | .057
80| 5140 | 12 | .465 | .492 272 936 | .931 .985 .902 915 .930 .891 .919 917
.047 .000 .062 | .057 .040
90| 5140 | 9| .254 | .272 .009 941 | .935 991 .894 912 .944 .852 .920 918
.000 .071 | .064 .058 .029
95| 5|40 7| .152 | .163 .000 964 | .959 .996 .919 .936 .960 .804 .943 .942
.000 .082 | .073 .066 .012
99 | 5140 | 4| .072 | .074 .000 989 | .987 1.000 .948 .968 978 270 .978 977
.047 .000 113 | .101 .136 .047 .000

Table 3.17: Some power and size results for bivariate Gaussian-right triangular data. J =5, I = 10, 20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .240 | .231 232 232 | .258 .333 242 .256 213 .242 .245 .243
.042 .041 .041 .041
bSO | 11 | 10 | 21 | .244 | 234 113 354 | .342 .437 321 .337 311 .322 .328 .325
.042 .007 .054 .043
.60 | 11 | 10 | 21 | .243 | .232 071 430 | .398 .508 .366 .388 .379 .366 .387 .384
.040 .001 .062 .042
270 | 11 | 10 | 21 | .245 | .236 .032 550 | .498 .630 451 473 .485 451 488 484
.042 .000 .072 | .054 .041 .045
80 | 11 | 10 | 21 | .243 | .232 .007 746 | .680 .816 .620 .640 .666 .605 .670 .666
.042 .000 .087 | .058 .055 .042 .038
90 | 11 | 10 | 21| .242 | .235 .000 968 | .944 987 .898 .904 .923 .870 947 .945
.042 .000 119 072 .080 .042 .025
95|11 10| 16 | .146 | .137 .000 985 | .969 .996 .898 921 .928 797 .966 .964
.043 .000 .163 | .096 142 .047 .046 .041 .010
99 | 11 | 10| 9| .071 | .065 .000 999 | .997 1.000 .819 .925 .900 .265 .996 .996
.042 .000 459 | .336 .709 .042 .042 .000
.00 | 11 120 | 21| .522 | .536 .535 535 | .551 705 .520 .548 .490 .522 .520 518
.047 .045 .045 .046
b0 | 11 | 20 | 21| .17 | .529 408 707 | 702 .842 .664 .690 .685 .666 .674 671
.047 .007 .055 | .053
.60 | 11 | 20 | 21 | .518 | .531 .335 787 | 774 .902 .738 .759 775 737 .759 .756
.045 .002 .058 | .053 .047
2701 11120 | 21| 515 | .527 .249 .892 | .880 .964 .847 .861 .889 .841 .866 .864
.000 .064 | .055 .046 .045
80| 11 (20| 18 | .371 | .384 .039 909 | .892 975 .851 .867 912 .832 .875 .874
.047 .000 .072 | .058 .043 .037
90 | 11 | 20 | 13| .189 | .196 .000 905 | .884 978 .810 .841 .907 .720 .851 .849
.046 .000 .088 | .068 .061 .045 .023
95|11 (20| 10| .118 | .121 .000 941 | .922 .993 .835 .870 .929 .603 .888 .887
.046 .000 .108 | .081 .089 .046 .007
99 |11 120| 6| .068 | .066 .000 994 | .992 1.000 913 .960 971 .098 .984 .983
.046 .000 .198 | 155 .356 .046 .000
.00 | 11 |40 | 21 | .879 | .894 .895 .895 | .898 974 .880 .897 .861 .881 .882 .882
b0 | 11 1 40 | 19| .788 | .813 .760 927 | .926 .986 902 .920 .925 .903 910 .909
.007 .054 | .053
.60 | 11 | 40 | 17 | .666 | .696 557 .910 | .906 981 873 .896 .918 871 .882 .882
.001 .058 | .055
270 | 11 | 40 | 15| .521 | .55H4 277 902 | .896 .982 .851 .879 .923 .844 .867 .866
.045 .000 .062 | .057 .044
80 | 11 | 40 | 12 | .315 | .342 .024 .859 | .848 972 7T .819 .902 .746 .806 .805
.000 .066 | .059 .047 .047 .037
90 | 11 140| 9| .170 | .184 .000 877 | .863 .982 774 .822 .922 .662 .807 .806
.000 .079 | .068 .055 .021
95 | 11 | 40 71 .112 | .120 .000 913 | .901 .994 .809 .856 .950 .529 .850 .849
.000 .088 | .076 .066 .047 .006
99 | 11 |40 | 4| .063 | .063 .000 969 | .963 .999 .873 921 .973 .019 925 .924
.000 122 | 1106 .168 .000

Table 3.18: Some power and size results for bivariate Gaussian—right triangular data. J = 11, I = 10,20, 40. For columns 5
— 16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .591 | .657 .659 .659 | .659 .624 .549 611 .358 .593 .562 514
.046 .053 .053 | .053 .053 .023 .047
.50 10 | 21 | .596 | .662 .670 766 | .766 732 .645 711 433 .700 .685 .634
.047 .029 .056 | .056 .053 .023
.60 10 | 21 | .593 | .657 677 .832 | .807 787 .701 .763 .480 .759 .753 .702
.047 | .053 .020 .064 .054 .023
.70 10 | 21 | .594 | .660 .684 .895 | .875 .855 765 .830 .550 .832 .841 795
.046 | .053 .010 .064 .054 .046 .020 .047
.80 10 | 21 | .595 | .661 701 963 | .951 .936 .855 914 .667 .923 941 911
.047 | .054 .004 .076 | .060 .061 .044 .020
.90 10 | 16 .393 .454 421 .970 957 .949 814 912 .654 923 .953 927
.047 .001 .091 | .068 .080 .040 .020 .044
.95 10 | 12 | .244 | .289 141 968 | .968 .949 .736 .887 .615 .909 .961 .937
.047 .053 .000 .109 .109 11 .038 .022 .041
.99 10 8| .126 | .153 .008 995 | .989 .984 .629 910 .626 917 .999 .998
.047 | .054 .000 287 | 174 275 .031 .021 .018
.00 20 | 20 | .831 | .901 .904 904 | .904 .875 .815 .893 741 .831 .833 .813
.047 .042 .047
.50 20 | 18 | .752 | .840 .867 2925 | .920 .896 .832 .907 .749 .854 .856 .837
.025 .054 .047 .041
.60 20 | 17 | .705 | .798 .841 939 | .935 .908 .841 919 .760 .866 .869 .851
.047 .016 .056 .040
.70 20 | 15 | .597 | .699 .749 928 | .923 .897 .814 .902 737 .845 .856 .836
.009 .061 | .056 .054 .042
.80 20 | 13 | .477 | .575 .607 939 | .933 .908 .812 912 735 .851 .869 .851
.047 .002 .061 | .056 .055 .047 .040 .047
.90 20 | 10 | .300 | .374 281 952 | .946 .926 .796 919 746 .856 .889 .872
.000 .077 | .069 .066 .046 .040 .045
.95 20 8| .204 | .251 .065 973 | .968 .953 .786 .940 783 .869 .932 .919
.000 .091 | .079 .084 .044 .043 .038
.99 20 51 .099 | .115 .000 995 | .995 .985 .687 972 .860 .829 .992 .989
.000 .149 .149 178 .037 .042 011
.00 40 | 14 | .822 | 914 915 915 | .915 .880 .812 .908 747 .822 .819 .809
.039
.50 40 | 13 | .754 | .868 .899 945 | .945 .916 .848 .936 775 .859 .864 .856
.025 .038
.60 40 | 12 | .683 | .811 .858 942 | .940 912 .839 .933 762 .852 .859 .850
.016 .054 | .053 .039
.70 40 | 11 | .604 | .736 .804 950 | .948 .923 .850 .939 172 .862 871 .863
.008 .057 | .055 .053 .039
.80 40 9| .432 | .562 .592 932 | .930 .901 .802 916 723 .821 .838 .828
.047 .002 .059 | .057 .054 .039
.90 40 7| .274 | .361 .237 948 | .943 .920 .800 .927 734 .823 .860 .851
.000 .066 | .059 .058 .038 .044
.95 40 6| .205 | .268 .059 985 | .984 972 .861 .974 .841 .887 .943 .937
.000 .071 | .067 .066 .047 .038 .034
.99 40 3| .072 | .086 .000 956 | .950 .920 .589 .905 707 b1l .879 871
.000 109 | .098 121 .043 .053 .039 .008

Table 3.19: Some power and size results for bivariate Gaussian—double exponential data. J = 2, I = 10, 20,40. For columns
5 — 16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
00| 5|10 |21 | .378 | .459 .458 458 | .487 444 372 478 .384 379 .359 .350
.044 | .039 .045 .045 .047 .044 .047
bSO | 5| 10| 21| .377 | .458 .392 .611 | .603 .555 .464 .586 .468 .482 471 .460
.045 .042 .013 .056 .054 .047 .044
60| 5110 |21 | .381 | .463 .355 692 | .673 .624 521 .655 521 .549 .543 531
.045 | .041 .006 .061 | .054 .047 .044
70| 5| 10 | 21 | .384 | .466 317 801 | 773 .730 .608 .750 .609 .651 .654 .641
.046 | .043 .002 .067 | .054 .047 .044
80| 5|10 |21 | .383 | .464 .259 922 | .899 .868 738 .875 .750 .800 .821 .809
.046 | .042 .000 .082 | .061 .060 .045 .044 .047
90| 5110 | 17| .251 | .308 .045 965 | .949 .926 .740 918 .800 .848 .895 .886
.046 .042 .000 A11 .076 .081 .044 .044 .044
95| 5110 | 13| .151 | .180 .001 977 | .962 .946 .651 918 791 .825 .923 915
.044 | .040 .000 144 | .097 123 .034 .043 .032
99 | 5|110| 8| .077 | .082 .000 997 | .995 .988 .438 .938 .808 734 .995 .993
.045 | .041 .000 364 | .282 .460 .022 .043 .006
00| 5120 |21 | .696 | .824 .829 .829 | .837 785 .694 .830 .739 .700 .691 .685
.047 .046
SO 512021 | .693 | .824 .821 927 | .926 .890 .812 .920 .841 .822 .827 .821
.045 | .045 .015 .055 | .054 .053 .047
.60 | 5120 |19 | .593 | .730 .706 916 | .911 .870 781 .904 .805 794 .804 798
047 | .047 .006 .057 | .054 .046
700 5120 | 18 | .b44 | .684 .621 944 | .939 .910 .823 .932 .845 .839 .852 .847
.001 .061 | .055 .047 .046 .047
80| 5120 | 15| .384 | .503 .302 941 | .932 .899 782 .920 .818 .807 .835 .830
047 | .047 .000 .070 | .060 .056
90 | 5120 | 11| .204 | .270 .015 940 | .926 .893 716 .903 .785 .759 .821 .816
.047 | .046 .000 .080 | .065 .064 .046 .047 .046 .040
95| 5120 9| .141 | .183 .000 976 | .971 .951 .733 951 .858 791 .904 .900
.046 .000 .099 | .079 .084 .044 .046 .028
99| 5120 51| .067 | .074 .000 2992 | .990 .976 479 .958 .867 478 .956 .953
.046 | .044 .000 176 | 1145 .246 .028 .046 .003
00| 5|40 | 17| .822 | .933 .931 931 | .933 .895 .819 .932 .876 .821 .820 .818
.047
b0 | 5140 | 15| .695 | .850 .856 941 | .941 .905 .818 .939 .868 .824 .829 .826
.014
.60 | 5|40 | 14| .630 | .790 778 943 | .942 .905 .819 .938 .859 .824 .833 .831
.006 .054
70| 51 40 | 12 | .469 | .630 .544 921 | .918 .874 .766 .909 .810 774 .786 .783
.047 .001 .061 | .057 .053
80| 5140 | 11| .395 | .541 .360 957 | .953 .923 .825 .946 .863 .833 .854 .852
.000 .064 | .060 .053 .047 .046
90| 5140 | 8| .205 | .285 .013 945 | .940 .906 .756 .924 .818 756 .823 .821
.000 .071 | .064 .057 .038
95| 5140 | 6| .118 | .152 .000 947 | .941 .908 .699 .920 .807 671 .821 .818
.046 .000 .081 | .072 .068 .047 .024
99 | 5140 | 4| .071 | .080 .000 998 | .997 991 .703 .993 .960 .520 .978 977
.047 .000 112 | .101 135 .036 .001

Table 3.20: Some power and size results for bivariate Gaussian—double exponential data. J =5, I = 10, 20,40. For columns
5 — 16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .253 | .327 .328 328 | .359 314 .249 .355 .296 251 .245 .243
046 | .041 .042 .042 .042
b0 | 11 | 10 | 21 | .249 | .322 .193 ATT7 | 465 .405 .323 .458 .373 .332 .328 .325
.042 .006 .056 .042
.60 | 11 | 10 | 21 | .253 | .327 138 .b68 | .536 470 372 .524 424 391 .387 .384
.042 .002 .062 .045
270 | 11 | 10 | 21 | .252 | .325 .081 .699 | .651 .b84 .455 .634 .518 488 488 484
.047 | .043 .000 .071 | .053 .046 .043
80 | 11 | 10 | 21 | .252 | .328 .031 .863 | .817 758 .584 .793 .673 .639 .670 .666
.042 .000 .088 | .059 .056 .045 .043 .046
90 | 11 | 10 | 18 | .184 | .233 .001 .959 | .931 .898 .646 .902 797 758 .832 .828
.047 .042 .000 118 072 077 .042 .042 .038
95|11 |10 | 14| .119 | .141 .000 979 | .961 .944 .569 .922 817 .739 .887 .883
.042 .000 .162 | .098 141 .034 .042 .024
99 | 11 |10 | 8| .065 | .065 .000 997 | .995 .992 273 .916 792 437 976 .975
.041 .000 457 | .336 703 .019 .043 .002
.00 | 11120 | 21| .529 | .698 .694 694 | 707 .634 523 .706 .646 .526 .520 518
.044 .046 .046 .045
b0 | 11 | 20 | 21| .27 | .698 .607 .852 | .849 .780 .665 .841 767 672 .674 671
.047 | .046 .007 .054 .046
.60 | 11 | 20 | 21 | .528 | .696 .554 911 | .905 .854 742 .900 .833 752 .759 .756
.046 .002 .058 | .053 .047
2701 11 1 20 | 19 | .427 | .583 319 2920 | .910 .857 741 .902 .831 754 767 765
.044 .000 .063 | .055 .047
80| 11 120 | 17| .336 | .468 .091 953 | .943 901 172 .932 .863 793 .823 .821
.046 .000 .073 | .059 .053 .047 .046 .045
90 | 11 | 20 | 13| .191 | .259 .000 968 | .957 .924 742 .943 871 773 .851 .849
.047 .000 .088 | .068 .061 .044 .045 .035
95| 11 |20 | 10| .122 | .155 .000 980 | .972 .950 .695 .957 .893 724 .888 .887
.047 .000 .107 | .081 .086 .042 .046 .020
99 |11 120| 5| .063 | .064 .000 982 | .975 .964 312 915 811 151 .876 .874
.000 .198 | .156 .353 .026 .047 .000
.00 | 11 | 40 | 19 | .788 | .926 .927 927 | .929 .881 .786 .929 .897 .786 788 787
b0 | 11 | 40 | 16 | .B97 | .787 .730 913 | 912 .853 741 .907 .852 745 .749 .748
.007 .055 | .054
.60 | 11 | 40 | 15 | .528 | .720 .586 919 | 917 .861 743 .910 .848 747 .760 758
.053 .002 .056 | .053 .047
70 | 11 | 40 | 14 | 451 | .635 391 945 | 941 .894 .780 .933 .874 .785 .799 798
.047 .000 .061 | .057 .047
.80 | 11 | 40 | 12 | .318 | .467 .083 950 | .945 901 .768 .934 .866 772 .806 .805
.047 .000 .067 | .061 .045
90 | 11 40| 9| 173 | .241 .000 953 | .947 902 739 .928 .855 .720 .807 .806
.000 .079 | .070 .054 .047 .033
95 | 11 | 40 71 112 | .144 .000 970 | .965 .933 729 .948 .880 .654 .850 .849
.000 .091 | .079 .067 .046 .047 .015
99 | 11 |40 | 4| .062 | .068 .000 991 | .989 977 .538 .975 .929 .143 925 .924
.000 123 | .106 167 .035 .000

Table 3.21: Some power and size results for bivariate Gaussian—double exponential data. J = 11, I = 10, 20, 40. For columns
5 — 16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way Uncorr l-way | Van der | 2-way | 2-way “Theoretical”
0 I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 10 | 21 | .621 | .745 743 743 | 743 725 579 701 .430 .618 .562 514
.044 .041 .022 .042
.50 10 | 21 | .617 | .739 755 .835 | .835 .822 .658 778 512 .699 .685 .634
.042 .028 .053 | .053 .040 .021 .042
.60 10 | 21 | .619 | .742 .759 .884 | .865 .865 .700 .820 .564 .740 .753 .702
.043 .020 .063 .053 .039 .022 .042
.70 10 | 21 | .617 | .743 779 933 | .920 .923 761 .874 .629 .802 .841 795
.043 | .053 .011 .064 .054 .038 .020 .037
.80 10 | 20 | .581 | .713 761 968 | .960 .962 .810 917 .700 .843 917 .882
.044 | .053 .004 .077 | .060 .062 .038 .021 .036
.90 10 | 15 | .383 | .520 .523 978 | .970 .979 .769 .919 .685 788 .924 .890
.045 | .054 .000 .089 | .067 077 .033 .022 .023
.95 10 | 11 | .228 | .339 .208 978 | .978 .982 .695 .903 .646 .660 .923 .889
.043 .000 A11 11 .110 .030 .021 .013
.99 10 7 112 | 172 .009 997 | .993 .996 .597 922 .659 .393 .994 .988
.043 | .053 .000 287 | .169 275 .024 .022 .001
.00 20 | 18 | .759 | 912 .909 909 | .909 .913 737 .897 755 .756 745 722
.046 .047 .053 .042 .047
.50 20 | 16 | .659 | .850 .872 927 | .922 .930 724 .905 174 744 761 .738
.046 | .047 .025 .056 .046 .042 .046
.60 20 | 15 | .608 | .814 .849 937 | .932 941 728 912 .785 746 .769 747
.045 .017 .057 .043 .041 .042
.70 20 | 14 | .553 | .765 817 952 | .949 .958 745 .925 .812 755 .801 779
.047 .008 .060 | .056 .054 .045 .040 .041
.80 20 | 12 | .433 | .654 714 961 | .957 .970 732 931 .824 724 .806 .785
.046 .003 .066 | .060 .057 .043 .041 .034
.90 20 9| .264 | .439 .392 971 | .967 .981 .696 .934 .824 .626 .807 .786
.000 077 | .068 .068 .043 .042 .021
.95 20 71 .169 | .291 .108 981 | .978 991 675 .945 .842 .499 .842 .822
.044 .000 .094 | .081 .086 .039 .042 .008
.99 20 4| .077 | .115 .000 991 | .991 .997 .539 .949 .844 .093 .906 .890
.046 .000 148 | 148 178 .029 .043 .000
.00 40 | 12 | .694 | .920 919 919 | .919 .938 .681 915 762 .692 .681 .670
.038
.50 40 | 11 611 874 901 .942 .942 961 .700 .934 .810 .706 722 712
.025 .053 | .053 .039 .047
.60 40 | 10 | .533 | .816 .852 935 | .934 .958 .665 922 798 .668 .700 .689
.018 .058 | .056 .055 .053 .039
.70 40 9| 445 | .732 793 941 | .939 .965 .655 .924 .810 .643 .696 .685
.008 .057 | .055 .038 .045
.80 40 8| .360 | .639 .698 958 | .956 .979 .674 .940 .844 .638 731 .720
.002 .060 | .058 .055 .040 .035
.90 40 6 | .211 | .404 .322 963 | .960 .986 .634 .938 .846 .509 717 .706
.000 .068 | .063 .061 .047 .040 .019
.95 40 51| .153 | .289 077 986 | .985 .997 .680 .968 .899 416 .808 798
.000 .073 | .070 .067 .044 .038 .006
.99 40 3| .074 | .112 .000 996 | .995 .999 .611 .982 .930 .035 .879 871
.000 106 | .095 118 .038 .039 .000

Table 3.22: Some power and size results for bivariate Gaussian—exponential data. J =2, I = 10, 20, 40.
the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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For columns 5 — 16,




Standard

Predictor sort

allocation allocation
Divided by 1 — p?

1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”

p|J | I | m| anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way

00| 5 (10|21 | .399 | .611 .608 .608 | .636 .650 .381 .624 513 391 .359 .350
.043 | .041 .044 .044 .042 .042 .043

b0 | 5110 21| .388 | .604 .564 763 | .757 Ny 471 734 .640 .483 471 .460
.041 | .043 .013 .055 | .053 .043 .046 .043

60| 5110 | 21| .394 | .608 .550 .840 | .826 .844 .528 796 710 .536 .543 531
.044 | .043 .007 .061 | .055 .053 .042 .044 .041

700 5110 | 21| .395 | .608 .516 917 | .900 .916 .605 .870 795 .604 .654 .641
.043 | .041 .002 .068 | .054 .039 .043 .034

80| 5110| 19| .323 | .523 .350 .954 | .938 .955 .630 .903 .836 .604 722 .710
.042 | .041 .000 .084 | .061 .061 .038 .044 .027

90| 5110 | 15| .204 | .352 .072 980 | .969 .984 .613 .933 .870 .504 787 175
.045 | .044 .000 105 | .073 .077 .031 .043 .011

95| 5110 | 11| .116 | .199 .001 985 | .976 .990 .504 923 .850 276 .785 173
.042 | .040 .000 145 | .096 122 .028 .044 .003

99 | 5|10 7| .067 | .096 .000 999 | .999 1.000 377 .964 .894 .031 .967 .962
.044 | .040 .000 363 | .279 .459 .015 .042 .000

.00 5120 |20 | .657 | .908 .914 914 | .920 .935 .654 916 .848 .660 .640 .634
.045 | .045 .046 .046

b0 | 5120 | 18| .556 | .849 .843 936 | .935 .954 .653 .925 .880 .655 .673 .666
.046 | .046 .014 .053 .046 .046 .043

.60 | 520 | 16 | .448 | .751 .729 925 | .921 .949 .601 .907 .861 .595 .627 .621
.007 .059 | .056 .045 .046 .041

700 5120 | 15| 392 | .696 .640 950 | .945 .967 .628 .930 .896 .603 671 .665
.047 | .047 .002 .062 | .055 .045 .045 .037

80| 5120 | 13| .291 | .564 .400 964 | .958 .980 .618 .939 914 .553 .691 .685
.045 | .047 .000 .067 | .058 .054 .042 .046 .026

90| 5120 | 9| .142 | .286 .019 950 | .940 .980 487 .904 .875 291 .606 .599
.046 | .047 .000 .083 | .067 .064 .041 .045 .009

951 5120 71 .096 | .178 .000 973 | .966 .993 471 931 .902 .133 .651 .645
047 | .047 .000 .098 | .079 .086 .038 .001

99| 5120 4| .056 | .077 .000 993 | .990 .999 .307 .950 913 .000 752 746
.044 | .044 .000 178 | 1146 .249 .023 .045 .000

00| 5|40 | 14| .625 | .938 .937 937 | .939 .965 .628 .937 .881 .630 .620 .617
.047 .047 .047 .046 .046

b0 | 5140 | 12 | 475 | .841 .840 933 | .933 971 .b78 .927 .890 573 597 .594
.013 .045

.60 | 5|40 | 11| .396 | .762 745 932 | .930 971 .b51 918 .893 .b38 .b81 .b78
.047 .006 .055 | .053 .046 .042

70| 5140 | 10| .333 | .674 .611 939 | .936 977 .546 .923 910 .510 .589 .586
.002 .059 | .056 .046 .047 .035

80| 5140 | 9| .265 | .567 .406 .966 | .964 991 .581 .950 .945 .488 .645 .642
047 | .047 .000 .065 | .059 .053 .047 .025

90 | 5|40 7| .155 | .349 .039 978 | .975 .997 576 .963 .963 327 677 .674
.000 .073 | .066 .057 .046 .008

95| 5|40 51| .093 | .173 .000 968 | .964 .997 .465 .938 .942 .083 .605 .602
.000 .084 | .074 .068 .044 .001

99 | 5140 | 3| .056 | .076 .000 992 | 991 1.000 .381 972 .970 .000 .706 .703
.047 | .046 .000 114 | 102 138 .033 .000

Table 3.23: Some power and size results for bivariate Gaussian—exponential data. J =5, I = 10, 20, 40.
the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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For columns 5 — 16,




Standard

Predictor sort

allocation allocation
Divided by 1 — p?
1-way uncorr l-way | Van der | 2-way | 2-way “Theoretical”
p| J I | m | anova | KW KW KW | ranks | Waerden | anova | ranks | Friedman | Ancova | 1-way \ 2-way
.00 | 11 | 10 | 21 | .255 | .498 .499 .499 .534 .b87 .252 .529 457 .253 .245 .243
.042 .042 .042 .046 .042 .046
b0 | 11 | 10 | 21| .258 | .501 374 .682 .671 .729 .320 .653 .605 .320 .328 .325
047 | .042 .008 .055 .044 .053 .044 .044
.60 | 11 | 10 | 21 | .259 | .501 .309 173 .749 .804 .366 727 .688 .358 .387 .384
.044 .002 .061 .043 .042 .039
270 | 11 | 10 | 21 | .253 | .497 231 .882 .855 .901 442 .825 .796 413 .488 484
046 | .041 .000 .070 .053 .042 .042 .033
80 | 11 | 10 | 20 | .234 | .459 .099 .953 .931 .963 517 901 .882 .438 .615 .610
.044 .000 .086 .057 .056 .038 .042 .020
90 | 11 |10 | 15| .132 | .258 .001 973 .955 .984 .446 911 .889 .242 .630 625
.042 .000 118 .070 077 .030 .041 .006
95|11 10| 11| .086 | .144 .000 981 .965 .992 .332 .904 .875 .058 .627 .622
.046 | .042 .000 .163 .097 .139 .023 .046 .041 .000
99 | 11 | 10 71 .058 | .071 .000 1.000 | .999 1.000 195 .966 .926 .000 .902 .899
.045 | .040 .000 457 .334 .704 .009 .040 .000
.00 | 11 120 | 21| .529 | .888 .887 .887 .894 .936 .528 .893 .851 531 .520 518
.046 | .045 .046
b0 | 11 |20 | 19| 431 | .808 756 .925 .923 .960 .546 .914 901 .539 .560 .b58
.045 .007 .054 .046 .046 .043
.60 | 11 | 20 | 18 | .386 | .77 .651 .944 .940 .973 .554 .929 .924 .535 .583 .581
.002 .058 .054 .045 .046 .039
2701 11120 | 16 | .298 | .642 .402 .946 .939 .975 .524 .924 .926 476 b7l .569
.046 .000 .064 .054 .044 .047 .032
80 | 11 1 20 | 13 | .187 | .437 .074 .938 .926 .976 .449 .898 913 .330 .520 518
.046 | .045 .000 .076 .062 .054 .045 .046 .020
90 | 11 | 20 | 10 118 .250 .000 .962 .952 .992 424 .922 .938 .153 .553 .51
.046 .000 .089 .069 .061 .041 .044 .003
95 | 11 | 20 71 .075 | .128 .000 .947 .931 1991 .307 .878 .902 .015 481 479
.047 | .046 .000 107 .081 .086 .036 .045 .000
99 | 11 1 20| 4| .055 | .065 .000 .986 .980 1.000 .164 .922 921 .000 .584 .b82
.047 .000 197 153 .354 .016 .046 .044 .000
.00 | 11 | 40 | 15 .529 923 .920 .920 .923 972 .526 .922 .889 D27 521 .520
.047 .047 .047 .047 .047 .047
b0 | 11 1 40 | 13| .383 | .809 .764 927 .926 .978 492 918 .919 481 511 .510
.007 .054 .053 .047
.60 | 11 | 40 | 12| .325 | .730 .616 .928 .925 .981 475 915 927 .449 .503 .502
.047 | .045 .002 .057 .054 .047 .039
270 | 11 1 40 | 11 .267 .641 .393 .943 .939 .988 476 927 .949 413 .522 .520
.000 .062 .057 .033
80| 11 [ 40| 9| .175 | .432 .064 .929 .923 .985 416 .898 .940 .281 474 473
.000 .068 .061 .047 .018
.90 | 11 | 40 71 113 | .247 .000 .953 .946 .996 411 .920 .965 A11 .504 .503
.000 .079 .070 .055 .046 .003
95| 11 40| 5| .072 | .124 .000 .932 .924 .996 .315 .880 .946 .006 437 .436
.000 .088 .078 .065 .042 .000
99 | 11 |40 | 3| .053 | .063 .000 .979 .975 1.000 231 941 973 .000 .534 .533
.047 .000 123 .106 170 .029 .000

Table 3.24: Some power and size results for bivariate Gaussian—exponential data. J = 11, I = 10,20,40. For columns 5 —
16, the upper number in a row is power, and the lower number is size (blank if between .048 and .052).
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Theoretical Simulation
Order Coverage Coverage
J | Statistic | [ p=0.0 p=0.0 \ p=0.7 \ p =038 \ p=09

1 28 0.7622 0.764 0.777 0.792 0.810
2 2 53 0.7500 0.752 0.765 0.775 0.793
3 78 0.7543 0.752 0.770 0.777 0.796
1 28 0.7622 0.761 0.786 0.798 0.831
3 2 53 0.7500 0.748 0.772 0.787 0.806
3 78 0.7543 0.752 0.775 0.787 0.814
1 28 0.7622 0.765 0.794 0.811 0.845
5 2 53 0.7500 0.748 0.775 0.790 0.826
3 78 0.7543 0.756 0.772 0.794 0.824

Table 4: For standard I’s, coverages of nonparametric one-sided, lower nominal 75% confidence
bounds on fifth percentiles after a predictor sort allocation. Each simulation estimate was based on
40,000 trials. J is the number of treatments. I is the number of observations for each treatment.
p is the correlation between the predictor used in the predictor sort allocation and the response.
In the simulation that produced this table, the predictor and response had a bivariate normal
distribution.

p
.7 .8 9

OS|J | I \Coverage I \Coverage 1 \Coverage

2|26 752 25 752 24 197
25 741 24 738 23 740
1 13126 .764 25 763 23 759
25 .745 24 749 22 .746
5125 754 24 761 22 799
24 739 23 743 21 745
2| 52 755 o1 7157 50 762
51 .748 50 747 49 .749
2 13151 752 50 795 48 756
50 741 49 745 47 742
5| o1 757 49 793 47 758
50 744 48 .740 46 745
2|76 .755 75 752 73 753
75 743 74 744 72 742
3 13175 .750 74 754 72 756
74 743 73 743 71 147
5175 753 73 752 71 .762
74 .746 72 742 70 .749

Table 5: For nonstandard I’s, coverages of nonparametric one-sided, lower confidence bounds on
fifth percentiles after a predictor sort allocation. Each simulation estimate was based on a minimum
of 80,000 trials. OS is the order statistic that was used as the confidence bound. J is the number
of treatments. I is the number of observations for each treatment. p is the correlation between the
predictor used in the predictor sort allocation and the response. In the simulation that produced
this table, the predictor and response had a bivariate normal distribution.
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Figure 1: Probability density functions of the three Weibull distributions
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Figure 2: Probability density functions of the double exponential and uni-
form distributions
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Figure 3: Probability density functions of the exponential and right trian-

gular distributions
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Figure 4: Power plot, p = 0.8, bivariate normal, J =2, I = 10
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Figure 5: Power plot, p = 0.8, bivariate normal, J = 2, I = 20
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Figure 6: Power plot, p = 0.8, bivariate normal, J =5, I = 10
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Figure 7: Power plot, p = 0.8, bivariate normal, J =5, I = 20
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Figure 8: Power plot, p = 0.8, bivariate Gaussian-Weibull (.2 CV), J = 2,

I =10
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Figure 9: Power plot, p = 0.8, bivariate Gaussian-Weibull (.2 CV), J = 2,
I =20
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Figure 10: Power plot, p = 0.8, bivariate Gaussian-Weibull (.2 CV), J =5,
I=10
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Figure 11: Power plot, p = 0.8, bivariate Gaussian-Weibull (.2 CV), J =5,

I =20
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Figure 12: Power plot, p = 0.8, bivariate Gaussian-Weibull (.3 CV), J = 2,

I =10
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Figure 13: Power plot, p = 0.8, bivariate Gaussian-Weibull (.3 CV), J = 2,

I =20

non—centrality parameter index

59




probability of rejection

1.0

0.8

0.6

0.4

0.2

0.0

== th

—— ps, anocov
ps, 2way anova
ps, 2way ranks
ps, Friedman

— = no ps, KW

=== ps, KW, uncorr

non—centrality parameter index

Figure 14: Power plot, p = 0.8, bivariate Gaussian-Weibull (.3 CV), J =5,
I=10
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Figure 15: Power plot, p = 0.8, bivariate Gaussian-Weibull (.3 CV), J =5,

I =20
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Figure 16: Power plot, p = 0.8, bivariate Gaussian-Weibull (.4 CV), J = 2,
I=10
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Figure 17: Power plot, p = 0.8, bivariate Gaussian-Weibull (.4 CV), J = 2,

I =20
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Figure 18: Power plot, p = 0.8, bivariate Gaussian-Weibull (.4 CV), J =5,
I=10
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Figure 19: Power plot, p = 0.8, bivariate Gaussian-Weibull (.4 CV), J =5,

I =20
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Figure 20: Power plot, p = 0.8, bivariate Gaussian—uniform, J =2, I = 10

66



probability of rejection

1.0

0.8

0.6

0.4

0.2

0.0

- = th
—— ps, anocov

ps, 2way anova
ps, 2way ranks
ps, Friedman

— = no ps, KW

ps, KW, uncorr

Figure 21: Power plot, p = 0.8, bivariate Gaussian—uniform, J = 2, I = 20
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Figure 22: Power plot, p = 0.8, bivariate Gaussian—uniform, J =5, I = 10
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Figure 23: Power plot, p = 0.8, bivariate Gaussian—uniform, J =5, I = 20
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Figure 24: Power plot, p = 0.8, bivariate Gaussian—right triangular, J = 2,
1=10
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Figure 25: Power plot, p = 0.8, bivariate Gaussian—right triangular, J = 2,
1=20
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Figure 26: Power plot, p = 0.8, bivariate Gaussian-right triangular, J =5,
I1=10
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Figure 27: Power plot, p = 0.8, bivariate Gaussian-right triangular, J = 5,

I =20
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Figure 28: Power plot, p = 0.8, bivariate Gaussian—double exponential,
J=2,1=10
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Figure 29: Power plot, p = 0.8, bivariate Gaussian—double exponential,

J=2,1=20
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Figure 30: Power plot, p = 0.8, bivariate Gaussian—double exponential,
J=51=10
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Figure 31: Power plot, p = 0.8, bivariate Gaussian—double exponential,

J=51=20

77

20




probability of rejection

1.0

0.8

0.6

0.4

0.2

0.0

ps, 2way ranks
- - th

ps, anocov
ps, 2way anova
ps, KW, uncorr
no ps, KW

ps, Friedman

10 15 20

non—centrality parameter index

Figure 32: Power plot, p = 0.8, bivariate Gaussian—exponential, J = 2,

I =10
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Figure 33: Power plot, p = 0.8, bivariate Gaussian—exponential, J = 2,

I=20
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Figure 34: Power plot, p = 0.8, bivariate Gaussian—exponential, J = 5,
1=10
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Figure 35: Power plot, p = 0.8, bivariate Gaussian—exponential, J = 5,
1=20
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